1. Field of the Invention
The present invention relates in general to the field of electronics, and more specifically to a system and method that provides multi-mode flyback control for a switching power converter.
2. Description of the Related Art
Many electronic systems utilize switching power converters to efficiently convert power from one source into power useable by a device (referred to herein as a “load”). Some facilities, such as homes and buildings, include light source dimming circuits (referred to herein as a “dimmer”). Dimmers control the power delivered to a load, such as a lamp having one or more light sources. Dimming saves energy and, in a lighting installation, also allows a user to adjust the intensity of the light source to a desired level.
A switching power converter is controlled by a controller. For systems that are not intended for use with dimmers, the controller provides power factor correction for displacement and distortion so that the phases of an alternating current (AC) supply voltage and an average input current to the switching power converter are approximately in-phase (power factor displacement) and the current shape follows the shape of the supply voltage (power factor distortion). For systems that include dimmers and constant current loads, the controller controls the switching power converter to provide a constant, average input current to the load without regard to power factor correction.
The controller 106 provides a pulse width modulated (PWM) control signal CS0 to current control switch 108 in a flyback-type, switching power converter 110 to control the conversion of input voltage VIN into a primary-side voltage VP and secondary voltage VS. When the switch 108 is non-conductive, i.e. “off”, the primary voltage VP is N times the secondary voltage VS, i.e. VP=N·VS, and “N” is a ratio of turns in the primary-winding 114 to the turns in the secondary-winding 118. The switch 108 is, for example, a field effect transistor (FET). When control signal CS0 causes switch 108 to conduct, a primary-side current iIN flows into a primary-winding 114 of transformer 116 to energize the primary-winding 114. When switch 108 conducts, the diode 120 is reverse biased, and the secondary-side current iS is zero. When control signal CS0 opens switch 108, the primary voltage VP and secondary voltage VS reverse the indicated polarities, and diode 120 is forward biased. When diode 120 is forward biased, the secondary side current iS flows through the diode 120 to charge capacitor 122 so that an approximately constant current and direct current (DC) voltage VLD is provided to the load 104. Since the dimmer 103 is present, the controller 106 controls the input current iIN as a constant current.
In one embodiment of the present invention, a method includes detecting whether a dimmer is phase cutting an input voltage to a switching power converter and operating the switching power converter in a first mode if the dimmer is detected. The method further includes operating the switching power converter in a second mode if the dimmer is not detected and transitioning between operating the switching power converter in the first mode and the second mode if a status of detection of the dimmer changes.
In another embodiment of the present invention, an apparatus includes to control a switching power converter. The controller is configured to detect whether a dimmer is phase cutting an input voltage to a switching power converter and operate the switching power converter in a first mode if the dimmer is detected. The controller is further configured to operate the switching power converter in a second mode if the dimmer is not detected and transition between operating the switching power converter in the first mode and the second mode if a status of detection of the dimmer changes.
In a further embodiment of the present invention, an apparatus includes a switching power converter and a controller coupled to the switching power converter. The controller is configured to detect whether a dimmer is phase cutting an input voltage to a switching power converter and operate the switching power converter in a first mode if the dimmer is detected. The controller is further configured to operate the switching power converter in a second mode if the dimmer is not detected and transition between operating the switching power converter in the first mode and the second mode if a status of detection of the dimmer changes.
In another embodiment of the present invention, an apparatus includes a switching power converter and a controller coupled to the switching power converter. The controller includes a dimmer detector and the dimmer detector generates a dimmer detection output that controls operational characteristics of the switching power converter in one of at least two different operational modes depending on whether the detector detects a dimmer
The present invention may be better understood, and its numerous objects, features and advantages made apparent to those skilled in the art by referencing the accompanying drawings. The use of the same reference number throughout the several figures designates a like or similar element.
In at least one embodiment, an electronic system and method includes a controller to control a switching power converter in at least two different modes of operation depending on whether the controller detects a dimmer or not and/or if a current being drawn by the switching power converter should be reduced to optimize efficiency of the system by reducing power dissipation. In at least one embodiment, the controller detects whether a dimmer is phase cutting an input voltage to a switching power converter. The controller operates the switching power converter in a first mode if the dimmer is detected, and the controller operates the switching power converter in a second mode if the dimmer is not detected. The controller also transitions between operating the switching power converter in the first mode and the second mode if a status of detection of the dimmer changes. In at least one embodiment, in the first mode the controller operates the switching power converter to draw a substantially constant average input current to the switching power converter averaged for an approximately constant dimmer level (referred to as a “constant input current control mode” or “Dimmer Mode”) while a switching power converter control signal is active. The switching power converter control signal is active when the control signal regularly changes logical states. In at least one embodiment, the controller operates the switching power converter to draw an input current to the switching power converter to provide power factor correction (referred to as “PFC control mode” or “No Dimmer Mode”). In at least one embodiment, the controller also operates in a High Power Mode to provide a current to a load by combining current control operations from the Dimmer Mode and the No Dimmer Mode. In at least one embodiment, a dimmer is considered to be “not detected” if the input voltage is substantially passed by the dimmer In at least one embodiment, the input voltage to the switching power converter is a rectified version of a supply voltage. Thus, in this embodiment, a cycle of the input voltage represents a half-line cycle of the supply voltage. In at least one embodiment, the input voltage is substantially passed by the dimmer if, in at least one embodiment, at least 160 degrees of a cycle of the input voltage is passed, in another embodiment at least 170 degrees of a cycle of the input voltage is passed, or in another embodiment all of a cycle of the input voltage is passed.
