The present invention generally relates to lighters such as pocket lighters used to light cigarettes and cigars, or utility lighters used to ignite candles, barbecue grills, fireplaces and campfires, and more particularly to such lighters which resist inadvertent operation or undesirable operation by unintended users.
Lighters used for igniting tobacco products, such as cigars, cigarettes, and pipes, have developed over a number of years. Typically, these lighters use either a rotary friction element or a piezoelectric element to generate a spark near a nozzle which emits fuel from a fuel container. Piezoelectric mechanisms have gained acceptance because they are simple to use. U.S. Pat. No. 5,262,697 (“the '697 patent”) to Meury discloses one such piezoelectric mechanism, the disclosure of which is incorporated by reference herein in its entirety.
Lighters have also evolved from small cigarette or pocket lighters to several forms of extended or utility lighters. These utility lighters are more useful for purposes such as lighting candles, barbecue grills, fireplaces and campfires. Earlier attempts at such designs relied simply on extended actuating handles to house a typical pocket lighter at the end. U.S. Pat. Nos. 4,259,059 and 4,462,791 contain examples of this concept.
Many pocket and utility lighters have had some mechanism for resisting undesired operation of the lighter by young children. Often, these mechanisms are on/off switches which may shut off the fuel source or may prevent movement of an actuator, such as a push-button, on the lighter. On/off switches which a user positively moves between “on” and “off” positions can be problematic. For example, an adult user may forget to move the switch back to the “off” position after use and thereby render the feature ineffective. Other pocket and utility lighters include a spring-biased blocking latch which arrests or prevents movement of the actuator or push-button. U.S. Pat. No. 5,697,775 to Saito and U.S. Pat. No. 5,145,358 to Shike et al., disclose examples of such lighters.
There remains a need for lighters which resist inadvertent operation or undesirable operation by unintended users, but which provide each intended user with a consumer-friendly method of operating the lighters so that the lighters appeal to a variety of intended users.
The present invention is directed to a lighter with at least two modes of operation. In either mode of operation, the lighter preferably is operational with no blocking mechanism(s) which arrests or prevents movement of an actuating member.
The present invention, in one embodiment, relates to a lighter which generally comprises a housing which contains fuel, a housing having a supply of fuel, an igniting assembly for igniting released fuel, an actuating assembly that includes an actuating member pivotably connected to the housing for performing at least one step in igniting the fuel, and a latch member moveable by a user between a first latch member position and a second latch member position. A user applies a first actuating force to the actuating member to ignite the fuel when the latch member is positioned in the first latch member position, and a second actuating force to the actuating member to ignite the fuel when the latch member is positioned in the second latch member position. The first actuating force being greater than the second actuating force.
More specifically, in one embodiment, a plunger member, operatively associated with the latch member, in the high-actuation-force position directly drives a second biasing member so that the second biasing member together with a first biasing member, associated with the actuating assembly provides a first opposing force which opposes or resists actuation of the lighter. When the user moves or repositions the plunger member to the low-actuation-force position, the second biasing member does not oppose or resist actuation of the lighter while the first biasing member still opposes actuation of the lighter.
Preferably, the first opposing force provided by the first and second biasing members is greater, and optionally significantly greater, than the second opposing force.
In accordance with one embodiment, the actuating member may selectively dispense fuel, activate an ignition assembly or perform both functions. The lighter optionally may have an ignition assembly actuated by the actuating member. The ignition assembly may include a piezoelectric unit. The actuating member may be at least one activation mechanism. In the high-actuation-force position, the first and second biasing members may resist movement of the activation mechanism to an actuation position by increasing the force necessary to actuate the activation mechanism.
The latch member can be coupled to the housing such that it moves in a linear direction. Movement of the latch member may move the plunger member between the high-actuation-force position and the low-actuation-force position.
One preferred aspect of the multi-mode lighter according to at least one embodiment is that after multiple actuations of the lighter, the first and second activation mechanism forces required to operate the lighter in either mode, and more preferably the first activation mechanism force, remain substantially constant. Thus, the first and second opposing forces exerted by the first and second biasing members preferably do not substantially decrease with use of the lighter.
