The lower curve is obtained by multiplying the corresponding current by the operating voltage to obtain the effective power at every voltage level. Beginning at the far left side of the curve where the voltage is zero, the power is also zero but increases until reaching a maximum value at VMPP. The power then decreases until reaching zero where the current falls to zero.
Referring to the top curve, the region to the left of the maximum power point (VMPP) is generally referred to as the current source region because output of the PV panel is generally a constant current. The region to the right of the maximum power point is generally referred to as the voltage source region because output of the PV panel is a relatively constant voltage.
Control of power converter and algorithms for maximum power point tracking (MPPT) often struggle to accommodate the transition between operating in the current source region and the voltage source region because transitioning between the two regions may change the dynamics of power converter control and the MPPT algorithm.
The voltage and current error generators 18 and 20 operate continuously so that the voltage error eV and current error eI are both calculated concurrently whenever the control loop is running, regardless of which error the selector 22 is routing to the converter controller 24.
The embodiment of
Switching between modes may also help the control system cope with the different dynamics in the current source region and the voltage source region of the V-I characteristic of a PV panel or other power source. For example, referring to the V-I characteristic shown in
Moreover, because the voltage and current errors are generated concurrently, they may be used to implement control systems that take advantage of the distinction between the current source region and the voltage source region of the output characteristic of a PV power source. That is, rather than coping with, or adapting to, transitions between the current source and voltage source regions, the inventive principles may actually make use of the existence of these distinct regions to help determine the maximum power point for the PV power source, which typically occurs at the transition between these two regions.
The embodiment of
If the outer control loop implements a maximum power point tracking (MPPT) algorithm, the ability of the inner control loop to operate in different modes may reduce the complexity and/or improve the performance of the MPPT algorithm. In some embodiments, one of the control modes may be implemented as a master mode, with the other mode implemented as a slave mode. In other embodiments, both modes can be configured to control the power converter independently. In still other embodiments, one mode may be set as a dominant control loop that controls the system during a majority of the time, while the other mode may be triggered by events such as, for example, a crash prevention event.
Crashing is a potential problem with power conversion systems in which the power source may experience a rapid loss in power generating capacity. One example is solar power systems in which photovoltaic (PV) panels are used to generate electric power that is fed into a local utility grid. These systems typically include an array of PV panels, often with local power optimizer modules, that generate DC electricity. A centralized inverter is used to convert the DC power from the PV panels to AC power for the grid. The central inverter and/or local power optimizers may implement MPPT algorithms to maximize the amount of power harvested from the PV panels.
If one or more of the PV panels (or strings or cells within the panels) become shaded from passing clouds, swaying trees, etc., the output voltage of the panel may decrease to a point where the power electronics in the local power optimizers and/or central inerter can no longer function properly and the panel and its associated power electronics must be shut down. This is referred to as crashing, and depending on the configuration of the system, this may lead to a ripple effect where the entire array or generating installation must be shut down and restarted. Therefore, MPPT algorithms often include crash prevention functionality that monitors the voltage of each PV panel and adjusts the operation of the optimizer in an effort to prevent the input or output voltage of the PV panel from falling below a minimum level or voltage floor. However, this additional crash prevention functionality complicates and slows down the MPPT algorithm.
The embodiment of
Although the inventive principles are not limited to any particular implementation details, they may be particularly useful in the context of power systems in which the power source 10 is implemented with one or more PV panels, fuel cells, storage batteries, wind turbines, or other sources having output characteristics that benefit from tracking the power point to maintain operation at a maximum power point (MPP). Thus, the power converter 12 may be implemented with one or more DC/DC, DC/AC or AC/DC converters and may include one or more stages such as buck converters, boost converters, push-pull stages, rectifiers, inverters, etc., arranged as pre-regulators, input stages, main stages, output stages, etc. The converter controller 24 may therefore be implemented with any type of control scheme suitable for the corresponding converter, and may implement, for example, pulse width modulation (PWM), pulse frequency modulation (PFM), hysteretic control, resonant switching control, etc.
The voltage and current sensors 14 and 16 may be implemented with any suitable techniques including simple galvanic sense connections, voltage transformers, current transformers, shunt resistors, Hall Effect sensors, etc.
The voltage and current error generators 18 and 20, selector 22, selection logic 28, and converter controller 24 may be implemented with analog or digital hardware, software, firmware or any suitable combination thereof. In some example embodiments, the outputs from the voltage and current sensors 14 and 16 may be digitized immediately and provided to one or more microcontrollers or digital signal processors (DSPs) which may be used to implement an entirely digital implementation of the control loop.
The MPPT functionality 30 may implement any suitable MPPT algorithm including perturb and observe (P&O), incremental inductance (IC), etc., although some additional novel algorithms according to the inventive principles of this patent disclosure are presented below. The MPPT functionality 30 may be implemented with analog or digital hardware, software, firmware or any suitable combination thereof.
The embodiment of
A minimum value selector 42 selects the output from either the first or second multiplier and applies it to an integrating element 44. Thus, the minimum value selector 42 places the control loop in either a predominantly voltage mode of operation or a predominantly current mode of operation depending on whether it selects the voltage error path or current error path.
A summing element 46 adds the outputs from the integrating element 44 and the third multiplier to generate the output which is used to generate a PWM control signal for controlling the input stage of the inverter. The use of the proportional term KP reduces the loop response time when operating in current control mode, and this term may be left out when operating in voltage control mode.
With the system of
The minimum value selector 42 selects the actual minimum value of the signed error inputs, i.e., it does not determine the absolute value of either of the inputs.
