This disclosure relates generally to interconnections between optical fibers and more specifically relates to high-density multi-fiber connectors for multi-mode optical fibers.
Optical fibers find a wide range of applications, from high-speed data communication systems to surgical devices employing high-power lasers. Optical connectors are often needed in fiber-optical systems to serve such purposes as splicing optical cables and attaching a variety of laser tools to optical cables. There is a continuing need to provide high-efficiency, multi-fiber, optical connectors to minimize power loss in optical transmission and facilitate convenient connection of multiple fiber pairs.
The present disclosure discloses a multi-fiber connector for multi-mode fibers. The connector employs graded-index (GRIN) fibers to expand the diameter of the beams from the transmitting multi-mode fibers and refocus the beams into the receiving fibers.
This disclosure presents using GRIN fibers with a large core radius (such as twice that of the optical fibers which the GRIN fibers are used to interconnect) to expand incident beam. In certain examples, the GRIN fibers expand the incident beams to near-collimation. The beam expansion reduces the connection's sensitivity (i.e., power attenuation) to lateral displacement between the optical fibers at the cost of increased sensitivity to angular misalignment between the fibers. However, with certain fiber connection hardware, angular alignment is more easily controlled, making having a higher sensitivity to angular misalignment a more preferable choice to having a higher sensitivity to lateral displacement.
In certain examples, a multi-fiber connector module (such as MPO), with MT-style ferrules, are used to interconnect multiple fiber pairs, each with GRIN fiber endings as described above. In certain examples, the near-collimation of the incident beams allows efficient transmission between fibers without the need for physical contact between the fibers. In further examples, antireflection coating can be applied to the GRIN fiber interface to further increase the coupling efficiency.
GRIN fiber lens has typically been used to expand beams from single-mode fibers, the core diameter of which is typically on the order of a few micrometers, to make high efficiency long haul connections. Beam expansion greatly reduces the energy density at the GRIN-GRIN interface and thus greatly reduces the sensitivity to misalignment between the fibers. In contrast, multi-mode fibers typically have large diameters (e.g., 50 μm). As a consequence, significant beneficial effect of beam expansion for optical coupling between multi-mode optical fibers may not be immediately apparent. According to certain aspects of the present disclosure, GRIN fiber with a large core can be used to achieve significant reduction in energy density, thereby reducing sensitivity to such factors as presence of dust particles and lateral displacement. Furthermore, by substantially collimating optical beams using GRIN fibers, end-to-end physical contact between fibers is not required. This characteristic can have a significant impact on the durability of multi-fiber connectors, as physical contacts between multiple pairs of optical fibers can give rise to significant stress on the connector structure and negatively impact the durability of the connectors.
A GRIN fiber system 100 for expanded beam connection between multi-mode optical fibers is schematically shown in
As further illustrated in
As shown in
While an expanded-beam interface reduces the sensitivity to the lateral misalignment, it increases the sensitivity to angular misalignment. As
From geometrical optics, every ray can be characterized by the formula:
where,
Consider a ray and its ‘reciprocal’, one can derive an expression for the misalignment, d, as function of tilt angle θ0 (see
1=
Thus, for a parabolic refractive index profile as described above, one obtains:
where ncore and ncladding are, respectively, the refractive indexes at the center of the core and in the cladding.
Therefore, to reduce the sensitivity to angular misalignment, several factors may be changed, including (a) reducing R, (b) increasing the contrast and (c) reducing ncore. However, the beam expansion has a similar dependency on these factors. There is thus a trade-off between minimizing sensitivity to lateral misalignment and minimizing sensitivity to angular misalignment. In designing the GRIN fiber, one can find an optimum for the beam expansion factor that is constrained by tilt angle, tolerance on lens length and splice quality. In certain applications, because angular alignment is more easily controlled, it can be useful to increase the beam expansion at the cost of increased sensitivity to angular misalignment.
The GRIN fiber configuration described above can be used advantageously in multi-fiber connectors for multi-mode optical fibers. In certain aspects of the present disclosure, a multi-fiber connector module (such as MPO), with MT-style ferrules, are used to interconnect multiple fiber pairs, each with a pair of GRIN fiber endings as described above. MT-style ferrules generally provide very close tolerance in angular alignment and can thus be exploited to increase the beam expansion.
An advantage of using the GRIN fibers 110a and 110b as described above, in addition to obtaining a reduced energy density and thus reduced sensitivity to dust and lateral misalignment, is the substantial collimation of the beam 172 at the exit of the GRIN fiber 110a. The collimation affords low-loss transmission of optical beams from the GRIN fiber 110a into the GRIN fiber 110b without the two GRIN fibers being in physical contact. That is, there can be an air gap between the two GRIN fibers. Such a contact-less interface reduces stress on the physical structure of the connector assembly that supports the multi-mode fibers and GRIN fibers, especially multi-fiber connector assemblies, in which the total amount of stress due to the physical contacts of all fibers in the connector can be significant.
As a further enhancement to optical coupling efficiency, in certain examples, an antireflection coating is applied to the GRIN fiber interface to reduce attenuation and back reflection.
Thus, a GRIN fiber expanded-beam, multi-fiber connection for multi-mode optical fibers has been achieved according to the present disclosure. Because many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
The present application claims the benefit of U.S. Provisional Application No. 61/622,794, filed Apr. 11, 2012, which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61622794 | Apr 2012 | US |