According to yet another embodiment, the lighter comprises a housing having a supply of fuel, an actuating assembly for selectively releasing the fuel, where the actuating assembly includes an actuating member pivotably connected to the housing, an ignition assembly for igniting the dispensed fuel, and a latch member movable in a linear direction to permit movement between a first latch position and a second latch position. The lighter further includes a plunger member operatively associated with the latch member, a first biasing member operatively associated with the actuating assembly, and a second biasing member operatively associated with the plunger member. In a first latch member position where the plunger member is in an initial state, the first and second biasing members resist movement of the actuating member to ignite the released fuel. In a second latch member position, the plunger having been repositioned by the latch member, the second biasing member does not resist movement of the actuating member, while the first biasing member continues to resist movement of the actuating member. The actuating member is movable to ignite the released fuel when the plunger member is in the first member position and when the plunger is in the second member position.
According to a preferred aspect of the multi-mode lighter, the first or high-actuation-force mode preferably relies more on the user's physical characteristics, and more specifically strength characteristics, while the second or low-actuation-force mode preferably relies more on the user's cognitive abilities and dexterity. In yet another preferred, but optional, aspect of this lighter, the user may actuate the lighter in the high-actuation-force mode with a single finger. Moreover, according to another preferred, but optional, aspect of this lighter, the user may actuate the lighter in the low-actuation-force mode with two fingers. One further preferred, but optional, feature of the lighter is that actuation of the lighter in the high-actuation-force mode may occur by a different actuation sequence or movement than the actuation sequence or movements which may occur in the low-actuation-force mode.
The multi-mode lighter and the method of use are explained in even greater detail in the following exemplary drawings. The multi-mode lighter and its method of operation may be better understood by reference to the following drawings, wherein like references numerals represent like elements. The drawings are merely exemplary to illustrate the structure, operation and method of use of the multi-mode lighter and certain features that may be used singularly or in combination with other features and the invention should not be limited to the embodiments shown.
Turning to
Lighter 2 generally includes a housing 4 which may be formed primarily of molded-rigid-polymer or plastic materials such as acrylonitrile butadiene styrene terpolymer or the like. The housing 4 may also be formed of two-parts that are joined together by techniques known by those of ordinary skill in the art, such as ultrasonic welding.
Housing 4 includes various support members, such as support member 4a discussed below. Further support members are provided in the lighter 2 for various purposes, such as supporting components or directing the travel path of components. The housing 4 further includes a handle 6, which forms a first end 8 and a second end 9 of the housing. A wand assembly 10, as discussed in detail below, is pivotally connected to the second end 9 of the housing.
Referring to
Referring to
A suitable fuel supply unit 11 is disclosed in U.S. Pat. No. 5,934,895 (“the '895 patent”), the disclosure of which is incorporated herein by reference in its entirety. An alternative arrangement for the fuel supply unit 11 that can be used is disclosed in U.S. Pat. No. 5,520,197 (“the '197 patent”) or U.S. Pat. No. 5,435,719 (“the '719 patent”), the disclosures of which are incorporated by reference in their entirety. The fuel supply units disclosed in the above patents can be used with all of the disclosed components or with various components removed, such as windshields, latch springs, latches, and the like, as desired by one of ordinary skill in the art. Alternative arrangements of the fuel supply unit can be used.
Referring to
Referring to
The retainer 20 properly positions fuel conduit 23 with respect to the jet and valve assembly 15 by receiving conduit 23 through the bore 20b so that the conduit 23 is within the connector 22. Details of the conduit 23 will be discussed below. The rearward portion 20c of the retainer 20 is disposed within the slot 18a of the guide 18. The retainer 20 and guide 18 may be configured so that these components snap-fit together so that the conduit 23 is properly positioned with respect to the jet and valve assembly 15. The guide 18 and retainer 20 are optional and the housing 4 or other components of the lighter can be used to support and position the connector 22 and the conduit 23. In addition, the guide and retainer 20 may be configured differently so long as they function to locate connector 22 and conduit 23 to jet 15a.