Having a multi-mode current control allows the controller to obtain operational efficiencies. In at least one embodiment, the controller operates the switching power converter differently depending on whether the switching power converter is operating in Dimmer Mode or No Dimmer Mode, and each mode has different areas of power usage. For example, in at least one embodiment, for a flyback-type switching power converter, when the controller detects a dimmer, during an active control signal period the controller causes the flyback switching power converter to pull a pre-programmed constant average input current greater than a dimmer hold current to help ensure that a triac-based dimmer does not disconnect and mis-fire. When a dimmer is not detected, the controller operates the flyback switching power converter in No Dimmer Mode and shapes an input current to follow an input supply voltage. In at least one embodiment, a dimmer is detected when the dimmer is phase cutting a supply voltage. Furthermore, in at least one embodiment, the controller transitions between the Dimmer Mode and No Dimmer Mode without abruptly changing an amount of charge delivered to a load, which avoids power surges as indicated by, for example, flicker in a light source. Thus, in at least one embodiment, the capability to operate in at least constant input current control mode, PFC control mode, and to transition between the two modes allows the system to optimize system performance in both the dimmer and no-dimmer cases.
In at least one embodiment, the controller operates the switching power converter in a “High Power Mode”, which combines current control from the Dimmer Mode and the No Dimmer Mode. In at least one embodiment, operating in the High Power Mode allows the current to reduce an average input current and shape the input current to provide power factor correction. In at least one embodiment, the High Power Mode extends an active period of the switching power converter control signal to approximately match a complete half line cycle of a supply voltage to the switching power converter. In at least one embodiment, operating in the High Power Mode improves efficiency while maintaining output current regulation.
The controller 202 includes a switching power converter current controller 210 to generate a control signal CS to control conductivity of switch 212. In at least one embodiment, the control signal CS is a pulse modulated signal, and the switch 212 is a FET. When the switch 212 conducts, the input current iIN flows through the switching power converter 204, the switch 212 and the sense resistor 214. Controlling the input current iIN controls the output current iOUT of the switching power converter 204, which controls the load voltage VLD to the load 216. The load 216 can be any type of load, including one or more lamps having one or more light emitting diodes.
The controller 202 also includes a multi-mode current controller 218. In at least one embodiment, the multi-mode current controller 218 allows the system 200 to operate in at least two different current control modes of operation. As subsequently described in more detail, in at least one embodiment, the amount of charge QPUSHED provided to the load 216 from switching power converter 204 depends on the value of the peak current iPEAK of the input current iIN. The peak current iPEAK value depends on the pulse width T1, the period TT, and, the decay time T2 of the secondary-side current iS for each cycle of the switch control signal CS.
The controller 202 operates the switching power converter 204 in a first mode if the dimmer 206 is detected, and the controller 202 operates the switching power converter 204 in a second mode if the dimmer 206 is not detected. The controller 202 also transitions between operating the switching power converter 204 in the first mode and the second mode if a status of detection of the dimmer 206 changes. In at least one embodiment, in the first mode the controller 202 operates the switching power converter 204 to draw a substantially constant average input current iIN to the switching power converter 204 for each cycle of the input voltage VIN when the control signal CS is active, averaged for an approximately constant dimmer level (referred to as a “constant input current control mode” or “Dimmer Mode”). A half cycle of the supply voltage VSUPPLY equals a cycle of the rectified input voltage VIN. In at least one embodiment, during the No Dimmer Mode, the controller 202 operates the switching power converter 204 to shape the input current iIN to the switching power converter 204 to provide power factor correction. Furthermore, in at least one embodiment, the controller 202 transitions, in a Transition Mode, between the Dimmer Mode and No Dimmer Mode without abruptly changing an amount of charge delivered to the load 216, which avoids power surges as indicated by, for example, flicker in a light source load 216. Thus, in at least one embodiment, the capability to operate in at least Dimmer Mode, No Dimmer Mode, and to transition between the two modes allows the system to optimize system performance whether a dimmer 206 is detected or not.
The functional multi-mode operational diagram 300 depicts a conceptual process 302 that receives three mode inputs. If Dimmer Mode is selected based on detection of the dimmer 206, the first input, DIMMER MODE indicates that the controller 202 will determine the peak input current iPEAK in accordance with a Dimmer Mode control process, and switching power converter current controller 210 will determine the switch control signal CS in accordance with a peak input current iPEAK equal to iPEAK
In the Dimmer Mode waveforms 404, the control signal CS is active when periodically changing states to cause the input current iIN to rise to the peak value iPEAK. The control signal CS is inactive after sufficient charge has been delivered to the load 216. In at least one embodiment, the “sufficient charge” is an amount of charge equal to a target charge QTARGET as illustratively defined in Equation 2 below. The input current iIN maintains an approximately constant average value while the control signal CS is active.
Referring to
In general, the multi-mode current controller 500 determines the peak current iPEAK so that the load 216 receives an amount of charge QPUSHED that is commensurate with (i) a dimming level from dimmer 206, if a dimmer 206 is detected, (ii) power factor correction when no dimmer 206 is detected, (iii) a smooth transition between the Dimmer Mode and No Dimmer Mode during a Transition Mode, and (iv) an amount of current to be provided to a load during a High Power Mode. When the controller 502 detects the presence of the dimmer 206, the controller 502 operates the flyback switching power converter 508 in Dimmer Mode so that the input current iIN has an approximately constant average value during an active time of the control signal CS2. In Dimmer Mode, the controller 502 generates the control signal CS2 so that the average constant input current iIN is greater than a dimmer hold current to help ensure that the dimmer 206 does not disconnect and mis-fire. In at least one embodiment, the average constant input current iIN is set by a target average input current value iIN
In at least one embodiment, in general the amount of charge that is transferred from the primary-winding 114 to the secondary-winding 118 and, thus, to load 216 depends on a peak value iPEAK of the input current iIN per cycle of the control signal CS2 and the number M cycles of the control signal CS2 during a cycle of the input voltage VIN. In at least one embodiment, the multi-mode current controller 504 determines the peak current value iPEAK in accordance with Equation 1:
is the first term of Equation 1, and
is the second term of Equation 1.
