Claims
- 1. A variable camshaft timing apparatus comprising:
pulse actuating means for oscillating said variable camshaft timing device in reaction to fluid under pulsation; pressure actuating means for oscillating said variable camshaft timing device in reaction to fluid under pressure; and switching means for independently and simultaneously activating said pulse actuating means and said pressure actuating means;
whereby said variable camshaft timing device may be oscillated using one or both of said pulse actuating means and said pressure actuating means, and said variable camshaft timing device may be maintained anywhere in position between a fully advanced and a fully retarded condition, using one or both of said pulse actuating means and said pressure actuating means.
- 2. The variable camshaft timing apparatus as claimed in claim 1, and further comprising:
an advance chamber; a retard chamber; and a fluid pressure source positioned in fluid communication between said advance and retard chambers.
- 3. The variable camshaft timing apparatus as claimed in claim 2 wherein said pulse actuating means comprises:
a pulsing path having opposite ends in fluid communication with said advance and retard chambers, said pulsing path comprising:
at least one pulse passage having means for preventing counterflow therein that permits flow to said advance chamber and prevents flow from said advance chamber; valving means for activating said pulsing path and being in fluid communication with said at least one pulse passage; and a make-up circuit in fluid communication with said pulsing path for supplying fluid to each of said advance and retard chambers to make-up for fluid loss.
- 4. The variable camshaft timing apparatus as claimed in claim 3 wherein said valving means includes valves for permitting or preventing fluid from flowing through said at least one pulse passage, wherein one of said valves exhausts fluid through one of said at least one pulse passages from one of said advance and retard chambers through to the other of said advance and retard chambers, while another of said valves supplies make-up fluid from said fluid pressure source to the other of said advance and retard chambers.
- 5. The variable camshaft timing apparatus as claimed in claim 4 wherein said valving means further includes a normally closed exhaust valve positioned in fluid communication with said pulsing path, and wherein said exhaust valve remains closed during pulse actuated oscillation of said variable camshaft timing device.
- 6. The variable camshaft timing apparatus as claimed in claim 2 wherein said pressure actuating means comprises:
a pressure circuit in fluid communication with said advance and retard chambers, said pressure circuit serving to supply fluid to said advance and retard chambers and to return fluid under exhaust to said fluid pressure source, said pressure circuit comprising:
a supply path having one end in fluid communication with said fluid pressure source and having an opposite end in fluid communication with one of said advance and retard chambers, said supply path further having a one-way flow device therein for preventing counterflow back to said fluid pressure source; an exhaust path having one end in fluid communication with the other of said advance and retard chambers and having an opposite end in fluid communication with said fluid pressure source; and switching means for activating said pressure circuit, said switching means being in fluid communication with said supply and exhaust paths of said pressure circuit.
- 7. The variable camshaft timing apparatus as claimed in claim 6 wherein said switching means includes a normally closed exhaust valve positioned between and in fluid communication with said supply and exhaust paths, and wherein said exhaust valve is opened during said pressure actuated oscillation of said variable camshaft timing device.
- 8. The variable camshaft timing apparatus as claimed in claim 7 wherein said switching means includes each of said supply and exhaust paths having a valve therein for permitting or preventing fluid flow therethrough, wherein one of said valves is positioned in one of said supply and exhaust paths to supply fluid from said fluid pressure source to one of said advance and retard chambers, while another of said valves is positioned in the other of said supply and exhaust paths to exhaust fluid from the other of said advance and retard chambers through said exhaust valve.
- 9. A control system for a variable camshaft timing apparatus connected to a fluid pressure source (30), said control system comprising:
an advance chamber (24A); a retard chamber(24R); a pulse actuating means for oscillating said variable camshaft timing apparatus, said pulse actuating means interconnecting said advance and retard chambers, wherein said pulse actuating means comprises:
a retarding pulse means (50, 44, 56) for conveying fluid under pulsation from said advance chamber to said retard chamber, said retarding pulse means including means (60) for preventing counterflow from said retard chamber; and an advancing pulse means (52, 46, 54) for conveying fluid under pulsation from said retard chamber to said advance chamber, said advancing pulse means including means (58) for preventing counterflow from said advance chamber; a pressure actuating means for oscillating said variable camshaft timing apparatus, said pressure actuating means comprising:
a retarding pressure supply means (34, 46, 52) for supplying fluid from said fluid pressure source to said retard chamber; a retarding pressure exhaust means (50, 44, 64, 180, 32) for exhausting fluid from said advance chamber back to said fluid pressure source; an advancing pressure supply means (34, 44, 50) for supplying fluid from said fluid pressure source to said advance chamber; an advance pressure exhaust means (52, 46, 66, 180, 32) for exhausting fluid from said retard chamber back to said fluid pressure source; and means (40, 42) for preventing counterflow from said advance and retard chambers back to said fluid pressure source.