The container 12, guide 18, retainer 20, and connector 22 may be made with plastic material. However, the valve actuator 14, valve stem 15a, and electrode 15b are preferably formed of electrically conductive materials. The fuel supply unit 11 can be a preassembled unit that may include the fuel supply container 12, the jet and valve assembly 15, and the biased valve actuator 14. When the fuel supply unit 11 is disposed within the lighter, the housing support member 4a aids in locating and maintaining the position of the unit 11, as shown in
Referring again to
Referring to
The piezoelectric unit 26 includes an upper portion 26a and a lower portion 26b that slide with respect to each other along a common axis. A coil spring or return spring 30 is positioned between the upper and lower portions 26a, 26b of piezoelectric unit. The return spring 30 serves to resist the compression of piezoelectric unit, and when positioned in the actuating member 25 resists the depression of actuating member 25. The lower portion 26b of piezoelectric unit is received in cooperating chamber 12b in fuel supply unit 11.
The piezoelectric unit 26 further includes an electrical contact or cam member 32 fixedly connected to the upper portion 26a. In the initial position, the portions 26a, 26b are separated by a gap X. The cam member 32 is formed of a conductive material. The upper portion 26a is coupled to actuating member 25. Spark conductor or wire 28 is partially insulated and may be electrically connected with the electrical contact 29 of the piezoelectric unit in any known manner.
As shown in
Referring to
Referring to
Latch member 34 is preferably formed of plastic, while leaf spring 42 is preferably manufactured from a metal having resilient properties, such as spring steel, stainless steel, or from other types of materials. It should be noted that while leaf spring 42 is shown mounted to housing 4 it may alternatively be coupled to other components of the lighter.
Referring to
Turning again to
In this embodiment, the activation mechanism 25 lower and upper portions are formed as a single piece. Alternatively, the upper and lower portions can be two separate pieces coupled together or the activation mechanism can be part of a multiple piece unit.
Referring to
Referring to
Referring to
Referring to
The plunger member 63 when installed in the lighter is disposed below the latch member 34. The plunger member 63 is substantially T-shaped with a longitudinally extending body portion 64 and transversely extending head portions 66. As best seen in
Referring again to
Referring to
Referring to
Referring to
The front portion 78 of piston member 74 further includes a downwardly extending support portion 86 that includes a horizontal platform 88 with an upwardly extending pin 90. Referring to
Referring to
The lighter 2 may include a wand assembly 10 that is at least 2 inches in length. The wand assembly 10 may be movably coupled to housing 4 and may be pivoted between a first position or closed position, shown in
The wand assembly 10 includes wand 101 fixedly connected to a base member 102. The wand 101 is a cylindrical tube of metal that receives the conduit 23 (as shown in
The wand 101 also includes a tab 101a formed integrally therewith near the free end of the wand. Alternatively, a separate tab may be associated with wand.
Referring back to
The lighter 2 may be operated in two different modes. Referring to
The low-force mode of lighter 2 provides resistance to undesirable operation of the lighter by unintended users based more on the cognitive abilities of intended users than the high-force mode. More specifically, the second mode provides resistance due to a combination of cognitive abilities and physical differences, more particularly the size characteristics and dexterity between intended users and unintended users.
The low-force mode may rely on the user operating two components of the lighter to change the force, from the high-actuation force to the low-actuation force, which is required to be applied to the activation mechanism to operate the lighter. The low-force mode may rely on a user repositioning a plunger member 63 from a high-actuation-force position to a low-actuation-force position. The user may move the plunger member 63 by depressing a latch member 34. After moving the plunger member, the user may operate the lighter by applying less force to the activation mechanism. The low-force mode may rely on a combination of the physical and cognitive differences between intended and unintended users such as by modifying the shape, size or position of the latch member in relation to the activation mechanism, or alternatively, or in addition to, modifying the force and distance required to activate the latch member and the activation mechanism. Requiring the activation mechanism and latch member to be operated in a particular sequence also may be used to achieve the desired level of resistance to unintended operation.
Referring to
In an initial or rest position in the high-force mode, as shown in
In this embodiment, the length D1 is substantially equal to the space between support 4d and piston member 74 end wall 76a. In another embodiment, the length D1 can be greater than this space so that the spring 80 is compressed and pre-loaded when installed or the length D1 can be less than this space.