The multi-mode current controller 504 provides the peak current value iPEAK to the switching power converter current controller 506. The switching power converter current controller 506 also monitors the value of sense current iSENSE to determine when the input current iIN has reached the peak value iPEAK or approximately the peak value iPEAK to take into consideration latencies in the determination of the value of input current iIN. The switching power converter 506 changes the value of the control signal CS2 to a logical 0 to turn OFF switch 510 when the input current iIN reaches the peak value iPEAK.
The first term of Equation 1 utilizes a predetermined target average input current value iIN AVG T and pulse width T1 and switching period TT measured from the preceding cycle of the of the control signal CS2 to determine the peak value iPEAK of the input current iIN for each cycle of the input voltage VIN. The second term of Equation 1 shapes the input current in No-Dimmer Mode for power factor correction. In Dimmer Mode, the second term is zero and, thus, the actual average input current iIN maintains the value of the target average input current value iIN
In at least one embodiment, in the Dimmer Mode, the controller 502 controls the switching power converter 508 so that the same amount of charge is provided to the load 216 during each half line cycle of the input voltage VIN. In at least one embodiment, this Dimmer Mode process ensures that the output current iOUT to the load 216 is regulated as an approximately constant value irrespective of the instantaneous input current iIN. In each line cycle of the input voltage VIN, the control signal CS2 causes the FET 510 to cycle until the switching power converter 508 provides a target amount of charge QTARGET to the load 216. In at least one embodiment, the multi-mode current controller 504 determines the pre-determined target charge QTARGET in accordance with Equation 2:
QTARGET=iOUT·Dim·HLCPERIOD. Equation 2
The charge provided (‘pushed’) to the secondary-winding 118 and, thus, to the load 216 in one half line cycle of the supply voltage VSUPPLY, is pushed charge QPUSHED in accordance with Equation 3:
In at least one embodiment, the multi-mode current controller 504 and the switching power converter current controller 506 ensure that the control signal CS2 switches during a cycle of the input voltage VIN until QPUSHED≈QTARGET. In the Dimmer Mode, to ensure that pushed charge QPUSHED approximately equals target charge QTARGET, the switching power converter current controller 506 stops switching the FET 510 when pushed charge QPUSHED exceeds target charge QTARGET. In the No Dimmer Mode, to provide power factor correction, the switching power converter current controller 506 does not stop switching the control signal CS2 and instead the integrated error term Qe is fed back to Equation 1. In at least one embodiment, integrated error term Qe is determined from a charge error term QERR. QERR is determined by the multi-mode current controller 504 in accordance with Equation 4:
QERR=QTARGET−QPUSHED Equation 4
The integrated error during a cycle of the rectified input voltage VIN is depicted in Equation 5.
Qe=k∫QERR Equation 5
“k” is a scaling factor. The value of k scales integrated error term Qe to between 0 and the peak value iPEAK of the input current iIN and depends on the number of bits used by the controller 502.
In at least one embodiment, the multi-mode current controller 504 initially starts in the Dimmer Mode. In Dimmer Mode, integrated error term Qe is forced to zero so that the second term of Equation 1 does not impact the determination of the peak value iPEAK of the input current iIN by the multi-mode current controller 504.
When the controller 502 detects an absence of the dimmer 206, the multi-mode current controller 504 initiates operation in the Transition Mode. In the Transition Mode, the multi-mode current controller 504 slowly reduces the value of the target average input current value iIN AVG T, which in turn slowly reduces the peak value iPEAK DIMMER of the input current iIN. “iPEAK
Additionally, in at least one embodiment, the switching power converter current controller 506 can adjust the period TT of the control signal CS2 to compensate for any differences in a post-decay time of the input current iIN between the Dimmer Mode and the No Dimmer Mode. In at least one embodiment, when transitioning from Dimmer Mode to No Dimmer Mode, the post-decay time is adjusted to ensure that the switching power converter current controller 506 generates the control signal CS2 to cause the FET 510 to maintain power factor correction and efficiency in the valleys (i.e. low and high phase angles) of the input voltage VIN. The value of the post-decay time is, in at least one embodiment, 1.5-2 μs in Dimmer Mode and is reduced in No Dimmer Mode to a value that allows switching in the valley of the input voltage VIN.
The rate of the transition between the Dimmer Mode to the No Dimmer Mode (i.e. the duration of the Transition Mode) is a matter of design choice. In at least one embodiment, the rate of transition is slow enough so that a dip in the output current iOUT due to pushed charge QPUSHED being less than target charge QTARGET is small enough that there is no human noticeable evidence of the transition. For example, there is no noticeable flicker in a light output of a lamp load for load 216. The controller 502 can be implemented using any technology including as an integrated circuit, as discrete circuit components, as a combination of integrated and discrete circuits, and as any combination of hardware and software.
Referring to
When the controller 502 does not detect dimmer 206 and enters the Transition Mode, both multiplexers 608 and 610 are set to select the 0 input so that the respective outputs are iPEAK
The multi-mode current controller 504 slowly drives down the target average input current value iIN
The Transition Mode of
is preprogrammed in the controller 502 are indicated by an external resistor value (not shown)
The controller 502 senses the value of the input voltage VIN, measures the pulse width T1 of the control signal CS2, and measures the decay time of the secondary current iS. Once the value of nVO is settled, the multi-mode current controller 504 uses the value of integrated error value Qe and immediately transitions to the No Dimmer Mode process 604.