- 10. The control system as claimed in claim 9, further including;
switching means for activating said pressure actuating means, said switching means including a normally closed exhaust valve (80, 180) in fluid communication with both of said pulse actuating means and said pressure actuating means, wherein said exhaust valve is opened during pressure actuated oscillation.
- 11. The control system as claimed in claim 10, wherein said exhaust valve is oil pressure activated and includes a spring (86) and a double-ended piston (182) urged closed by said spring to close said exhaust valve, wherein fluid under a predetermined pressure acts on one end of said piston thereby overcoming the spring force of said spring to open said exhaust valve and permit fluid to flow therethrough, and wherein the spring force of said spring acts on another end of said piston to close said exhaust valve when said fluid falls below said predetermined pressure.
- 12. The control system as claimed in claim 10 wherein said exhaust valve is centrifugally activated and includes a radially disposed spring (86) and a radially disposed piston (82) urged closed by said spring, wherein said piston is displaced radially outwardly, thereby overcoming the spring force of said spring under a predetermined rotational speed of said variable camshaft timing device.
- 13. The control system as claimed in claim 10 wherein said exhaust valve is electronically activated, and said exhaust valve includes a normally closed solenoid valve (194), wherein said solenoid valve is opened upon receiving an electronic signal.
- 14. The control system as claimed in claim 10, wherein said switching means further includes each of said pulse actuating means and pressure actuating means sharing two valves (44, 46):
wherein one of said two valves (44 or 46) permits fluid flow from said advance chamber to said retard chamber through said retarding pulse means during retarding oscillation of said variable camshaft timing device and permits fluid flow from said fluid supply source to said advance chamber through said advancing pressure supply means during advancing oscillation of said variable camshaft device; and wherein the other of said two valves (44 or 46) permits fluid flow from said retard chamber to said advance chamber through said advancing pulse means during advancing oscillation of said variable camshaft timing device and permits fluid flow from said fluid supply source to said retard chamber through said retarding pressure supply means during retarding oscillation of said variable camshaft device.
- 15. A variable camshaft timing apparatus attached to a camshaft (26), said variable camshaft timing apparatus comprising:
a hub (16) attached to said camshaft and being rotatable but not oscillatable with respect to said camshaft; a housing (12) circumscribing said hub to define at least one fluid chamber (24) therebetween, said housing being rotatable and oscillatable with respect to said camshaft; said hub having at least one vane member (22) dividing said at least one fluid chamber into at least one advance chamber (24A) and at least one retard chamber (24R); a fluid pressure source (30) in fluid communication with said at least one advance and retard chambers, said fluid pressure source having a inlet side (301) and an outlet side (300) opposite said inlet side; a fluid supply passage (34) in fluid communication with said outlet side of said fluid pressure source, said fluid supply passage having at least one check valve (40, 42) for preventing counterflow of fluid back to said fluid pressure source; an advance valve (44) having a supply port (44S) in fluid communication with said fluid supply passage, said advance valve further having a control port (44C) communicable with said supply port, said advance valve further having an exhaust port (44E) communicable with said control port; an advance chamber passage (50) having one end in fluid communication with said control port of said advance valve and having an opposite end in fluid communication with said at least one advance chamber; a retard valve (46) having a supply port (46S) in fluid communication with said fluid supply passage, said retard valve further having a control port (44C) communicable with said supply port, and an exhaust port (44E) communicable with said control port; a retard chamber passage (52) having one end in fluid communication with said control port of said retard valve and having an opposite end in fluid communication with said at least one retard chamber; a retard pulse passage (56) having one end in fluid communication with said exhaust port of said advance valve and having an opposite end in fluid communication with said at least one retard chamber, said retard pulse passage having a check valve (60) therein for permitting flow from said at least one advance chamber and for preventing flow from said at least one retard chamber; an advancing pulse passage (54) having one end in fluid communication with said exhaust port of said retard valve and having an opposite end in fluid communication with said at least one advance chamber, said advancing pulse passage having a check valve (58) therein for permitting flow to said at least one advance chamber and for preventing flow from said at least one advance chamber; a retard exhaust passage (64) having one end in fluid communication with said exhaust port of said advance valve, said retard exhaust passage terminating in an opposite end; an advancing exhaust passage (66) having one end in fluid communication with said exhaust port of said retard valve, said advancing exhaust passage terminating in an opposite end; an exhaust valve (80, 180) in fluid communication with said opposite ends of said retard and advancing exhaust passages for exhausting flow from said at least one advance chamber during fluid pressure actuated retarding of said variable camshaft timing device and for exhausting flow from said at least one retard chamber during fluid pressure actuated advancing of said variable camshaft timing device; and a sump (32) in fluid communication with said exhaust valve and said inlet side of said fluid pressure source and being interposed therebetween;
said hub being oscillatable with respect to said housing in response to fluid pulsations from one of said at least one advance and retard chambers to other of said at least one advance and retard chambers; said hub being oscillatable with respect to said housing in response to fluid pressure from said fluid pressure source to one of said at least one advance and retard chambers; and said hub being maintainable in position with respect to said housing in response to fluid pressure from said fluid pressure source to both of said at least one advance and retard chambers.