To actuate the lighter in this high-force mode, i.e., when the portions 66 are disposed in slot portion 56b, a user applies at least a first activation mechanism force FT1 to the activation mechanism 25 which is substantially equal to or greater than the sum of a spring force FS, and all additional opposing forces FOP. (not shown). The spring force FS may comprise the force necessary to compress the spring 80. The opposing forces FOP may comprise the forces applied by the various other elements and assemblies which are moved and activated in order to operate the lighter, such as the spring force from the return spring 30 (see
As shown in
In the high-actuation-force mode when the activation mechanism 25 is depressed, the spring 80 has a length D2 (as shown in
When the activation mechanism 25 is released, the return spring 30 (as shown in
The lighter may be designed so that a user would have to possess a predetermined strength level in order to ignite the lighter in the high-actuation-force mode. The lighter optionally may be configured so that a user may ignite the lighter in the high-actuation-force mode with a single motion or a single finger.
Alternatively, if the intended user does not wish to use the lighter by applying a high first activation mechanism force FT1 (i.e., the high-actuation-force) to the activation mechanism, the intended user may operate the lighter 2 in the low actuation-force mode (i.e., the low-force mode), as depicted in
In the lighter of
As shown in
The latch member may be partially or fully depressed with different results. Depending on the configuration of the lighter components, if latch member is partially depressed, the wall 66a may be in contact with or adjacent the vertical wall 56c. If the latch member 34 is depressed so that the wall 66a is in contact with or adjacent the vertical wall 56c of the activation mechanism 25, the lighter 2 is still in the high-force mode. If the latch member 34 is depressed so that the wall 66a is equal to or below wall 56c the lighter can slip into the low-force mode or is in the low-force mode. In some configurations, the lighter may be designed so that when the latch member 34 is fully depressed, the plunger member 63 is completely out of contact with (e.g., below) upper portion 46 (as shown in
The force applied to the activation mechanism in order to activate the lighter in the low-force mode, i.e., second activation mechanism force FT2, at least has to overcome the opposing forces FOP as discussed above to actuate the lighter. In addition, if the plunger member 63 contacts the activation mechanism 25, the second activation mechanism force must also overcome the friction forces generated by this contact during movement of the actuating member. The user, however, may not have to overcome the additional spring force FS (as shown in
Referring to
In the low-force mode in the lighter as shown in
The actuating assembly 620 may include a shaft 623, an actuating tab 622, an activation mechanism tab 621, a gas opening tab 624, and an activation mechanism 625.
Shaft 623 may be fixedly connected to activation mechanism 625. Shaft 623 may also be connected to lighter housing 604. Shaft 623 may be perpendicularly oriented with respect to the front end 609 and rear end 608 of the handle 606, within the lighter 602.
Actuating tab 622 may be rectangular-shaped with one end connected near or about an end 623a of shaft 623 and aligned with the ignition assembly 630.
Activation mechanism tab 621 may be connected near or about the other end 623b of shaft 623 and aligned with activation mechanism spring 690. Activation mechanism tab 621 may be rectangular-shaped, however, the end 621c of the activation mechanism tab 621 not connected to shaft 623 may have a slot through it, forming two posts 621a, 621b. The slot is sized so that the rear end 671 of the plunger may be located between posts 621a, 621b. Each post 621a, 621b may have a channel 629 allowing tabs 668, 669 of plunger member 663 to be positioned in the channel 629 and act as a guide as plunger member 663 moves up and down within the slot of the activation mechanism tab 621. The distance between the post at least preferably is as large as the diameter of the high-actuation-force spring 680, discussed below.
Gas opening tab 624 may be an elongated member which may, for example, be rectangular-shaped and have one end connected to shaft 623 and be aligned with a gas opening member 601 of the gas reservoir 607. The gas opening tab 624 may be located between the actuating tab 622 and the activation mechanism tab 621. The gas opening member 601 of the gas reservoir 607 may have two prongs in the shape of a fork which operate a valve 611 of the gas reservoir 607.
Activation mechanism 625 may include a front end 625a and a rear end 625b. The rear end 625b may be connected to shaft 623 such that the activation mechanism 625 is preferably pivotable about shaft 623. The activation mechanism 625 may also include a lower portion 644 and an upper portion 645. The lower portion 644 includes a downward extending boss 644a. The upper portion 645 includes finger actuation surface. For purposes of explanation, the relative term upper or top denotes the surface of the lighter having the activation mechanism 625, whereas the term lower or bottom denotes the surface having the latch member 634.
Activation mechanism tab 621, actuating tab 622, and gas opening tab 624 together with activation mechanism 625 are attached to shaft 623 such that near or about a 90 degree angle is formed between activation mechanism 625 and the three tabs, the activation mechanism tab 621, the actuating tab 622, and the gas opening tab 624.
