Internal combustion engine vehicles, hybrid vehicles, and electric vehicles, among other types of vehicles, include transmissions. Traditional vehicle transmissions use gears and gear trains to provide speed and torque conversions from a rotating power source (e.g., an engine, a motor, etc.) to another device (e.g., a drive shaft, wheels of a vehicle, etc.). Transmissions include multiple gear ratios selectively coupled to the rotating power source with a mechanism that may also selectively couple an output to the various gear ratios.
One exemplary embodiment relates to a vehicle that includes a drive axle, a multi-mode transmission, and a controller coupled to the multi-mode transmission. The multi-mode transmission includes a first gear set having a first planetary gear carrier and a second gear set having a second planetary gear carrier, a first motor/generator coupled to the first gear set, a second motor/generator coupled to the second gear set and selectively coupled to a connecting shaft, a brake positioned to selectively limit a rotational movement of a ring gear of the second gear set when engaged, a first clutch selectively rotationally coupling the first gear set and the second gear set to the drive axle when engaged, and a second clutch selectively rotationally coupling the second motor/generator to the connecting shaft when engaged. The controller is configured to engage the second clutch, the brake, and the first clutch to selectively reconfigure the multi-mode transmission to an intermediate shift mode of operation.
Another exemplary embodiment relates to a drive system for a vehicle that includes a first gear set having a first sun gear, a first ring gear, a first plurality of planetary gears coupling the first sun gear to the first ring gear, and a first carrier rotationally supporting the first plurality of planetary gears, a second gear set having a second sun gear, a second ring gear, a second plurality of planetary gears coupling the second sun gear to the second ring gear, and a second carrier rotationally supporting the second plurality of planetary gears, a first electrical machine coupled to the first gear set, a second electrical machine coupled to the second gear set, a connecting shaft coupled to the first gear set, a brake positioned to selectively limit a rotational movement of the second gear set when engaged, a first clutch selectively rotationally coupling the first carrier and the second carrier to a driveshaft output of the vehicle when engaged, and a second clutch selectively rotationally coupling the second electrical machine to the connecting shaft when engaged. The drive system is selectively reconfigurable into an intermediate shift mode of operation, in which the brake, the first clutch, and the second clutch are engaged.
Another exemplary embodiment relates to a method of operating a multi-mode transmission of a vehicle. The method includes engaging a brake and first clutch of the multi-mode transmission to configure the multi-mode transmission into a first mode of operation whereby a first electromagnetic device is coupled to a connecting shaft, the first clutch coupling a pair of carriers of a first planetary gear set and a second planetary gear set to a driveshaft output of the vehicle when engaged, engaging a second clutch of the multi-mode transmission to couple the connecting shaft and a second electromagnetic device, thereby configuring the multi-mode transmission into an intermediate shift mode, and at least one of (i) disengaging the brake to complete a reconfiguration of the multi-mode transmission into a second mode of operation and (ii) disengaging the second clutch to revert the multi-mode transmission into the first mode of operation from the intermediate shift mode.
The invention is capable of other embodiments and of being carried out in various ways. Alternative exemplary embodiments relate to other features and combinations of features as may be recited herein.
The disclosure will become more fully understood from the following detailed description, taken in conjunction with the accompanying figures, wherein like reference numerals refer to like elements, in which:
Before turning to the figures, which illustrate the exemplary embodiments in detail, it should be understood that the present application is not limited to the details or methodology set forth in the description or illustrated in the figures. It should also be understood that the terminology is for the purpose of description only and should not be regarded as limiting.
According to an exemplary embodiment, a multi-mode electromechanical variable transmission is provided as part of a vehicle and is selectively reconfigurable into one of a plurality of operating modes. The vehicle may also include an engine, a first electromagnetic device, and second electromagnetic device. In one embodiment, at least one of the first electromagnetic device and the second electromagnetic device provides rotational mechanical energy to start the engine. In another embodiment, the engine provides a rotational mechanical energy input to both the first and second electromagnetic devices such that each operates as a generator to generate electrical energy. In still other embodiments, one of the first electromagnetic device and the second electromagnetic device are configured to receive a rotational mechanical energy output from at least one of the engine and the multi-mode electromechanical variable transmission and provide an electrical energy output to power a control system and/or the other electromagnetic device.
According to the exemplary embodiment shown in
Referring again to the exemplary embodiment shown in
Engine 20 may be any source of rotational mechanical energy that is derived from a stored energy source. The stored energy source is disposed onboard vehicle 10, according to an exemplary embodiment. The stored energy source may include a liquid fuel or a gaseous fuel, among other alternatives. In one embodiment, engine 20 includes an internal combustion engine configured to be powered by at least one of gasoline, natural gas, and diesel fuel. According to various alternative embodiments, engine 20 includes at least one of a turbine, a fuel cell, an electric motor or still another device. According to one exemplary embodiment, engine 20 includes a twelve liter diesel engine capable of providing between approximately 400 horsepower and approximately 600 horsepower and between approximately 400 foot pounds of torque and approximately 2000 foot pounds of torque. In one embodiment, engine 20 has a rotational speed (e.g., a rotational operational range, etc.) of between 0 and 2,100 revolutions per minute. Engine 20 may be operated at a relatively constant speed (e.g., 1,600 revolutions per minute, etc.). In one embodiment, the relatively constant speed is selected based on an operating condition of engine 20 (e.g., an operating speed relating to a point of increased fuel efficiency, etc.).
In one embodiment, at least one of first electromagnetic device 40 and second electromagnetic device 50 provide a mechanical energy input to transmission 30. By way of example, at least one of first electromagnetic device 40 and second electromagnetic device 50 may be configured to provide a rotational mechanical energy input to transmission 30 (i.e., at least one of first electromagnetic device 40 and second electromagnetic device 50 may operate as a motor, etc.). At least one of first electromagnetic device 40 and second electromagnetic device 50 may receive a mechanical energy output from at least one of engine 20 and transmission 30. By way of example, at least one of first electromagnetic device 40 and second electromagnetic device 50 may be configured to receive a rotational mechanical energy output from at least one of engine 20 and transmission 30 and provide an electrical energy output (i.e., at least one of first electromagnetic device 40 and second electromagnetic device 50 may operate as a generator, etc.). According to an exemplary embodiment, first electromagnetic device 40 and second electromagnetic device 50 are capable of both providing mechanical energy and converting a mechanical energy input into an electrical energy output (i.e., operate as a motor and a generator, etc.). The operational condition of first electromagnetic device 40 and second electromagnetic device 50 (e.g., as a motor, as a generator, etc.) may vary based on a mode of operation associated with transmission 30.