In at least one embodiment, for high power devices, the multi-mode current controller 504 combines the Dimmer Mode and No Dimmer Mode operations to efficiently regulate the output current iOUT in the High Power Mode. Referring to
Thus, in at least one embodiment, a controller transitions operation of a switching power converter between multiple modes of operation depending on whether the controller detects a dimmer or not and when operating in a High Power Mode.
Although embodiments have been described in detail, it should be understood that various changes, substitutions, and alterations can be made hereto without departing from the spirit and scope of the invention as defined by the appended claims.
This application claims the benefit under 35 U.S.C. §119(e) and 37 C.F.R. §1.78 of U.S. Provisional Application No. 61/570,554, filed on Dec. 14, 2011, which is incorporated by reference in its entirety. This application also claims the benefit under 35 U.S.C. §119(e) and 37 C.F.R. §1.78 of U.S. Provisional Application No. 61/675,399, filed on Jul. 25, 2012.
Number | Name | Date | Kind |
---|---|---|---|
3790878 | Brokaw | Feb 1974 | A |
4677366 | Wilkinson et al. | Jun 1987 | A |
4683529 | Bucher | Jul 1987 | A |
4737658 | Kronmuller et al. | Apr 1988 | A |
4739462 | Farnsworth et al. | Apr 1988 | A |
4937728 | Leonardi | Jun 1990 | A |
4940929 | Williams | Jul 1990 | A |
4977366 | Powell | Dec 1990 | A |
5001620 | Smith | Mar 1991 | A |
5003454 | Bruning | Mar 1991 | A |
5055746 | Hu et al. | Oct 1991 | A |
5109185 | Ball | Apr 1992 | A |
5173643 | Sullivan et al. | Dec 1992 | A |
5264780 | Bruer et al. | Nov 1993 | A |
5278490 | Smedley | Jan 1994 | A |
5383109 | Maksimovic et al. | Jan 1995 | A |
5424932 | Inou et al. | Jun 1995 | A |
5430635 | Liu | Jul 1995 | A |
5479333 | McCambridge et al. | Dec 1995 | A |
5481178 | Wilcox et al. | Jan 1996 | A |
5565761 | Hwang | Oct 1996 | A |
5638265 | Gabor | Jun 1997 | A |
5691890 | Hyde | Nov 1997 | A |
5747977 | Hwang | May 1998 | A |
5757635 | Seong | May 1998 | A |
5764039 | Choi et al. | Jun 1998 | A |
5783909 | Hochstein | Jul 1998 | A |
5798635 | Hwang et al. | Aug 1998 | A |
5808453 | Lee et al. | Sep 1998 | A |
5874725 | Yamaguchi | Feb 1999 | A |
5960207 | Brown | Sep 1999 | A |
5994885 | Wilcox et al. | Nov 1999 | A |
6043633 | Lev et al. | Mar 2000 | A |
6084450 | Smith et al. | Jul 2000 | A |
6091233 | Hwang et al. | Jul 2000 | A |
6160724 | Hemena et al. | Dec 2000 | A |
6229292 | Redl et al. | May 2001 | B1 |
6259614 | Ribarich et al. | Jul 2001 | B1 |
6300723 | Wang et al. | Oct 2001 | B1 |
6304066 | Wilcox et al. | Oct 2001 | B1 |
6304473 | Telefus et al. | Oct 2001 | B1 |
6343026 | Perry | Jan 2002 | B1 |
6356040 | Preis et al. | Mar 2002 | B1 |
6445600 | Ben-Yaakov | Sep 2002 | B2 |
6469484 | L'Hermite et al. | Oct 2002 | B2 |
6510995 | Muthu et al. | Jan 2003 | B2 |
6531854 | Hwang | Mar 2003 | B2 |
6580258 | Wilcox et al. | Jun 2003 | B2 |
6583550 | Iwasa | Jun 2003 | B2 |
6628106 | Batarseh et al. | Sep 2003 | B1 |
6657417 | Hwang | Dec 2003 | B1 |
6696803 | Tao et al. | Feb 2004 | B2 |
6724174 | Esteves et al. | Apr 2004 | B1 |
6768655 | Yang et al. | Jul 2004 | B1 |
6781351 | Mednik et al. | Aug 2004 | B2 |
6839247 | Yang | Jan 2005 | B1 |
6882552 | Telefus et al. | Apr 2005 | B2 |
6894471 | Corva et al. | May 2005 | B2 |
6933706 | Shih | Aug 2005 | B2 |
6940733 | Schie et al. | Sep 2005 | B2 |
6944034 | Shteynberg et al. | Sep 2005 | B1 |
6956750 | Eason et al. | Oct 2005 | B1 |
6975523 | Kim et al. | Dec 2005 | B2 |
6980446 | Simada et al. | Dec 2005 | B2 |
7072191 | Nakao et al. | Jul 2006 | B2 |
7099163 | Ying | Aug 2006 | B1 |
7161816 | Shteynberg et al. | Jan 2007 | B2 |
7221130 | Ribeiro et al. | May 2007 | B2 |
7233135 | Noma et al. | Jun 2007 | B2 |
7266001 | Notohamiprodjo et al. | Sep 2007 | B1 |
7292013 | Chen et al. | Nov 2007 | B1 |
7295452 | Liu | Nov 2007 | B1 |
7411379 | Chu | Aug 2008 | B2 |
7554473 | Melanson | Jun 2009 | B2 |
7606532 | Wuidart | Oct 2009 | B2 |
7667986 | Artusi et al. | Feb 2010 | B2 |
7684223 | Wei | Mar 2010 | B2 |
7719246 | Melanson | May 2010 | B2 |
7719248 | Melanson | May 2010 | B1 |
7746043 | Melanson | Jun 2010 | B2 |