The activation mechanism 625 is activated by a user depressing the activation mechanism 625 so that it pivots with respect to the lighter housing 604 as shaft 623 rotates about its axis. In this manner, as the activation mechanism 625 is activated, the actuating tab 622 rotates and depresses the ignition assembly, the gas opening tab 624 also rotates depressing the gas opening member 601 of the gas reservoir releasing the gas, and the activation mechanism tab 621 depresses activation mechanism spring 690 (discussed later).
Latch member 634 is opposite the actuating assembly 620 near the bottom side of the housing 604. Referring to
In this embodiment, the activation mechanism tab 621, the actuating tab 622, and the gas opening tab 624 form a portion of a dual-mode assembly. The dual-mode assembly also includes a plunger member 663.
The plunger member 663 when installed in the lighter is disposed internally within the lighter housing 604 and aligned with boss 637 which may be located at one side 634b of the latch member 634. The plunger 663 is substantially T-shaped with a longitudinally extending body portion 664 and transversely extending tabs 668, 669. As best seen in
The bottom surface 673 of the body portion 664 of plunger 663 may be convexly shaped. The bottom surface 673 near or at the rear surface 666 may have a groove 670 extending from the rear surface 666 toward the front end 674 of the plunger 663, preferably to approximately the middle of the body portion 664. The groove 670 may have a diameter equal to or larger than the diameter of high-actuation-force spring 680. The plunger member 663 may also include a vertically extending projection 672 that extends from the upper surface 675 of the body portion 664. The projection 672 may cooperate to hold spring 695 in position between the plunger 663 and the activation mechanism 625. Plunger spring 695 may be held in place between the plunger member 663 and the activation mechanism 625 by boss 644a on the activation mechanism 625 and projection 672 on the upper side of the plunger member 663.
High-actuation-force spring 680 is positioned within the housing with the rear of the high-actuation-force spring 680 abutting the housing 604. An activation mechanism spring 690, having a diameter larger than the high-actuation-force spring 680 is positioned co-axially over high-actuation-force spring 680, such that the high-actuation-force spring 680 is positioned within the inner circumference of the activation mechanism spring 690, with the front of high-actuation-force spring 680 protruding beyond the front of the activation mechanism spring 690. The activation mechanism spring 690 is positioned within the lighter housing 604 such that one end contacts side ribs 613 and 614 and the other end contacts activation mechanism tab 621. The activation mechanism spring 690 biases the activation mechanism to its at rest position.
Operation of the lighter 602 in the high-force mode will be describe with reference to
As discussed above, movement of the activation mechanism 625 also causes the actuating tab 622 to rotate. Rotation of the actuating tab 622 causes the upper and lower portions of the piezoelectric unit 630 to compress together (not shown), thereby actuating the piezoelectric unit. For a more complete description of the inner workings of the piezoelectric unit, refer to the earlier disclosure discussing the first embodiment of the present invention. Similarly, movement of the activation mechanism 625 causes the gas opening tab 624 to rotate. Rotation of the gas opening tab 624 causes the gas opening member 601 of the gas reservoir to compress a spring (not shown) and release the gas. It being appreciated that other ignition mechanisms or assemblies may be utilized to ignite the fuel released by the lighter.
When the activation mechanism 625 is released, a return spring (not shown) within the piezoelectric mechanism 630, the spring associated with the gas opening member 601, the high-actuation-force spring 680, and the activation mechanism spring 690 move or assist in moving the activation mechanism tab 621, the actuating tab 622, together with plunger member 663, the gas opening tab 624, and the activation mechanism 625 into their initial, at rest, positions. As a result, upon release of the activation mechanism 625, the lighter automatically returns to the initial state, where the plunger member 663 remains in the high-actuation-force position (as shown in
The lighter may be designed so that a user would have to possess a predetermined strength level in order to ignite the lighter in the high force mode. Thus, in the high force mode, the user must exert a first activation mechanism force FT1 on the activation mechanism 625 to operate the lighter. The first activation mechanism force FT1 must be greater than opposing forces FOP which comprise spring force FS, the spring force from the return spring in the piezoelectric unit, the spring force from the spring associated with the gas opening member 601, and any other forces due to springs, biasing members, and friction which are part of or added to the actuating assembly, fuel container and the ignition system.