According to the exemplary embodiment shown in
Referring to the exemplary embodiment shown in
Referring still to the exemplary embodiment shown in
According to an exemplary embodiment, transmission 30 includes a first clutch, shown as power split coupled clutch 130. In one embodiment, power split coupled clutch 130 is positioned downstream of power split planetary 110 (e.g., between power split planetary 110 and front axle driveshaft 66 or rear axle driveshaft 76, etc.). In an alternative embodiment, power split coupled clutch 130 is directly coupled to engine 20. As shown in
As shown in
Referring again to the exemplary embodiment shown in
As shown in
According to an exemplary embodiment, transmission 30 includes a gear set, shown as gear set 190, that couples output planetary 120 to output shaft 32. As shown in
According to the exemplary embodiment shown in
According to the exemplary embodiment shown in
The operator input may be used by an operator to provide commands to at least one of engine 20, transmission 30, first electromagnetic device 40, second electromagnetic device 50, and drive system 100 or still another component of the vehicle. The operator input may include one or more buttons, knobs, touchscreens, switches, levers, or handles. In one embodiment, an operator may press a button to change the mode of operation for at least one of transmission 30, and drive system 100, and the vehicle. The operator may be able to manually control some or all aspects of the operation of transmission 30 using the display and the operator input. In should be understood that any type of display or input controls may be implemented with the systems and methods described herein.
Controller 210 may be implemented as a general-purpose processor, an application specific integrated circuit (ASIC), one or more field programmable gate arrays (FPGAs), a digital-signal-processor (DSP), circuits containing one or more processing components, circuitry for supporting a microprocessor, a group of processing components, or other suitable electronic processing components. According to the exemplary embodiment shown in
Referring next to the exemplary embodiments shown in
As shown in Table 1, an “X” represents a component of drive system 100 (e.g., output brake 170, power split coupled clutch 130, etc.) that is engaged or closed during the respective modes of operation. In one embodiment, all of the components in Table 1 are disengaged to selectively reconfigure transmission 30 in a neutral mode.
As shown in
In one embodiment, engine 20 includes a traditional starting mechanism (e.g., a starter motor, etc.) configured to start engine 20 (e.g., in response to a vehicle start request, in response to an engine start request, etc.). The vehicle start request and/or the engine start request may include a directive to turn the engine “on” from an “off” state. The vehicle may include at least one of a pushbutton, a graphical user interface, an ignition, and another device with which a user interacts to provide or trigger the vehicle start request and/or the engine start request. In other embodiments, the vehicle start request and/or the engine start request is generated by an autonomous control system configured to command the vehicle or engine to turn “on” from an “off” state. Controller 210 may provide a signal to first start engine 20 and thereafter selectively configure transmission 30 into the active neutral startup mode of operation in response to a vehicle start request and/or an engine start request.
In the active neutral startup mode of operation, engine 20 may provide a rotational mechanical energy input to at least one of first electromagnetic device 40 and second electromagnetic device 50. In one embodiment, first electromagnetic device 40 is coupled to second electromagnetic device 50 with a bus. The bus may include an electrical connection, and a voltage produced by first electromagnetic device 40 in response to the rotational input from engine 20 may be applied to the bus. First electromagnetic device 40 may produce a voltage that is applied to the bus when transmission 30 is configured in the active neutral startup mode of operation. In another embodiment, the at least one of first electromagnetic device 40 and second electromagnetic device 50 may provide a startup power in response to a rotational input from engine 20.
In the active neutral startup mode of operation, engine 20 powers at least one of the first electromagnetic device 40 and second electromagnetic device 50, which is brought up to a threshold level (e.g., a threshold speed, a threshold speed for a target period of time, performance that provides a threshold power generation, performance that provides a threshold power generation for a target period of time, performance that provides a threshold startup power, etc.). The threshold level may relate to a requisite DC bus voltage needed to activate at least one of first electromagnetic device 40 and second electromagnetic device 50. The power electronics of control system 200 that control the motor-to-motor functions may be brought online during the active neutral startup mode. In one embodiment, controller 210 activates first electromagnetic device 40 and/or second electromagnetic device 50 within and/or to a desired state in response to first electromagnetic device 40 operating at the threshold level. In another embodiment, controller 210 disengages at least one of input coupled clutch 140 and output brake 170 in response to first electromagnetic device 40 operating at the threshold level.
According to an exemplary embodiment, transmission 30 is selectively reconfigured into the active neutral startup mode during an initial start of engine 20 (e.g., when engine is turned “on” from an “off” state, etc.). The active neutral startup mode may differ from other neutral modes of operation associated with the vehicle (e.g., in non-startup conditions, etc.), where first electromagnetic device 40 and second electromagnetic device 50 are already actuatable into a desired state and/or otherwise online.
In an alternative embodiment, at least one of first electromagnetic device 40 and second electromagnetic device 50 include and/or are coupled an energy storage device (e.g., a capacitor, a battery, etc.) configured to store energy (e.g., electrical energy, chemical energy, etc.) associated with drive system 100. In one embodiment, rotation of first electromagnetic device 40 rotates connecting shaft 36 to start engine 20. By way of example, first electromagnetic device 40 may be configured to use the stored energy to start engine 20 by providing a rotational mechanical energy input (e.g., a torque, etc.) to engine 20 via connecting shaft 36. In another embodiment, rotation of second electromagnetic device 50 rotates connecting shaft 36 (e.g., where input coupled clutch 140 is engaged, etc.) to start engine 20. By way of example, second electromagnetic device 50 may be configured to use the stored energy to start engine 20 by providing a rotational mechanical energy input (e.g., a torque, etc.) to engine 20 through the engagement of input coupled clutch 140 with connecting shaft 36. Such an active neutral startup mode may be used to start engine 20, establish a requisite DC bus voltage, and/or otherwise export power without relying on controller 210 to engage first electromagnetic device 40 and/or second electromagnetic device 50.
As shown in
Referring still to
An alternative energy flow path in the active neutral startup mode in which drive system 100 includes: an energy storage device may include first electromagnetic device 40 providing a rotational mechanical energy input to sun gear 112 that is received by the plurality of planetary gears 116; the plurality of planetary gears 116 conveying the rotational mechanical energy to ring gear 114; and ring gear 114 transferring the rotational mechanical energy to connecting shaft 36 such that the rotational mechanical energy provided by first electromagnetic device 40 starts engine 20.
According to the exemplary embodiment shown in
Referring still to
In some embodiments, input coupled clutch 140 and output brake 170 remain engaged after first electromagnetic device 40 and/or second electromagnetic device 50 are activated into one or more desired operating states. With transmission 30 in the active neutral startup mode and first electromagnetic device 40 and/or second electromagnetic device 50 activated into one or more desired operating states, drive system 100 may generate electrical power. By way of example, rotation of connecting shaft 36 may rotate first electromagnetic device 40 and/or second electromagnetic device 50 to generate electrical power. In one embodiment, the electrical power is stored for future use. In another embodiment, the electrical power is used to actively power devices associated with the vehicle. In still another embodiment, the electrical power is used to power external devices (e.g., provide export power, etc.).