The control loop of
At 606, the algorithm checks to see whether the inner control loop is running in current-control or voltage-control mode, that is, whether current-mode or voltage-mode is dominant. If current-mode control is dominant, then the target current (current limit) ITARGET is increased by Istep, and the target voltage (voltage floor) VTARGET is recalculated by subtracting Vstep from VPV at 608. If voltage-mode control is dominant, then VTARGET is decreased by Vstep, and ITARGET is recalculated by subtracting Istep from IPV at 610. The criteria for determining the dominant mode of control may, for example, be a comparison of VTARGET to VPV or a comparison of ITARGET to IPV.
The new values of ITARGET and VTARGET are then applied to the inner control loop of
As an initial condition, the method can be initiated with either or both of the target values set to zero. For example, by setting the target current to zero, the operating point may begin at the open circuit voltage, then climb up the V-I curve to the MPPT in a steady, controlled manner. The asymmetry between the calculations in 608 and 610 may facilitate the implementation of a system in which the current increases slowly at start-up but is able to decrease rapidly for power limiting purposes if the system needs to be shut off quickly.
Thus, the method illustrated in
The control loop of
The new value of ITARGET is then applied to the inner control loop of
In this embodiment, the voltage step (Vstep) is not used dynamically as part of the MPPT algorithm, but if the algorithm is implemented with an inner control loop such as that shown in
The control loop of
At 806, the algorithm compares the incremental conductance to the panel impedance. If the incremental conductance is less than the panel impedance, then the target current (current limit) ITARGET is increased by Istep, and the target voltage (voltage floor) VTARGET is recalculated by subtracting Vstep from VPV at 808. If the incremental conductance is greater than the panel impedance, then VTARGET is decreased by Vstep, and ITARGET is recalculated by subtracting Istep from IPV at 810.
The new values of ITARGET and VTARGET are then applied to the inner control loop of
Although the embodiments of
Some additional inventive principles of this patent disclosure relate to power point tracking for a power source that includes two or more series-connected power elements. For example, a power source such as a PV panel may include numerous PV cells, or strings of PV cells, connected in series. As another example, a storage battery typically includes several series-connected cells. When one or more of the series-connected power elements experiences a power reduction event, such as shading of one of the strings in a PV panel, it may cause the overall power characteristic of the panel to develop multiple local maxima (or “hills”), some of which may be lower than the others.
One solution to the multi-hill problem illustrated with the middle and lower curves of
When a power source having multiple series-connected power elements is fabricated in an assembly that does not provide access to the nodes between the individual power elements, there may be no alternative to sweeping the entire operating range. In some situations, however, the nodes may be accessible, or may be made accessible with relatively little effort. For example, some PV panels and/or modules are manufactured with nodes that are reasonably accessible to facilitate connection of the bypass diodes which may need to be mounted in a relatively accessible location for replacement or cooling purposes. In such a situation, voltage sensing connections can be made to the nodes between the series-connected strings in the panel, thereby facilitating power point tracking algorithms according to some inventive principles of this patent disclosure.
With the additional sense leads available, the MPPT algorithm may be modified to not only measure the output voltage and output current of the overall power source, but to measure the voltage across one of the series-connected power elements. The power converter may then be controlled in response to the output voltage and output current of the power source, and the voltage across the one series-connected power element. Preferably, the voltage across all of the series-connected power elements may be measured, and the power converter may be controlled in response to the voltage across all of the series-connected power elements.
The MPPT algorithm of
The inventive principles of this patent disclosure have been described above with reference to some specific example embodiments, but these embodiments can be modified in arrangement and detail without departing from the inventive concepts. Such changes and modifications are considered to fall within the scope of the claims following the Appendices.
The following equations and algorithm may be used to calculate the current step (Istep) and voltage step (Vstep) for an MPPT algorithm.
Pratio=dP/(VdI), a)
The following algorithm expressed in Matlab simulation terms may be used to determine the maximum power point for a power source having multiple strings and local power point maxima.
This application claims priority from U.S. Provisional Patent Application Ser. No. 61/326,201 titled Inverter Input Stage Control filed Apr. 20, 2010.
Number | Name | Date | Kind |
---|---|---|---|
4899269 | Rouzies | Feb 1990 | A |
20060164065 | Hoouk et al. | Jul 2006 | A1 |
Entry |
---|
Bangyin Liu, Shanxu Duan, Fei Liu, Pengwei Xu; Analysis and Improvement of Maximum Power Point Tracking Algorithm Based on Incremental Conductance Method for Photovoltaic Array; IEEE Power Electronics and Drive Systems 7th International Conference, 2007, pp. 637-641. |
Zainudin, H. N. et al., “Comparison Study of Maximum Power Point Tracker Techniques for PV Systems,” Proceedings of the 14th International Middle East power Systems Conference, Cairo University, Egypt, Dec. 19-21, 2010, 6 pages. |
Lee, J. H. et al., “Advanced Incremental Conductance MPPT Algorithm with a Variable Step Size,” EPE-PEMC, Portoroz, Solvenia, 2006, 5 pages. |
Calavia, M. et al., “Comparison of MPPT Strategies for Solar Modules,” International Conference on Renewable Energies and Power Quality, Granada, Spain, Mar. 23-25, 2010, 6 pages. |
Kouta, J. et al., “Improving the Incremental Conductance Control Method of a Solar Energy Conversion System,” International Conference on Renewal Energies and Power Quality, Las Palmas, Spain, Mar. 12-14, 2008, 4 pages. |
Number | Date | Country | |
---|---|---|---|
61326201 | Apr 2010 | US |