- 16. A variable camshaft timing apparatus attached to a camshaft (26), said variable camshaft timing apparatus comprising:
a hub (16) attached to said camshaft and being rotatable but not oscillatable with respect to said camshaft; a housing (12) circumscribing said hub to define at least one fluid chamber (24) therebetween, said housing being rotatable and oscillatable with respect to said camshaft; said hub having at least one vane member (22) dividing said at least one fluid chamber (24A) into at least one advance chamber and at least one retard chamber (24R); a fluid pressure source (130) in fluid communication with said at least one advance and retard chambers, said fluid pressure source having a inlet side (130I) and an outlet side (130O) opposite said inlet side; a fluid supply passage (134) in fluid communication with said outlet side of said fluid pressure source, said fluid supply passage having at least one check valve (140 or 142) for preventing counterflow of fluid back to said fluid pressure source; a spool valve (145) having a supply port (145S) in fluid communication with said fluid supply passage, said spool valve further having a retard exhaust port (145R), and an advance exhaust port (145A); an advance chamber passage (150) having one end in fluid communication with said advance exhaust port of said spool valve and having an opposite end in fluid communication with said at least one advance chamber; a retard chamber passage (152) having one end in fluid communication with said retard exhaust port of said spool valve and having an opposite end in fluid communication with said at least one retard chamber; a retard pulse passage (156) having one end in fluid communication with said supply port of said spool valve and having an opposite end in fluid communication with said at least one retard chamber, said retard pulse passage having a check valve (160) therein for permitting flow from said at least one advance chamber and for preventing flow from said at least one retard chamber; an advance pulse passage (154) having one end in fluid communication with said supply port of said spool valve and having an opposite end in fluid communication with said at least one advance chamber, said advance pulse passage having a check valve (158) therein for permitting flow to said at least one advance chamber and for preventing flow from said at least one advance chamber; an exhaust valve (180) in fluid communication with said advance and retard exhaust ports of said spool valve, said exhaust valve for exhausting flow from said at least one advance chamber during fluid pressure actuated retarding of said variable camshaft timing device and for exhausting flow from said at least one retard chamber during fluid pressure actuated advancing of said variable camshaft timing device; and a sump (132) in fluid communication with said exhaust valve and said inlet side of said fluid pressure source and being interposed therebetween;
said hub being oscillatable with respect to said housing in response to fluid pulsations from one of said at least one advance and retard chambers to other of said at least one advance and retard chambers; said hub being oscillatable with respect to said housing in response to fluid pressure from said fluid pressure source to one of said at least one advance and retard chambers; and said hub being maintainable in position with respect to said housing in response to fluid pressure from said fluid pressure source to both of said at least one advance and retard chambers.
- 17. A variable camshaft timing apparatus according to claim 7 wherein said switching means comprises:
a centrifugally operated valve (280) for selectively permitting oil to flow from between the advance chamber (224A) and the retard chamber (224R) without passing through the centrifugally operated valve to an exhaust line (232) or for permitting oil to flow from one of the advance chamber or the retard chamber through the centrifugally operated valve to the exhaust line.
- 18. Apparatus according to claim 17 and further comprising:
a double-ended axially slidable spool valve (290) having spaced apart lands for controlling flow into or out of the advance chamber and the retard chamber; a spring acting on an end of the spool valve to urge the spool valve in a first direction; and an electronically controlled, variable force solenoid acting on an opposed end of the spool valve to urge the spool valve in an opposed direction.
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application is based, in part, on co-pending provisional U.S. Patent application No. 60/260,039 (attorney docket DKT00011), which was filed on Jan. 8, 2001.
Provisional Applications (1)
|
Number |
Date |
Country |
|
60260309 |
Jan 2001 |
US |