In other embodiments, at least one of input coupled clutch 140 and output brake 170 are disengaged in response to the generated startup power, the speed of first electromagnetic device 40 and/or second electromagnetic device 50, the generated voltage, and/or the generated voltage and generation time exceeding a threshold level. Such disengagement may prepare transmission 30 to be selectively reconfigured into a drive mode (e.g., low range, mid range, high range, etc.). By way of example, input coupled clutch 140 may be disengaged in response to first electromagnetic device 40 and second electromagnetic device 50 being activated and controlled (e.g., by controller 210, etc.). Only power split coupled clutch 130 may need to be engaged to selectively reconfigure transmission 30 into the mid range mode, thereby providing a simple and efficient process by which the vehicle may be shifted into a drive mode and driven. In one embodiment, activating one or more of the electromagnetic devices includes controlling second electromagnetic device 50 in a motoring mode where second electromagnetic device 50 provides an input torque to transmission 30 and is commanded to operate at a target speed. Such a speed may be based on the current vehicle speed (e.g., zero if the vehicle is not moving on flat ground, non-zero if the vehicle is rolling up or down a slope at startup, etc.). Commanding the operation of second electromagnetic device 50 may prepare transmission 30 for a shift from the active neutral startup mode of operation (i.e., a selective reconfiguration, etc.) to another driving mode of operation (e.g., a mid range mode of operation, etc.). Such preparation may decrease an inertial jerk on output shaft 32 during the shift.
As shown in
As shown in
Referring still to
As shown in
As shown in
With ring gear 124 fixed by output brake 170, second electromagnetic device 50 may operate as a motor. In one embodiment, second electromagnetic device 50 receives electrical energy generated by first electromagnetic device 40. First electromagnetic device 40 operates as a generator, removing a rotational mechanical energy from sun gear 112. The sun gear 122 conveys the rotational mechanical torque to the plurality of planetary gears 126 such that each further rotates about sun gear 122 (e.g., at an increased rotational speed, etc.). The rotation of the plurality of planetary gears 126 (e.g., effected by sun gear 122, etc.) drives carrier 128 and thereby gear set 180. As shown in
As shown in
As shown in
Referring still to
As shown in
During operation, the intermediate shift mode may be used to shift from mid range mode to high range mode or from high range mode to mid range mode. In one embodiment, transmission 30 is configured in the mid range mode of operation with power split coupled clutch 130 and output brake 170 engaged and configured in the high range mode of operation with power split coupled clutch 130 and input coupled clutch 140 engaged. Transmission 30 may be selectively reconfigured into the intermediate shift mode in response to the difference between a rotational speed of second electromagnetic device 50 and a rotational speed of connecting shaft 36 and/or engine 20 falling below or equaling a threshold level (e.g., approximately zero, five revolutions per minute, fifty revolutions per minute, etc.). Transmission 30 may enter the intermediate shift mode when the rotational speed of second electromagnetic device 50 substantially corresponds with (e.g., matches, is substantially equal to, etc.) the rotational speed of connecting shaft 36 and/or engine 20. In one embodiment, transmission 30 enters the intermediate shift mode when the rotational speeds of second electromagnetic device 50 and connecting shaft 36 and/or engine 20 are between 1,600 and 1,800 revolutions per minute (RPM). By way of example, transmission 30 may enter the intermediate shift mode when the rotational speeds of second electromagnetic device 50 and connecting shaft 36 and/or engine 20 are about 1,600 RPM. One or more sensors may be positioned to monitor the rotational speed of at least one of engine 20, connecting shaft 36, a portion of second electromagnetic device 50, or still another component. A controller (e.g., controller 210, etc.) may reconfigure transmission 30 into the intermediate shift mode in response to sensing signals provided by the one or more sensors.
Shifting into the intermediate shift mode occurs when there is limited (if any) relative movement between clutch disks of input coupled clutch 140. Transmission 30 may be reconfigured into the intermediate shift mode without compromising vehicle performance (e.g., since torque is not removed from output shaft 32, etc.). The intermediate shift mode reduces (e.g., minimizes, etc.) heat generation and clutch wear during shifts by limiting the relative movement between clutch disks of input coupled clutch 140 upon engagement. The intermediate shift mode may thereby increase clutch life.
In operation, the vehicle may be accelerating in the mid range mode. In one embodiment, second electromagnetic device 50 provides an output torque in the mid range mode of operation and its speed thereby increases with the speed of the vehicle. As the speed of second electromagnetic device 50 continues to increase with vehicle speed, second electromagnetic device 50 may begin to operate at a rotational speed similar to that of connecting shaft 36 and/or engine 20. Controller 210 may engage input coupled clutch 140 to selectively reconfigure transmission 30 into the intermediate shift mode from the mid range mode. The vehicle may alternatively be decelerating in the high range mode. In one embodiment, first electromagnetic device 40 operates as a motor in the high range mode of operation with its speed related to that of connecting shaft 36, engine 20, and/or the speed of the vehicle. The speed of the vehicle and/or the speed of first electromagnetic device 40 may decrease to a speed designated for mid range mode. Controller 210 may engage output brake 170 to selectively reconfigure transmission 30 into the intermediate shift mode from the high range mode.
As shown in
Transmission 30 may be configured in the intermediate shift mode for an extended period of time and/or while the while the vehicle traverses an extended distance. Controller 210 may selectively reconfigure transmission 30 out of the intermediate shift mode (e.g., into the mid range mode of operation, into the high range mode of operation, etc.) automatically in response to at least one of an elapsed shift time (e.g., a time that has elapsed while in the intermediate shift mode, etc.), a traveled shift distance (e.g., a distance the vehicle has traveled while in the intermediate shift mode, etc.), a change in engine speed, and a request, among other conditions.
In one embodiment, controller 210 transitions transmission 30 out of the intermediate shift mode in response to an indication that the shift has satisfied at least one of a time-based and a distance-based condition. By way of one example, controller 210 may transition transmission 30 out of the intermediate shift mode in response to an indication that transmission 30 has been in the intermediate shift mode for longer than a predetermined period of time. By way of another example, controller 210 may transition transmission 30 out of the intermediate shift mode in response to an indication that the vehicle has traversed more than a threshold distance.
In another embodiment, controller 210 transitions transmission 30 out of the intermediate shift mode in response to a change in engine speed. Controller 210 may selectively reconfigure transmission 30 into the high range mode from the intermediate shift mode (e.g., by disengaging output brake 170, etc.) in response to an increase in engine speed (e.g., in response to the speed of engine 20 exceeding a threshold speed, etc.). By way of example, the vehicle may encounter a downhill slope, causing the engine speed to increase, and thereby prompting a shift into the high range mode of operation. By way of another example, the engine speed may increase based on a command (e.g., provided by an operator using an accelerator pedal or another input device, provided by a controller as part of an autonomous operation of the vehicle, etc.) that prompts the engine speed to increase.
Controller 210 may selectively reconfigure transmission 30 into the mid range mode from the intermediate shift mode (e.g., by disengaging input coupled clutch 140, etc.) in response to a decrease in engine speed (e.g., in response to the speed of engine 20 falling below a threshold speed, etc.). By way of example, the vehicle may encounter an uphill slope, causing the engine speed to decrease, and thereby prompting a shift into the mid range mode of operation. By way of another example, the engine speed may decrease based on a command (e.g., provided by an operator using a brake pedal or another input device, provided by an operator releasing an accelerator pedal or another input device, provided by a controller as part of an autonomous operation of the vehicle, etc.) that prompts the engine speed to decrease.