7804480 | Jeon et al. | Sep 2010 | B2 |
7834553 | Hunt et al. | Nov 2010 | B2 |
7872883 | Elbanhawy | Jan 2011 | B1 |
7894216 | Melanson | Feb 2011 | B2 |
8008898 | Melanson et al. | Aug 2011 | B2 |
8169806 | Sims et al. | May 2012 | B2 |
8193717 | Leiderman | Jun 2012 | B2 |
8222772 | Vinciarelli | Jul 2012 | B1 |
8242764 | Shimizu et al. | Aug 2012 | B2 |
8369109 | Niedermeier et al. | Feb 2013 | B2 |
8441210 | Shteynberg et al. | May 2013 | B2 |
8536799 | Grisamore et al. | Sep 2013 | B1 |
8610364 | Melanson et al. | Dec 2013 | B2 |
8803439 | Stamm et al. | Aug 2014 | B2 |
8816593 | Lys et al. | Aug 2014 | B2 |
20030090252 | Hazucha | May 2003 | A1 |
20030111969 | Konishi et al. | Jun 2003 | A1 |
20030160576 | Suzuki | Aug 2003 | A1 |
20030174520 | Bimbaud | Sep 2003 | A1 |
20030214821 | Giannopoulos et al. | Nov 2003 | A1 |
20030223255 | Ben-Yaakov | Dec 2003 | A1 |
20040046683 | Mitamura et al. | Mar 2004 | A1 |
20040196672 | Amei | Oct 2004 | A1 |
20050057237 | Clavel | Mar 2005 | A1 |
20050207190 | Gritter | Sep 2005 | A1 |
20050231183 | Li et al. | Oct 2005 | A1 |
20050270813 | Zhang et al. | Dec 2005 | A1 |
20050275354 | Hausman | Dec 2005 | A1 |
20060013026 | Frank et al. | Jan 2006 | A1 |
20060022648 | Zeltser | Feb 2006 | A1 |
20060214603 | Oh et al. | Sep 2006 | A1 |
20070103949 | Tsuruya | May 2007 | A1 |
20080018261 | Kastner | Jan 2008 | A1 |
20080043504 | Ye | Feb 2008 | A1 |
20080062584 | Freitag et al. | Mar 2008 | A1 |
20080062586 | Apfel | Mar 2008 | A1 |
20080117656 | Clarkin | May 2008 | A1 |
20080130336 | Taguchi | Jun 2008 | A1 |
20080175029 | Jung et al. | Jul 2008 | A1 |
20080259655 | Wei et al. | Oct 2008 | A1 |
20080278132 | Kesterson et al. | Nov 2008 | A1 |
20080310194 | Huang et al. | Dec 2008 | A1 |
20090059632 | Li et al. | Mar 2009 | A1 |
20090067204 | Ye et al. | Mar 2009 | A1 |
20090108677 | Walter et al. | Apr 2009 | A1 |
20090184665 | Femo | Jul 2009 | A1 |
20090243582 | Irissou et al. | Oct 2009 | A1 |
20090295300 | King | Dec 2009 | A1 |
20100128501 | Huang et al. | May 2010 | A1 |
20100238689 | Fei et al. | Sep 2010 | A1 |
20100244793 | Caldwell | Sep 2010 | A1 |
20110110132 | Rausch | May 2011 | A1 |
20110199793 | Kuang | Aug 2011 | A1 |
20110276938 | Perry et al. | Nov 2011 | A1 |
20110291583 | Shen | Dec 2011 | A1 |
20110309760 | Beland et al. | Dec 2011 | A1 |
20120056551 | Zhu et al. | Mar 2012 | A1 |
20120146540 | Khayat et al. | Jun 2012 | A1 |
20120176819 | Gao et al. | Jul 2012 | A1 |
20120187997 | Liao et al. | Jul 2012 | A1 |
20120248998 | Yoshinaga | Oct 2012 | A1 |
20120320640 | Baurle et al. | Dec 2012 | A1 |
20130181635 | Ling | Jul 2013 | A1 |
20140218978 | Heuken et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
0536535 | Apr 1993 | EP |
0636889 | Jan 1995 | EP |
1213823 | Jun 2002 | EP |
1289107 | Aug 2002 | EP |
1962263 | Aug 2008 | EP |
2232949 | Sep 2010 | EP |
2257124 | Dec 2010 | EP |
2008053181 | Mar 2006 | JP |
0184697 | Nov 2001 | WO |
2004051834 | Jun 2004 | WO |
2006013557 | Feb 2006 | WO |
2006022107 | Mar 2006 | WO |
2007016373 | Feb 2007 | WO |
2008004008 | Jan 2008 | WO |
2008152838 | Dec 2008 | WO |
2010011971 | Jan 2010 | WO |
2011008635 | Jan 2011 | WO |
Entry |
---|
Texas Instruments, High Performance Power Factor Preregulator, UC2855A/B and UC3855A/B, SLUS328B, Jun. 1998, Revised Oct. 2005, pp. 1-14, Dallas, TX, USA. |
Balogh, Laszlo, et al,Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductr-Current Mode, 1993, IEEE, pp. 168-174, Switzerland. |
Cheng, Hung L., et al, A Novel Single-Stage High-Power-Factor Electronic Ballast with Symmetrical Topology, Power Electronics and Motion Control Conference, 2006. IPEMC 2006. CES/IEEE 5th International, Aug. 14-16, 2006, vol. 50, No. 4, Aug. 2003, pp. 759-766, Nat. Ilan Univ., Taiwan. |
Fairchild Semiconductor, Theory and Application of the ML4821 Average Current Mode PFC Controllerr, Fairchild Semiconductor Application Note 42030, Rev. 1.0, Oct. 25, 2000, pp. 1-19, San Jose, California, USA. |
Garcia, O., et al, High Efficiency PFC Converter to Meet EN610000302 and A14, Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium, vol. 3, pp. 975-980, Div. de Ingenieria Electronica, Univ. Politecnica de Madrid, Spain. |