Alternatively, if the intended user does not wish to use the lighter by applying a high first activation mechanism force FT1 (i.e., the high-actuation-force) to the activation mechanism 625, the intended user may operate the lighter 602 in the low-actuation-force mode (i.e., the low-force mode), as depicted in
The low-force mode includes a user repositioning plunger member 663 upward such that high-actuation-force spring 680 does not oppose motion of the activation mechanism 625. Note that in the low force mode as the activation mechanism 625 is rotated it carries with it the plunger 663, and that boss 637 continues to make contact with and keep plunger 663 from being aligned with the high-actuation-force spring 680. Boss 637 may fit into the another groove (not shown) on the bottom side 673 of plunger 663, preventing the boss 637 from moving laterally, with respect to the front and rear ends of the housing 604, as the plunger 663, in contact with boss 637, is moved with activation mechanism tab 621. The radius of the convexly-shaped bottom surface 673 may be equal to the length of the activation mechanism tab 621, so as to allow even rotation of the activation mechanism tab 621. In the low-force mode, a force substantially equal to or greater than second activation mechanism force FT2 (i.e., a low-actuation-force) is applied to the activation mechanism 625 to ignite the lighter in conjunction with the movement of the latch member 634. In this mode of operation, the second activation mechanism force FT2 is preferably less, and optionally significantly less, than the first activation mechanism force FT1.
To operate the lighter 602 in the low-force mode includes pressing the latch member 634 from the initial position (shown in
To actuate the lighter 602 in this low-force mode, a user applies at least a second activation mechanism force FT2 to the activation mechanism 625 which is substantially equal to or greater than the sum of the activation mechanism spring force FS2 and all additional opposing forces FOP. The activation mechanism spring force FS2 may comprise the force necessary to compress the activation mechanism spring 690, but not the force to compress high-actuation-force spring 680. The opposing forces FOP may comprise the forces applied by the various other elements and assemblies which are moved and activated in order to operate the lighter, such as the spring force from the return spring in the piezoelectric unit applied against the actuating tab 622, the frictional force between the plunger member 663 and the boss 637 caused by the movement of the plunger member 663, the spring force from the spring associated with the gas opening member 601, and any other forces due to springs and biasing members which are part of or added to the actuating member or actuating assembly, fuel container, or which are overcome to actuate the lighter. In the low-actuation-force position, a lower activation mechanism force than in the high-actuation-force position is preferable to ignite the lighter because high-actuation-force spring 680 is not engaged with the plunger member 663.
If the latch member 634 is partially pressed, the mode of the lighter will depend on whether the rear surface 666 of the plunger member 663 contacts the high-actuation-force spring 680 when the activation mechanism 625 is pressed. In the case where the rear surface 666 contacts the high-actuation-force spring 680, the user may still have to overcome the high spring forces of the high-actuation-force spring 680, where the lighter 602 is still in the high-force mode.
Upon release of the latch member 634, the latch member 634 returns to its initial or at rest position due to latch member spring 635. The plunger member 663 will also return to its initial or at rest position, if the activation mechanism 625 has been released, due to plunger spring 695. Thus, the lighter automatically returns to the initial position, where the plunger member 663 is in a high-actuation-force position and the lighter requires a high-actuation force to operate.
Preferably, in order to perform the low-force mode, the user has to possess a predetermined level of dexterity and cognitive skills so that depression of the latch member and movement of the activation mechanism are carried out in the correct sequence. In the low-force mode, a user may use one finger to press latch member and a different finger to apply the activation mechanism force. The lighter may be designed so that the activation mechanism force preferably is applied after the latch member is depressed so that a proper sequence is carried out to operate the lighter. Alternatively, another sequence can be used for actuation, and the present invention is not limited to the sequences disclosed but also includes such alternatives as contemplated by one of ordinary skill in the art. For example, the sequence can be moving/pivoting the activation mechanism partially, depressing the latch member, and then moving/pivoting the activation mechanism the rest of the way. The lighter in the low-force mode also may rely on the physical differences between intended and unintended users, for example, by controlling the spacing of the activation mechanism and the latch member, or adjusting the operation forces, or shape and size of the latch member, activation mechanism or lighter.