In still another embodiment, controller 210 transitions transmission 30 out of the intermediate shift mode in response to a request. By way of example, the request may come from an operator (e.g., provided by way of a user interface, etc.) and indicate the operator's command to enter either the mid range mode of operation or the high range mode of operation. The request may also be provided by a controller as part of an autonomous operation of the vehicle. Such requests may be provided in order to reenter a mode of operation whereby the vehicle operates more efficiently. Such requests may prompt transmission 30 to complete the shift from the mid range mode of operation to the high range mode of operation, complete the shift from the high range mode of operation to the mid range mode of operation, toggle back into the mid range mode of operation from the intermediate shift mode, and/or toggle back into the high range mode of operation from the intermediate shift mode.
In some embodiments, transmission 30 is selectively reconfigured into the intermediate shift mode from one of the mid range mode and the high range mode, and then is selectively reconfigured back into the previous mode (e.g., mid range mode to intermediate shift mode to mid range mode, etc.). By way of example, transmission 30 may be reconfigured into the intermediate shift mode from the mid range mode in response to second electromagnetic device 50 and engine 20 having a speed differential below a threshold level. An operator may keep engine 20 operating at substantially the same speed for a period of time, driving output shaft 32 with engine 20, and then release the accelerator pedal whereby transmission 30 may be returned to the mid range mode. In one embodiment, first electromagnetic device 40 generates electricity in the intermediate shift mode. Second electromagnetic device 50 may provide an output torque to output shaft 32 in the intermediate shift mode. In another embodiment, second electromagnetic device 50 generates electricity in the intermediate shift mode. First electromagnetic device 40 may provide an output torque to output shaft 32 in the intermediate shift mode. In still another embodiment, neither or both of first electromagnetic device 40 and second electromagnetic device 50 generate electrical power and/or provide output torque in the intermediate shift mode.
As shown in
As shown in
As shown in
As shown in
Referring still to
According to an alternative embodiment, engine 20 does not provide a rotational mechanical energy input to drive a vehicle. By way of example, first electromagnetic device 40, second electromagnetic device 50, and/or another device may store energy during the above mentioned modes of operation. When sufficient energy is stored (e.g., above a threshold level, etc.), at least one of first electromagnetic device 40 and second electromagnetic device 50 may provide a rotational mechanical energy input to transmission 30 such that the vehicle is driven without an input from engine 20 (e.g., an electric mode, etc.).
Although this description may discuss a specific order of method steps, the order of the steps may differ from what is outlined. Also two or more steps may be performed concurrently or with partial concurrence. Such variation will depend on the software and hardware systems chosen and on designer choice. All such variations are within the scope of the disclosure. Likewise, software implementations could be accomplished with standard programming techniques with rule-based logic and other logic to accomplish the various connection steps, processing steps, comparison steps, and decision steps. contrariwise
As utilized herein, the terms “approximately”, “about”, “substantially”, and similar terms are intended to have a broad meaning in harmony with the common and accepted usage by those of ordinary skill in the art to which the subject matter of this disclosure pertains. It should be understood by those of skill in the art who review this disclosure that these terms are intended to allow a description of certain features described and claimed without restricting the scope of these features to the precise numerical ranges provided. Accordingly, these terms should be interpreted as indicating that insubstantial or inconsequential modifications or alterations of the subject matter described and claimed are considered to be within the scope of the invention as recited in the appended claims.
It should be noted that the term “exemplary” as used herein to describe various embodiments is intended to indicate that such embodiments are possible examples, representations, and/or illustrations of possible embodiments (and such term is not intended to connote that such embodiments are necessarily extraordinary or superlative examples).
The terms “coupled,” “connected,” and the like, as used herein, mean the joining of two members directly or indirectly to one another. Such joining may be stationary (e.g., permanent, etc.) or moveable (e.g., removable, releasable, etc.). Such joining may be achieved with the two members or the two members and any additional intermediate members being integrally formed as a single unitary body with one another or with the two members or the two members and any additional intermediate members being attached to one another.
References herein to the positions of elements (e.g., “top,” “bottom,” “above,” “below,” “between,” etc.) are merely used to describe the orientation of various elements in the figures. It should be noted that the orientation of various elements may differ according to other exemplary embodiments, and that such variations are intended to be encompassed by the present disclosure.
It is important to note that the construction and arrangement of the electromechanical variable transmission as shown in the exemplary embodiments is illustrative only. Although only a few embodiments of the present disclosure have been described in detail, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.) without materially departing from the novel teachings and advantages of the subject matter recited. For example, elements shown as integrally formed may be constructed of multiple parts or elements. It should be noted that the elements and/or assemblies of the components described herein may be constructed from any of a wide variety of materials that provide sufficient strength or durability, in any of a wide variety of colors, textures, and combinations. Accordingly, all such modifications are intended to be included within the scope of the present inventions. Other substitutions, modifications, changes, and omissions may be made in the design, operating conditions, and arrangement of the preferred and other exemplary embodiments without departing from scope of the present disclosure or from the spirit of the appended claims.