Infineon Technologies AG, Standalone Power Factor Correction (PFC) Controller in Continuous Conduction Mode (CCM), Infineon Power Management and Supply, CCM-PFC, ICE2PCS01, ICE2PCS01G, Version 2.1, Feb. 6, 2007, p. 1-22, Munchen, Germany. |
Lu, et al, Bridgeless PFC Implementation Using One Cycle Control Technique, International Rectifier, 2005, pp. 1-6, Blacksburg, VA, USA. |
Brown, et al, PFC Converter Design with IR1150 One Cycle Control IC, International Rectifier, Application Note AN-1077, pp. 1-18, El Segundo CA, USA. |
International Rectifer, PFC One Cycle Control PFC IC, International Rectifier, Data Sheet No. PD60230 rev. C, IR1150(S)(PbF), IR11501(S)(PbF), Feb. 5, 2007, pp. 1-16, El Segundo, CA, USA. |
International Rectifier, IRAC1150=300W Demo Board, User's Guide, Rev 3.0, International Rectifier Computing and Communications SBU—AC-DC Application Group, pp. 1-18, Aug. 2, 2005, El Segundo, CO USA. |
Lai, Z., et al, A Family of Power-Factor-Correction Controller, Applied Power Electronics Conference and Exposition, 1997. APEC '97 Conference Proceedings 1997., Twelfth Annual, vol. 1, pp. 66-73, Feb. 23-27, 1997, Irvine, CA. |
Lee, P, et al, Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors, IEEE Transactions on Industrial Electronics, vol. 47, No. 4, Aug. 2000, pp. 787-795, Hung Hom, Kowloon, Hong Kong. |
Linear Technology, Single Switch PWM Controller with Auxiliary Boost Converter, Linear Technology Corporation, Data Sheet LT1950, pp. 1-20, Milpitas, CA, USA. |
Linear Technology, Power Factor Controller, Linear Technology Corporation, Data Sheet LT1248, pp. 1-12, Milpitas, CA, USA. |
Supertex, Inc., HV9931 Unity Power Factor LED Lamp Driver, Supertex, Inc., Application Note AN-H52, 2007, pp. 1-20, Sunnyvale, CA, USA. |
Ben-Yaakov, et al, The Dynamics of a PWM Boost Converter with Resistive Input, IEEE Transactions on Industrial Electronics, vol. 46., No. 3, Jun. 1999, pp. 1-8, Negev, Beer-Sheva, Israel. |
Erickson, Robert W., et al, Fundamentals of Power Electronics, Second Edition, Chapter 6, 2001, pp. 131-184, Boulder CO, USA. |
Stmicroelectronics, CFL/TL Ballast Driver Preheat and Dimming L6574, Sep. 2003, pp. 1-10, Geneva, Switzerland. |
Fairchild Semiconductor, 500W Power-Factor-Corrected (PFC) Converter Design with FAN4810, Application Note 6004, Rev. 1.0.1, Oct. 31, 2003, pp. 1-14, San Jose, CA, USA. |
Fairfield Semiconductor, Power Factor Correction (PFC) Basics, Application Note 42047, Rev. 0.9.0, Aug. 19, 2004, pp. 1-11, San Jose, CA, USA. |
Fairchild Semiconductor, Design of Power Factor Correction Circuit Using FAN7527B, Application Note AN4121, Rev. 1.0.1, May 30, 2002, pp. 1-12, San Jose, CA, USA. |
Fairchild Semiconductor, Low Start-Up Current PFC/PWM Controller Combos FAN4800, Rev. 1.0.6, Nov. 2006, pp. 1-20, San Jose, CA, USA. |
Prodic, Aleksander, Compensator Design and Stability Assessment for Fast Voltage Loops of Power Factor Correction Rectifiers, IEEE Transactions on Power Electronics, vol. 22, Issue 5, Sep. 2007, pp. 1719-1730, Toronto, Canada. |
Fairchild Semiconductor, ZVS Average Current PFC Controller FAN 4822, Rev. 1.0.1, Aug. 10, 2001, pp. 1-10, San Jose, CA, USA. |
Prodic, et al, Dead-Zone Digital Controller for Improved Dynamic Response of Power Factor Preregulators, Applied Power Electronics Conference and Exposition, 2003, vol. 1, pp. 382-388, Boulder CA, USA. |
Philips Semiconductors, 90W Resonant SMPS with TEA1610 Swing Chip, Application Note AN99011, Sep. 14, 1999, pp. 1-28, The Netherlands. |
Fairchild Semiconductor, Power Factor Correction Controller FAN7527B, Aug. 16, 2003, pp. 1-12, San Jose, CA, USA. |
On Semiconductor, Power Factor Controller for Compact and Robust, Continuous Conduction Mode Pre-Converters, NCP1654, Mar. 2007, Rev. PO, pp. 1-10, Denver, CO, USA. |
Fairchild Semicondctor, Simple Ballast Controller, KA7541, Rev. 1.0.3, Sep. 27, 2001, pp. 1-14, San Jose, CA, USA. |
Fairchild Semiconductor, Power Factor Controller, ML4812, Rev. 1.0.4, May 31, 2001, pp. 1-18, San Jose, CA, USA. |
Prodic, et al, Digital Controller for High-Frequency Rectifiers with Power Factor Correction Suitable for On-Chip Implementation, Power Conversion Conference-Nagoya, 2007. PCC '07, Apr. 2-5, 2007, pp. 1527-1531, Toronto, Canada. |