In order to make the lighter so that it is not excessively difficult for some intended users to actuate, the high-actuation force FT1 preferably should not be greater than a predetermined value. It is contemplated that for the lighter, the preferred value for FT1 is less than about 10 kg and greater than about 5 kg, and more preferably less than about 8.5 kg and greater than about 6.5 kg. It is believed that such a range of force would not substantially negatively affect use by some intended users, and yet would provide the desired resistance to operation by unintended users. These values are exemplary and the operative force in the high-force mode may be more or less than the above ranges.
One of ordinary skill in the art can readily appreciate that various factors can increase or decrease the high-actuation force which an intended user can comfortably apply to the activation mechanism. These factors may include, for example, the leverage to pull or actuate the activation mechanism provided by the lighter design, the friction and spring coefficients of the lighter components, the activation mechanism configuration, the complexity of the activation mechanism actuation motion, the location, size and shape of the components, intended speed of activation, and the characteristics of the intended user. For example, the location and/or relationship between the activation mechanism and the latch member and whether the intended user has large or small hands.
The design of the internal assemblies, for example the configuration of the actuating assembly, the configuration of any linking mechanism, as discussed below, the number of springs and forces generated by the springs all affect the force which a user applies to the activation mechanism in order to operate the lighter. For example, the force requirements for an activation mechanism which moves along a linear actuation path may not equal the force requirements to move an activation mechanism along a non-linear actuation path. Actuation may require that a user move the activation mechanism along multiple paths which may make actuation more difficult. While the embodiments disclosed have shown the preferred activation mechanism with linear and non-linear actuation paths, one of ordinary skill in the art can readily appreciate that other non-linear actuation paths are contemplated by the present invention.
In the illustrated embodiments, the second activation mechanism force FT2 for the low-force mode is less than the first activation mechanism force, preferably, but not necessarily, by at least about 2 kg. Preferably, the low-actuation force FT2 is less than about 5 kg but greater than about 1 kg, and more preferably greater than about 3.0 kg. These values are exemplary, as discussed above, and the present invention is not limited to these values as the particular desirable values will depend upon the numerous lighter design factors outlined above and the desired level of resistance to operation by unintended users.
One feature of the lighter is that in the high-force mode multiple actuating operations may be performed so long as the user provides the necessary actuation force. Another feature of the lighter is that in the low-force mode multiple actuating operations may be performed so long as the user depresses the latch member and provides the necessary actuation force and motions required to ignite the lighter. In particular, if the lighter does not operate on the first attempt, the user may re-attempt to produce a flame by actuating the activation mechanism again in the low-force mode if the user continues to depress the latch member.
While various descriptions of the present invention are described above, it should be understood that the various features of each embodiment may be used singularly or in any combination thereof. Therefore, this invention is not to be limited to only the specifically preferred embodiments depicted herein. Further, it should be understood that variations and modifications within the spirit and scope of the invention may occur to those skilled in the art to which the invention pertains. For example, insulated wire 28 (shown in
Moreover, while the lighter, described herein have used an activation mechanism to simultaneously operate both the actuating mechanism or actuating assembly and the ignition mechanism or ignition assembly, the lighter may provide separate user operated mechanisms or assemblies so that the fuel is released independent and separate from the operation of the ignition mechanism or ignition assembly.
Furthermore, although in the presently discussed embodiments the low-force mode relies on the user operating two components, in an alternative embodiment, the low-force mode may rely on the user operating a number of components.
As another example, the plunger member in any of the embodiments above may be configured and located so that a finger actuation portion of the plunger member is outside of the housing and the remainder of the plunger member is within the housing. Thus, the plunger member may be moved from the high-actuation-force position to the low-actuation force position by a user contacting the finger actuation portion of the plunger member. In such an embodiment, the lighter may not include a latch member.
Furthermore, the lighter may include the dual-mode aspect of the lighter, a pivoting wand assembly aspect of the lighter, a cam follower aspect of the lighter, and a conduit aspect of the lighter, separately or in any combination. As a result, the features of the lighter can be used alone or in combination with one another or other known features.
Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein which are within the scope and spirit of the present invention are to be included as further embodiments of the present invention. Moreover, the features of the embodiments may be combined with additional cognitive effects such as a more complex activation mechanism actuation path to make actuation of the lighter more difficult. The scope of the present invention is accordingly defined as set forth in the appended claims.