This application is a continuation of U.S. application Ser. No. 15/892,848, filed Feb. 9, 2018, which is a continuation of U.S. application Ser. No. 15/601,670, filed May 22, 2017, now U.S. Pat. No. 9,908,520, which is a continuation of U.S. application Ser. No. 14/792,535, filed Jul. 6, 2015, now U.S. Pat. No. 9,656,659, which is a continuation-in-part of U.S. application Ser. No. 14/624,285, filed Feb. 17, 2015, now U.S. Pat. No. 9,651,120, all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1951089 | Fielder | Mar 1934 | A |
3524069 | Stepanov et al. | Aug 1970 | A |
3690559 | Rudloff | Sep 1972 | A |
3764867 | Smi | Oct 1973 | A |
3799284 | Hender | Mar 1974 | A |
3865209 | Aihara et al. | Feb 1975 | A |
3966067 | Reese | Jun 1976 | A |
4021704 | Norbeck | May 1977 | A |
4088934 | D'Atre et al. | May 1978 | A |
4097925 | Butler, Jr. | Jun 1978 | A |
4113045 | Downing, Jr. | Sep 1978 | A |
4196785 | Downing, Jr. | Apr 1980 | A |
4292531 | Williamson | Sep 1981 | A |
4319140 | Paschke | Mar 1982 | A |
4336418 | Hoag | Jun 1982 | A |
4347907 | Downing, Jr. | Sep 1982 | A |
4411171 | Fiala | Oct 1983 | A |
4423362 | Konrad et al. | Dec 1983 | A |
4423794 | Beck | Jan 1984 | A |
4444285 | Stewart et al. | Apr 1984 | A |
4461988 | Plunkett | Jul 1984 | A |
4533011 | Heidemeyer et al. | Aug 1985 | A |
4562894 | Yang | Jan 1986 | A |
4719361 | Brubaker | Jan 1988 | A |
4760275 | Sato et al. | Jul 1988 | A |
4774399 | Fujita et al. | Sep 1988 | A |
4774811 | Kawamura | Oct 1988 | A |
4809177 | Windle et al. | Feb 1989 | A |
4953646 | Kim | Sep 1990 | A |
4966242 | Baillargeon | Oct 1990 | A |
4985845 | Goetz et al. | Jan 1991 | A |
5067932 | Edwards | Nov 1991 | A |
5081832 | Mowill | Jan 1992 | A |
5120282 | Fjaellstroem | Jun 1992 | A |
5168946 | Dorgan | Dec 1992 | A |
5180456 | Schultz et al. | Jan 1993 | A |
5195600 | Dorgan | Mar 1993 | A |
5201629 | Simpson et al. | Apr 1993 | A |
5227703 | Boothe et al. | Jul 1993 | A |
5263524 | Boardman | Nov 1993 | A |
5264763 | Avitan | Nov 1993 | A |
5289093 | Jobard | Feb 1994 | A |
5291960 | Brandenburg et al. | Mar 1994 | A |
5343971 | Heidelberg et al. | Sep 1994 | A |
5345154 | King | Sep 1994 | A |
5369540 | Konrad et al. | Nov 1994 | A |
5389825 | Ishikawa et al. | Feb 1995 | A |
5409425 | Shibahata | Apr 1995 | A |
5417299 | Pillar et al. | May 1995 | A |
5418437 | Couture et al. | May 1995 | A |
5448561 | Kaiser et al. | Sep 1995 | A |
5498208 | Braun | Mar 1996 | A |
5501567 | Lanzdorf et al. | Mar 1996 | A |
5504655 | Underwood et al. | Apr 1996 | A |
5508594 | Underwood et al. | Apr 1996 | A |
5508689 | Rado et al. | Apr 1996 | A |
5516379 | Schultz | May 1996 | A |
5538274 | Schmitz et al. | Jul 1996 | A |
5558175 | Sherman | Sep 1996 | A |
5558588 | Schmidt | Sep 1996 | A |
5558589 | Schmidt | Sep 1996 | A |
5558595 | Schmidt et al. | Sep 1996 | A |
5568023 | Grayer et al. | Oct 1996 | A |
5575730 | Edwards et al. | Nov 1996 | A |
5575737 | Weiss | Nov 1996 | A |
5586613 | Ehsani | Dec 1996 | A |
5589743 | King | Dec 1996 | A |
5607028 | Braun et al. | Mar 1997 | A |
5629567 | Kumar | May 1997 | A |
5629603 | Kinoshita | May 1997 | A |
5646510 | Kumar | Jul 1997 | A |
5669470 | Ross | Sep 1997 | A |
5669842 | Schmidt | Sep 1997 | A |
5672920 | Donegan et al. | Sep 1997 | A |
5679085 | Fredriksen et al. | Oct 1997 | A |
5713425 | Buschhaus et al. | Feb 1998 | A |
5722502 | Kubo | Mar 1998 | A |
5767584 | Gore et al. | Jun 1998 | A |
5786640 | Sakai et al. | Jul 1998 | A |
5789882 | Ibaraki et al. | Aug 1998 | A |
5813487 | Lee et al. | Sep 1998 | A |
5813488 | Weiss | Sep 1998 | A |
5820150 | Archer et al. | Oct 1998 | A |
5820258 | Braun | Oct 1998 | A |
5828554 | Donegan et al. | Oct 1998 | A |
5847520 | Theurillat et al. | Dec 1998 | A |
5865263 | Yamaguchi et al. | Feb 1999 | A |
5879265 | Bek | Mar 1999 | A |
5880570 | Tamaki et al. | Mar 1999 | A |
5881559 | Kawamura | Mar 1999 | A |
5895333 | Morisawa et al. | Apr 1999 | A |
5924879 | Kameyama | Jul 1999 | A |
5925993 | Lansberry | Jul 1999 | A |
5927417 | Brunner et al. | Jul 1999 | A |
5934395 | Koide et al. | Aug 1999 | A |
5939794 | Sakai et al. | Aug 1999 | A |
5947855 | Weiss | Sep 1999 | A |
5957985 | Wong et al. | Sep 1999 | A |
5973463 | Okuda et al. | Oct 1999 | A |
5980410 | Stemler et al. | Nov 1999 | A |
5986416 | Dubois | Nov 1999 | A |
5991683 | Takaoka et al. | Nov 1999 | A |
5998880 | Kumar | Dec 1999 | A |
6005358 | Radev | Dec 1999 | A |
6012004 | Sugano et al. | Jan 2000 | A |
6028403 | Fukatsu | Feb 2000 | A |
6038500 | Weiss | Mar 2000 | A |
6054844 | Frank | Apr 2000 | A |
6086074 | Braun | Jul 2000 | A |
6104148 | Kumar et al. | Aug 2000 | A |
6105984 | Schmitz et al. | Aug 2000 | A |
6110066 | Nedungadi et al. | Aug 2000 | A |
6201310 | Adachi et al. | Mar 2001 | B1 |
6298932 | Bowman et al. | Oct 2001 | B1 |
6356817 | Abe | Mar 2002 | B1 |
6371878 | Bowen | Apr 2002 | B1 |
6387007 | Fini, Jr. | May 2002 | B1 |
6404607 | Burgess et al. | Jun 2002 | B1 |
6421593 | Kempen et al. | Jul 2002 | B1 |
6434470 | Nantz et al. | Aug 2002 | B1 |
6478705 | Holmes et al. | Nov 2002 | B1 |
6496393 | Patwardhan | Dec 2002 | B1 |
6501368 | Wiebe et al. | Dec 2002 | B1 |
6516914 | Andersen et al. | Feb 2003 | B1 |
6520494 | Andersen et al. | Feb 2003 | B1 |
6553287 | Supina et al. | Apr 2003 | B1 |