Freescale Semiconductor, Dimmable Light Ballast with Power Factor Correction, Designer Reference Manual, DRM067, Rev. 1, Dec. 2005, M681-1C08 Microcontrollers, pp. 1-72, Chandler, AZ, USA. |
Freescale Semiconductor, Design of Indirect Power Factor Correction Using 56F800/E, Freescale Semiconductor Application Note, AN1965, Rev. 1, Jul. 2005, pp. 1-20, Chandler, AZ, USA. |
Freescale Semiconductor, Implementing PFC Average Current Mode Control using the MC9S12E128, Application Note AN3052, Addendum to Reference Design Manual DRM064, Rev. 0, Nov. 2005, pp. 1-8, Chandler, AZ, USA. |
Hirota, et al, Analysis of Single Switch Delta-Sigma Modulated Pulse Space Modulation PFC Converter Effectively Using Switching Power Device, Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual, vol. 2, pp. 682-686, Hyogo Japan. |
Madigan, et al, Integrated High-Quality Rectifier-Regulators, Industrial Electronics, IEEE Transactions, vol. 46, Issue 4, pp. 749-758, Aug. 1999, Cary, NC, USA. |
Renesas, Renesas Technology Releases Industry's First Critical-Conduction-Mode Power Factor Correction Control IC Implementing Interleaved Operations, R2A20112, pp. 1-4, Dec. 18, 2006, Tokyo, Japan. |
Renesas, PFC Control IC R2A20111 Evaluation Board, Application Note R2A20111 EVB, all pages, Feb. 2007, Rev. 1.0, pp. 1-39, Tokyo, Japan. |
Miwa, et al, High Efficiency Power Factor Correction Using Interleaving Techniques, Applied Power Electronics Conference and Exposition, 1992. APEC '92. Conference Proceedings 1992., Seventh Annual, Feb. 23-27, 1992, pp. 557-568, MIT, Cambridge, MA, USA. |
Noon, Jim, High Performance Power Factor Preregulator UC3855A/B, Texas Instruments Application Report, SLUA146A, May 1996—Revised Apr. 2004, pp. 1-35, Dallas TX, USA. |
NXP Semiconductors, TEA1750, GreenChip III SMPS Control IC Product Data Sheet, Rev.01, Apr. 6, 2007, pp. 1-29, Eindhoven, The Netherlands. |
Turchi, Joel, Power Factor Correction Stages Operating in Critical Conduction Mode, On Semiconductor, Application Note AND8123/D, Sep. 2003-Rev. 1 , pp. 1-20, Denver, CO, USA. |
On Semiconductor, GreenLine Compact Power Factor Controller: Innovative Circuit for Cost Effective Solutions, MC33260, Semiconductor Components Industries, Sep. 2005—Rev. 9, pp. 1-22, Denver, CO, USA. |
On Semiconductor, Enhanced, High Voltage and Efficient Standby Mode, Power Factor Controller, NCP1605, Feb. 2007, Rev. 1, pp. 1-32, Denver, CO, USA. |
On Semiconductor, Cost Effective Power Factor Controller, NCP1606, Mar. 2007, Rev. 3, pp. 1-22, Denver, CO, USA. |
Renesas, Power Factor Correction Controller IC, HA16174P/FP, Rev. 1.0, Jan. 6, 2006, pp. 1-38, Tokyo, Japan. |
Seidel, et al, A Practical Comparison Among High-Power-Factor Electronic Ballasts with Similar Ideas, IEEE Transactions on Industry Applications, vol. 41, No. 6, Nov./Dec. 2005, pp. 1574-1583, Santa Maria, Brazil. |
Stmicroelectronics, Electronic Ballast with PFC using L6574 and L6561, Application Note AN993, May 2004, pp. 1-20, Geneva, Switzerland. |
Stmicroelectronics, Advanced Transition-Mode PFC Controller L6563 and L6563A, Mar. 2007, pp. 1-40, Geneva, Switzerland. |
Maksimovic, et al, Impact of Digital Control in Power Electronics, International Symposium on Power Semiconductor Devices and ICS, 2004, pp. 2-22, Boulder, Colorado, USA. |
Fairchild Semiconductor, Ballast Control IC, FAN 7711, Rev. 1.0.3, 2007, pp. 1-23, San Jose,California, USA. |
Yao, Gang et al, Soft Switching Circuit for Interleaved Boost Converters, IEEE Transactions on Power Electronics, vol. 22, No. 1, Jan. 2007, pp. 1-8, Hangzhou China. |
Stmicroelectronics, Transition Mode PFC Controller, Datasheet L6562, Rev. 8, Nov. 2005, pp. 1-16, Geneva, Switzerland. |
Zhang, Wanfeng et al, A New Duty Cycle Control Strategy for Power Factor Correction and FPGA Implementation, IEEE Transactions on Power Electronics, vol. 21, No. 6, Nov. 2006, pp. 1-10, Kingston, Ontario, Canada. |
Stmicroelectronics, Power Factor Connector L6561, Rev 16, Jun. 2004, pp. 1-13, Geneva, Switzerland. |
Texas Instruments, Avoiding Audible Noise at Light Loads When Using Leading Edge Triggered PFC Converters, Application Report SLUA309A, Mar. 2004—Revised Sep. 2004, pp. 1-4, Dallas, Texas, USA. |