The present application is a continuation-in-part of U.S. patent application Ser. No. 11/145,306, filed Jun. 3, 2005 now U.S. Pat. No. 7,070,408, which is a divisional of U.S. patent application Ser. No. 10/389,975, filed Mar. 18, 2003, now U.S. Pat. No. 6,908,302, which is a continuation-in-part of U.S. patent application Ser. No. 10/085,045, filed Mar. 1, 2002, now U.S. Pat. No. 6,726,469, which is a continuation-in-part of both U.S. patent application Ser. No. 09/817,278, now U.S. Pat. No. 6,916,171, and U.S. patent application Ser. No. 09/819,021, now U.S. Pat. No. 6,488,492, both of which were filed on Mar. 27, 2001, and both of which are continuations-in-part of U.S. patent application Ser. No. 09/704,689, filed Nov. 3, 2000, now U.S. Pat. No. 6,491,515. The contents of these five applications are expressly incorporated herein by reference thereto.
Number | Name | Date | Kind |
---|---|---|---|
2498377 | Nissen | Feb 1950 | A |
3540823 | Ebine et al. | Nov 1970 | A |
3758820 | Lohberg | Sep 1973 | A |
4022566 | Goto | May 1977 | A |
4259059 | Roosa et al. | Mar 1981 | A |
4462791 | Hayden | Jul 1984 | A |
4870314 | Hefling | Sep 1989 | A |
4921420 | Johnston | May 1990 | A |
5145358 | Shike et al. | Sep 1992 | A |
5199865 | Liang | Apr 1993 | A |
5262697 | Meury | Nov 1993 | A |
5334011 | Frigiére | Aug 1994 | A |
5462432 | Kim | Oct 1995 | A |
5496169 | Chen | Mar 1996 | A |
5520197 | McDonough et al. | May 1996 | A |
5531591 | Yamazaki | Jul 1996 | A |
5645414 | Wang | Jul 1997 | A |
5697775 | Saito et al. | Dec 1997 | A |
5854530 | LaForest et al. | Dec 1998 | A |
5897308 | Saito et al. | Apr 1999 | A |
5934895 | McDonough et al. | Aug 1999 | A |
5967768 | Saito et al. | Oct 1999 | A |
5971751 | Lee | Oct 1999 | A |
6022212 | Saito et al. | Feb 2000 | A |
6042367 | Saito et al. | Mar 2000 | A |
6065958 | Adams et al. | May 2000 | A |
6077071 | Yeh | Jun 2000 | A |
6086360 | McDonough et al. | Jul 2000 | A |
6093017 | Saito et al. | Jul 2000 | A |
6146129 | Li | Nov 2000 | A |
6168420 | Sung | Jan 2001 | B1 |
6213759 | Sung | Apr 2001 | B1 |
6224368 | Chung | May 2001 | B1 |
6267582 | Lin | Jul 2001 | B1 |
6488492 | Adams et al. | Dec 2002 | B2 |
6491515 | Tubby et al. | Dec 2002 | B1 |
6527546 | Adams et al. | Mar 2003 | B1 |
6682341 | Pan et al. | Jan 2004 | B2 |
6726469 | Adams et al. | Apr 2004 | B2 |
6837704 | Hsu | Jan 2005 | B1 |
6887072 | Judeng | May 2005 | B2 |
6908302 | Sgroi, Jr. et al. | Jun 2005 | B2 |
20020055076 | Adams et al. | May 2002 | A1 |
20020055077 | Adams et al. | May 2002 | A1 |
20020106601 | Adams et al. | Aug 2002 | A1 |
20020150852 | Zhang | Oct 2002 | A1 |
20040081931 | Sgroi et al. | Apr 2004 | A1 |
20040166453 | Adams et al. | Aug 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20060073432 A1 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10389975 | Mar 2003 | US |
Child | 11145306 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11145306 | Jun 2005 | US |
Child | 11221295 | US | |
Parent | 10085045 | Mar 2002 | US |
Child | 10389975 | US | |
Parent | 09817278 | Mar 2001 | US |
Child | 10085045 | US | |
Parent | 09819021 | Mar 2001 | US |
Child | 09817278 | US | |
Parent | 09704689 | Nov 2000 | US |
Child | 09819021 | US |