6553290 | Pillar | Apr 2003 | B1 |
6561718 | Archer et al. | May 2003 | B1 |
6563230 | Nada | May 2003 | B2 |
6575866 | Bowen | Jun 2003 | B2 |
6580953 | Wiebe et al. | Jun 2003 | B1 |
6607466 | Bordini | Aug 2003 | B2 |
6611116 | Bachman et al. | Aug 2003 | B2 |
6702709 | Bowen | Mar 2004 | B2 |
6722458 | Hofbauer | Apr 2004 | B2 |
6726592 | Kotani | Apr 2004 | B2 |
6757597 | Yakes et al. | Jun 2004 | B2 |
6764085 | Anderson | Jul 2004 | B1 |
6793600 | Hiraiwa | Sep 2004 | B2 |
6819985 | Minagawa et al. | Nov 2004 | B2 |
6846257 | Baker et al. | Jan 2005 | B2 |
6852053 | Nakano et al. | Feb 2005 | B2 |
6852054 | Tumback et al. | Feb 2005 | B2 |
6860332 | Archer et al. | Mar 2005 | B1 |
6882917 | Pillar et al. | Apr 2005 | B2 |
6885920 | Yakes et al. | Apr 2005 | B2 |
6886647 | Gotta | May 2005 | B1 |
6909944 | Pillar et al. | Jun 2005 | B2 |
6922615 | Pillar et al. | Jul 2005 | B2 |
6953409 | Schmidt et al. | Oct 2005 | B2 |
6973600 | Lau et al. | Dec 2005 | B2 |
6976688 | Archer et al. | Dec 2005 | B2 |
6991054 | Takaoka et al. | Jan 2006 | B2 |
6993421 | Pillar et al. | Jan 2006 | B2 |
6994646 | Ai | Feb 2006 | B2 |
7000717 | Ai et al. | Feb 2006 | B2 |
7004868 | Oshidari et al. | Feb 2006 | B2 |
7006902 | Archer et al. | Feb 2006 | B2 |
7024296 | Squires et al. | Apr 2006 | B2 |
7053566 | Aizawa et al. | May 2006 | B2 |
7072745 | Pillar et al. | Jul 2006 | B2 |
7073620 | Braun et al. | Jul 2006 | B2 |
7073847 | Morrow et al. | Jul 2006 | B2 |
7076356 | Hubbard et al. | Jul 2006 | B2 |
7086977 | Supina et al. | Aug 2006 | B2 |
7107129 | Rowe et al. | Sep 2006 | B2 |
7127331 | Pillar et al. | Oct 2006 | B2 |
7140461 | Morrow | Nov 2006 | B2 |
7154236 | Heap | Dec 2006 | B1 |
7162332 | Pillar et al. | Jan 2007 | B2 |
7164977 | Yakes et al. | Jan 2007 | B2 |
7179187 | Raghavan et al. | Feb 2007 | B2 |
7184862 | Pillar et al. | Feb 2007 | B2 |
7184866 | Squires et al. | Feb 2007 | B2 |
7196430 | Yang | Mar 2007 | B2 |
7204776 | Minagawa et al. | Apr 2007 | B2 |
7217211 | Klemen et al. | May 2007 | B2 |
7219756 | Bischoff | May 2007 | B2 |
7223200 | Kojima et al. | May 2007 | B2 |
7234534 | Froland et al. | Jun 2007 | B2 |
7246672 | Shirai et al. | Jul 2007 | B2 |
7254468 | Pillar et al. | Aug 2007 | B2 |
7258194 | Braun et al. | Aug 2007 | B2 |
7274976 | Rowe et al. | Sep 2007 | B2 |
7276007 | Takami et al. | Oct 2007 | B2 |
7277782 | Yakes et al. | Oct 2007 | B2 |
7282003 | Klemen et al. | Oct 2007 | B2 |
7302320 | Nasr et al. | Nov 2007 | B2 |
7306064 | Imazu et al. | Dec 2007 | B2 |
7322896 | Minagawa | Jan 2008 | B2 |
7338401 | Klemen et al. | Mar 2008 | B2 |
7357203 | Morrow et al. | Apr 2008 | B2 |
7363996 | Kamada et al. | Apr 2008 | B2 |
7367415 | Oliver et al. | May 2008 | B2 |
7367911 | Reghavan et al. | May 2008 | B2 |
7379797 | Nasr et al. | May 2008 | B2 |
7392122 | Pillar et al. | Jun 2008 | B2 |
7412307 | Pillar et al. | Aug 2008 | B2 |
7419021 | Morrow et al. | Sep 2008 | B2 |
7439711 | Bolton | Oct 2008 | B2 |
7448460 | Morrow et al. | Nov 2008 | B2 |
7451028 | Pillar et al. | Nov 2008 | B2 |
7462122 | Reghavan et al. | Dec 2008 | B2 |
7467678 | Tanaka et al. | Dec 2008 | B2 |
7479080 | Usoro | Jan 2009 | B2 |
7493980 | Hidaka | Feb 2009 | B2 |
7520354 | Morrow et al. | Apr 2009 | B2 |
7521814 | Nasr | Apr 2009 | B2 |
7522979 | Pillar | Apr 2009 | B2 |
7527573 | Lang et al. | May 2009 | B2 |
7555369 | Pillar et al. | Jun 2009 | B2 |
7572201 | Supina et al. | Aug 2009 | B2 |
7576501 | Okubo et al. | Aug 2009 | B2 |
7597164 | Severinsky et al. | Oct 2009 | B2 |
7601093 | Tabata et al. | Oct 2009 | B2 |
7635039 | Fujiwara et al. | Dec 2009 | B2 |
7678014 | Nohara et al. | Mar 2010 | B2 |
7689332 | Yakes et al. | Mar 2010 | B2 |
7711460 | Yakes et al. | May 2010 | B2 |
7715962 | Rowe et al. | May 2010 | B2 |
7725225 | Pillar et al. | May 2010 | B2 |
7729831 | Pillar et al. | Jun 2010 | B2 |
7749131 | Imamura et al. | Jul 2010 | B2 |
7756621 | Pillar et al. | Jul 2010 | B2 |
7784554 | Grady et al. | Aug 2010 | B2 |
7792618 | Quigley et al. | Sep 2010 | B2 |
7811191 | Iwase et al. | Oct 2010 | B2 |
7824293 | Schimke | Nov 2010 | B2 |
7835838 | Pillar et al. | Nov 2010 | B2 |
7848857 | Nasr et al. | Dec 2010 | B2 |
7874373 | Morrow et al. | Jan 2011 | B2 |
7878750 | Zhou et al. | Feb 2011 | B2 |
7888894 | Sugawara et al. | Feb 2011 | B2 |
7908063 | Sah | Mar 2011 | B2 |
7927250 | Imamura et al. | Apr 2011 | B2 |
7931103 | Morrow et al. | Apr 2011 | B2 |
7935021 | Tabata et al. | May 2011 | B2 |
7935022 | Iwase et al. | May 2011 | B2 |
7937194 | Nasr et al. | May 2011 | B2 |
7941259 | Tabata et al. | May 2011 | B2 |
7972237 | Ota | Jul 2011 | B2 |
8000850 | Nasr et al. | Aug 2011 | B2 |
8007402 | Tabata et al. | Aug 2011 | B2 |
8038572 | Matsubara et al. | Oct 2011 | B2 |
8062172 | Supina et al. | Nov 2011 | B2 |
8068947 | Conlon et al. | Nov 2011 | B2 |
8091662 | Tolksdorf | Jan 2012 | B2 |
8095247 | Pillar et al. | Jan 2012 | B2 |
8123645 | Schimke | Feb 2012 | B2 |
8231491 | Oba et al. | Jul 2012 | B2 |
8337352 | Morrow et al. | Dec 2012 | B2 |
8444517 | Gradu et al. | May 2013 | B2 |
8459619 | Trinh et al. | Jun 2013 | B2 |
8491438 | Kim et al. | Jul 2013 | B2 |
8561735 | Morrow et al. | Oct 2013 | B2 |
8696506 | Kaltenbach et al. | Apr 2014 | B2 |
8788162 | Park | Jul 2014 | B2 |
8795113 | Grochowski et al. | Aug 2014 | B2 |