Texas Instruments, Startup Current Transient of the Leading Edge Triggered PFC Controllers, Application Report SLUA321, Jul. 2004, pp. 1-4, Dallas, Texas, USA. |
Texas Instruments, Current Sense Transformer Evaluation UCC3817, Application Report SLUA308, Feb. 2004, pp. 1-3, Dallas, Texas, USA. |
Texas Instruments, BiCMOS Power Factor Preregulator Evaluation Board UCC3817, User's Guide, SLUU077C, Sep. 2000—Revised Nov. 2002, pp. 1-10, Dallas, Texas, USA. |
Texas Instruments, Interleaving Continuous Conduction Mode PFC Controller, UCC28070, SLUS794C, Nov. 2007—Revised Jun. 2009, pp. 1-45, Dallas, Texas, USA. |
Texas Instruments, 350-W Two-Phase Interleaved PFC Pre-regulator Design Review, Application Report SLUA369B, Feb. 2005—Revised Mar. 2007, pp. 1-22, Dallas, Texas, USA. |
Texas Instruments, Average Current Mode Controlled Power Factor Correction Converter using TMS320LF2407A, Application Report SPRA902A, Jul. 2005, pp. 1-15, Dallas, Texas, USA. |
Texas Instruments, Transition Mode PFC Controller, UCC28050, UCC28051, UCC38050, UCC38051, Application Note SLUS515D, Sep. 2002—Revised Jul. 2005, pp. 1-28, Dallas, Texas, USA. |
Unitrode, High Power-Factor Preregulator, UC1852, UC2852, UC3852, Feb. 5, 2007, pp. 1-8, Merrimack, Maine, Usa. |
Unitrode, Optimizing Performance in UC3854 Power Factor Correction Applications, Design Note DN 39E, 1999, pp. 1-6, Merrimack, Maine, USA. |
On Semiconductor Four Key Steps to Design a Continuous Conduction Mode PFC Stage Using the NCP1653, Application Note AND8184/D, Nov. 2004, pp. 1-8, Phoenix, AZ, USA. |
Unitrode, BiCMOS Power Factor Preregulator, Texas Instruments, UCC2817, UCC2818, UCC3817, UCC3818, SLUS3951, Feb. 2000—Revised Feb. 2006, pp. 1-25, Dallas, Texas, USA. |
Unitrode, UC3854A/B and UC3855A/B Provide Power Limiting with Sinusoidal Input Current for PFC Front Ends, SLUA196A, Design Note DN-66, Jun. 1995—Revised Nov. 2001, pp. 1-6, Merrimack, Maine, USA. |
Unitrode, Programmable Output Power Factor Preregulator, UCC2819, UCC3819, SLUS482B, Apr. 2001—Revised Dec. 2004, pp. 1-16, Merrimack, Maine, USA. |
Texas Instruments, UCC281019, 8-Pin Continuous Conduction Mode (CCM) PFC Controller, SLU828B, Revised Apr. 2009, pp. 1-48, Dallas, Texas, USA. |
http://toolbarpdf.com/docs/functions-and-features-of=inverters.html, Jan. 20, 2011, pp. 1-8. |
Zhou, Jinghai, et al, Novel Sampling Algorithm for DSP Controlled 2kW PFC Converter, IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 1-6, Hangzhou, China. |
Mammano, Bob, Current Sensing Solutions for Power Supply Designers, Texas Instruments, 2001, pp. 1-36, Dallas, Texas, USA. |
Fairchild Semiconductor, Ballast Control IC FAN7532, Rev. 1.0.3, Jun. 2006, pp. 1-16, San Jose, California, USA. |
Fairchild Semiconductor, Simple Ballast Controller, FAN7544, Rev. 1.0.0, Sep. 21, 2004, pp. 1-14, San Jose, California, USA. |
Su, et al, Ultra Fast Fixed-Frequency Hysteretic Buck Converter with Maximum Charging Current Control and Adaptive Delay Compensation for DVS Applications, IEEE Journal of Solid-State Circuits, vol. 43, No. 4, Apr. 2008, pp. 815-822, Hong Kong University of Science and Technology, Hong Kong, China. |
Wong, et al, “Steady State Analysis of Hysteretic Control Buck Converters”, 2008 13th International Power Electronics and Motion Control Conference (EPE-PEMC 2008), pp. 400-404, 2008, National Semiconductor Corporation, Power Management Design Center, Hong Kong, China. |
Zhao, et al, Steady-State and Dynamic Analysis of a Buck Converter Using a Hysteretic PWM Control, 2004 35th Annual IEEE Power Electronics Specialists Conference, pp. 3654-3658, Department of Electrical & Electronic Engineering, Oita University, 2004, Oita, Japan. |
International Search Report, PCT/US2012/069942, European Patent Office, Jul. 21, 2014, pp. 1-5. |
Written Opinion, PCT/US2012/069942, European Patent Office, Jul. 21, 2014, pp. 1-8. |
Response to the Written Opinion accompanying the International Report on Patentability as filed in European Patent Application No. 12809953.8 on Apr. 7, 2015, pp. 1-4. |
Number | Date | Country | |
---|---|---|---|
20130154496 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61570554 | Dec 2011 | US |