8801318 | Knoble et al. | Aug 2014 | B2 |
8801567 | Demirovic | Aug 2014 | B2 |
8818588 | Ambrosio et al. | Aug 2014 | B2 |
8864613 | Morrow et al. | Oct 2014 | B2 |
8894526 | Kozarekar et al. | Nov 2014 | B2 |
8905892 | Lee et al. | Dec 2014 | B1 |
9033836 | Hiraiwa | May 2015 | B2 |
9114699 | Takei | Aug 2015 | B2 |
9114804 | Shukla et al. | Aug 2015 | B1 |
9132736 | Shukla et al. | Sep 2015 | B1 |
9428042 | Morrow et al. | Aug 2016 | B2 |
9492695 | Betz et al. | Nov 2016 | B2 |
9504863 | Moore | Nov 2016 | B2 |
9579530 | Betz et al. | Feb 2017 | B2 |
9580962 | Betz et al. | Feb 2017 | B2 |
9650032 | Kotloski et al. | May 2017 | B2 |
9651120 | Morrow et al. | May 2017 | B2 |
9656659 | Shukla et al. | May 2017 | B2 |
9677334 | Aiken et al. | Jun 2017 | B2 |
9908520 | Shukla et al. | Mar 2018 | B2 |
9970515 | Morrow et al. | May 2018 | B2 |
10029555 | Kotloski et al. | Jul 2018 | B2 |
20020005304 | Bachman et al. | Jan 2002 | A1 |
20020045507 | Bowen | Apr 2002 | A1 |
20020065594 | Squires et al. | May 2002 | A1 |
20030130765 | Pillar et al. | Jul 2003 | A1 |
20030158635 | Pillar et al. | Aug 2003 | A1 |
20030163228 | Pillar et al. | Aug 2003 | A1 |
20030163230 | Pillar et al. | Aug 2003 | A1 |
20030166429 | Tumback | Sep 2003 | A1 |
20030171854 | Pillar et al. | Sep 2003 | A1 |
20030195680 | Pillar | Oct 2003 | A1 |
20030200015 | Pillar | Oct 2003 | A1 |
20030230443 | Cramer et al. | Dec 2003 | A1 |
20040019414 | Pillar et al. | Jan 2004 | A1 |
20040024502 | Squires et al. | Feb 2004 | A1 |
20040039510 | Archer et al. | Feb 2004 | A1 |
20040040775 | Shimizu et al. | Mar 2004 | A1 |
20040055802 | Pillar et al. | Mar 2004 | A1 |
20040069865 | Rowe et al. | Apr 2004 | A1 |
20040133319 | Pillar et al. | Jul 2004 | A1 |
20040133332 | Yakes et al. | Jul 2004 | A1 |
20040198551 | Joe et al. | Oct 2004 | A1 |
20040199302 | Pillar et al. | Oct 2004 | A1 |
20040251862 | Imai | Dec 2004 | A1 |
20050004733 | Pillar et al. | Jan 2005 | A1 |
20050038934 | Gotze et al. | Feb 2005 | A1 |
20050113988 | Nasr et al. | May 2005 | A1 |
20050113996 | Pillar et al. | May 2005 | A1 |
20050114007 | Pillar et al. | May 2005 | A1 |
20050119806 | Nasr et al. | Jun 2005 | A1 |
20050131600 | Quigley et al. | Jun 2005 | A1 |
20050137042 | Schmidt et al. | Jun 2005 | A1 |
20050209747 | Yakes et al. | Sep 2005 | A1 |
20050234622 | Pillar et al. | Oct 2005 | A1 |
20050252703 | Schmidt et al. | Nov 2005 | A1 |
20060111213 | Bucknor et al. | May 2006 | A1 |
20060128513 | Tata et al. | Jun 2006 | A1 |
20060223663 | Bucknor et al. | Oct 2006 | A1 |
20060276288 | Iwanaka et al. | Dec 2006 | A1 |
20060289212 | Haruhisa | Dec 2006 | A1 |
20070021256 | Klemen et al. | Jan 2007 | A1 |
20070105678 | Bucknor et al. | May 2007 | A1 |
20070243966 | Holmes et al. | Oct 2007 | A1 |
20070254761 | Kim | Nov 2007 | A1 |
20070256870 | Holmes et al. | Nov 2007 | A1 |
20070275808 | Iwanaka et al. | Nov 2007 | A1 |
20080200296 | Holmes | Aug 2008 | A1 |
20080234087 | Besnard et al. | Sep 2008 | A1 |
20080269000 | Abe et al. | Oct 2008 | A1 |
20080280726 | Holmes et al. | Nov 2008 | A1 |
20090054202 | Yamakado et al. | Feb 2009 | A1 |
20090194347 | Morrow et al. | Aug 2009 | A1 |
20090209381 | Ai et al. | Aug 2009 | A1 |
20090221390 | Houle | Sep 2009 | A1 |
20090227409 | Ito et al. | Sep 2009 | A1 |
20090227417 | Imamura et al. | Sep 2009 | A1 |
20090275437 | Kersting | Nov 2009 | A1 |
20100029428 | Abe et al. | Feb 2010 | A1 |
20100051361 | Katsuta et al. | Mar 2010 | A1 |
20100051367 | Yamada et al. | Mar 2010 | A1 |
20100070008 | Parker et al. | Mar 2010 | A1 |
20100120579 | Kawasaki | May 2010 | A1 |
20100121512 | Takahashi et al. | May 2010 | A1 |
20100138086 | Imamura et al. | Jun 2010 | A1 |
20100145589 | Kobayashi | Jun 2010 | A1 |
20100179009 | Wittkopp et al. | Jul 2010 | A1 |
20100227722 | Conlon | Sep 2010 | A1 |
20100261565 | Ai et al. | Oct 2010 | A1 |
20100312423 | Steinhauser et al. | Dec 2010 | A1 |
20100326752 | Lamperth | Dec 2010 | A1 |
20110127095 | Imamura et al. | Jun 2011 | A1 |
20110130234 | Phillips | Jun 2011 | A1 |
20110143875 | Ono et al. | Jun 2011 | A1 |
20110312459 | Morrow et al. | Dec 2011 | A1 |
20110319211 | Si | Dec 2011 | A1 |
20120022737 | Kumazaki et al. | Jan 2012 | A1 |
20120226401 | Naito | Sep 2012 | A1 |
20130090202 | Hiraiwa | Apr 2013 | A1 |
20130151131 | Laszio et al. | Jun 2013 | A1 |
20130196806 | Morrow et al. | Aug 2013 | A1 |
20130260936 | Takei et al. | Oct 2013 | A1 |
20130296108 | Ortmann et al. | Nov 2013 | A1 |
20140094334 | Tamai et al. | Apr 2014 | A1 |
20140136035 | Boskovitch et al. | May 2014 | A1 |
20140141915 | Naqi et al. | May 2014 | A1 |
20140228168 | Kaufmann et al. | Aug 2014 | A1 |
20140229043 | Frank et al. | Aug 2014 | A1 |
20140235394 | Smetana et al. | Aug 2014 | A1 |
20140243149 | Holmes et al. | Aug 2014 | A1 |
20140269145 | Fasana et al. | Sep 2014 | A1 |
20140288756 | Tanaka et al. | Sep 2014 | A1 |
20140303822 | Kawamura et al. | Oct 2014 | A1 |
20140335995 | Swales et al. | Nov 2014 | A1 |
20140350803 | Ye et al. | Nov 2014 | A1 |
20140357441 | Supina | Dec 2014 | A1 |
20140358340 | Radev | Dec 2014 | A1 |
20150024894 | Lee et al. | Jan 2015 | A1 |
20150246331 | Broker et al. | Sep 2015 | A1 |
20150283894 | Morrow et al. | Oct 2015 | A1 |
20150292600 | Ai et al. | Oct 2015 | A1 |
20150377327 | Lee et al. | Dec 2015 | A1 |
20160133557 | Mortensen et al. | May 2016 | A1 |
20160288780 | Shukla et al. | Oct 2016 | A1 |
20160311253 | Palmer et al. | Oct 2016 | A1 |
20170370446 | Steinberger et al. | Dec 2017 | A1 |
20180023671 | Watt et al. | Jan 2018 | A1 |
20180023672 | Watt et al. | Jan 2018 | A1 |
20180031085 | Steinberger et al. | Feb 2018 | A1 |
20180072303 | Shukla et al. | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
101107460 | Jan 2008 | CN |
101194114 | Jun 2008 | CN |
101323243 | Dec 2008 | CN |
101356070 | Jan 2009 | CN |
101631688 | Jan 2010 | CN |
103158526 | Jun 2013 | CN |
104553731 | Apr 2015 | CN |
18 16 183 | Jun 1970 | DE |
41 08 647 | Sep 1992 | DE |
41 34 160 | Apr 1993 | DE |
44 31 929 | Oct 1995 | DE |
19749074 | May 1999 | DE |
19851436 | May 2000 | DE |
10 2011 109 352 | Feb 2013 | DE |
10 2013 006 028 | Oct 2014 | DE |
0 791 506 | Aug 1997 | EP |
0 622 264 | Nov 1998 | EP |
0 898 213 | Feb 1999 | EP |
0 925 981 | Jun 1999 | EP |
1 018 451 | Jul 2000 | EP |
0 805 059 | Aug 2000 | EP |
1 092 406 | Apr 2001 | EP |
0 564 943 | Jun 2001 | EP |
1 142 744 | Oct 2001 | EP |
0 812 720 | Dec 2001 | EP |
1 229 636 | Aug 2002 | EP |
1 340 643 | Sep 2003 | EP |
0 937 600 | Dec 2005 | EP |
2658259 | Aug 1991 | FR |
1 308 318 | Feb 1973 | GB |
2 302 850 | Feb 1997 | GB |
2 346 124 | Aug 2000 | GB |
60-216703 | Oct 1985 | JP |
2010-070008 | Apr 2010 | JP |
2013-112318 | Jun 2013 | JP |
10-2010-0095073 | Aug 2010 | KR |
WO-9819875 | May 1998 | WO |
WO-0030235 | May 2000 | WO |
WO-0154939 | Aug 2001 | WO |
WO-03055714 | Jul 2003 | WO |
WO-03093046 | Nov 2003 | WO |
WO-2014090483 | Jun 2014 | WO |
WO-2014090486 | Jun 2014 | WO |
WO-2014102030 | Jul 2014 | WO |
WO-2014140096 | Sep 2014 | WO |
WO-2014158078 | Oct 2014 | WO |
WO-2014166723 | Oct 2014 | WO |
WO-2016133557 | Aug 2016 | WO |
WO-2017106410 | Jun 2017 | WO |
Entry |
---|
US 7,154,246 B1, 12/2006, Heap (withdrawn) |
International Search Report and Written Opinion Received for PCT Application No. PCT/US2018/049158, Oshkosh Corporation, dated Dec. 13, 2018, 18 pages. |
International Search Report and Written Opinion Received for PCT Application No. PCT/US2018/049550, dated Dec. 13, 2018, 18 pages. |
International Search Report and Written Opinion Received for PCT Application No. PCT/US2018/053983, Oshkosh Corporation, dated Jan. 3, 2019, 18 pages. |
Search Report Received for Chinese Application No. 201580076245.5, Oshkosh Corporation, dated Jan. 2, 2019, 2 pages. |
International Preliminary Report on Patentability on PCT/US2015/050518, dated Aug. 22, 2017, 11 pages. |
International Preliminary Report on Patentability on PCT/US2016/038586, dated Jan. 9, 2018, 9 pages. |
International Preliminary Report on Patentability on PCT/US2016/038587, dated Jan. 9, 2018, 9 pages. |
International Search Report and Written Opinion on PCT/US2016/057971, dated Jan. 27, 2017, 11 pages. |
International Search Report and Written Opinion on PCT/US2019/017854, dated May 10, 2019, 17 pages. |
Bose, et al., “High Frequency AC vs. DC Distribution System for Next Generation Hybrid Electric Vehicle,” Industrial Electronics, Control and Instrumentation, Proceedings of the 1996 IEEE IECON 22nd International Conference on Taipei, Taiwan, New York, New York, pp. 706-712 Aug. 5-10, 1996. |
European Search Report based on European Application No. EP 0724300, date of completion of the search Jul. 4, 2005, 2 pages. |
Dana Spicer Central Tire Inflation System Specifications, Dana Corporation, Kalamazoo, Michigan, 2 pages, May 2000. |
Diesel Locomotive Technology, http://www.railway-technical.com/diesel.shtml, available by Jan. 24, 2012, 15 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2015/050518, dated Feb. 9, 2016, 18 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2016/038587, dated Nov. 10, 2016, 15 pages. |
International Search Report and Written Opinion for PCT Application PCT/US2016/038586, dated Oct. 21, 2016, 14 pages. |
International Search Report for PCT Application No. PCT/US2011/041089, dated Dec. 19, 2011, 6 pages. |
Invitation to Pay Additional Fees regarding International Application No. PCT/US2011/041089, dated Sep. 6, 2011, 5 pages. |
Khan, I.A., Automotive Electrical Systems: Architecture and Components, Digital Avionics Systems Conference, IEEE, pp. 8.C.5-1-8.C.5-10, 1999. |
Miller, Hybrid Electric Vehicle Propulsion System Architectures of the e-CVT Type, IEEE Transactions on Power Electronics, vol. 21, No. 3, May 2006, 12 pages. |
Namuduri, et al., High Power Density Electric Drive for an Hybrid Vehicle, Applied Power Electronics Conference and Exposition, pp. 34-40, Feb. 15, 1998. |
Rajashekara, K., History of Electric Vehicles in General Motors, Industry Applications Society Annual Meeting, pp. 447-454, Oct. 2-8, 1993. |
Shigley et al., Theory of Machines and Mechanisms, complete text, McGraw-Hill Book Company, published in the United States, 297 pages, 1980. |
Number | Date | Country | |
---|---|---|---|
20190111910 A1 | Apr 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15892848 | Feb 2018 | US |
Child | 16229641 | US | |
Parent | 15601670 | May 2017 | US |
Child | 15892848 | US | |
Parent | 14792535 | Jul 2015 | US |
Child | 15601670 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14624285 | Feb 2015 | US |
Child | 14792535 | US |