Embodiments of the disclosure relate to a multi-mode transceiver.
A radio frequency (RF) transceiver, typically, includes a high power amplifier in a transmitter section to transmit signals and a low noise amplifier in a receiver section to receive signals. The RF transceiver can transmit and receive the signals in a similar frequency band, for example 30 MHz to 300 MHz. Often, it is desired to transmit and receive the signals in multiple frequency bands or in the similar frequency band having different modes with different power levels, bandwidth and modulation. In one example, it can be desired to operate the RF transceiver in a first band having the frequency range of 30 MHz to 300 MHz and in a second band having the frequency range of 300 MHz to 3000 MHz. In another example, it is desired to operate the RF transceiver at same RF band, for example 2.4 GHz to 2.5 GHz in different modes, for example a bluetooth mode and a wireless local area network (WLAN) mode, having different power levels, bandwidth and modulation.
An example of a multi-mode transceiver includes a first circuit that is configurable to operate as one of a transmitter and a receiver in a first mode. The multi-mode transceiver also includes a second circuit that is configurable to operate as one of the transmitter and the receiver in a second mode. Further, the multi-mode transceiver includes a first element coupled to the first circuit. Furthermore, the multi-mode transceiver includes a second element coupled to the first element and one or more ports. The multi-mode transceiver also includes a first switch, coupled to the second element and to the second circuit, that is configurable to operate the multi-mode transceiver in at least one of the first mode and the second mode in conjunction with the first element and the second element.
An example of a multi-mode transmitter includes a first circuit that is configurable to operate in a first mode. The multi-mode transmitter includes a second circuit that is configurable to operate in a second mode. The multi-mode transmitter also includes a transformer that is coupled to the first circuit and the second circuit. The transformer acts as a switch to operate the multi-mode transmitter in one of the first mode and the second mode. Further, the multi-mode transmitter includes a plurality of switches coupled to the transformer. The plurality of switches is responsive to a biasing voltage to operate the multi-mode transmitter in one of the first mode and the second mode in conjunction with the transformer. The biasing voltage is generated based on a desired mode of operation of the multi-mode transmitter.
Another example of a multi-mode transceiver includes a first circuit that is configurable to operate as one of a transmitter and a receiver in a first mode. The multi-mode transceiver includes a second circuit that is configurable to operate as one of the transmitter and the receiver in a second mode. The multi-mode transceiver also includes a first capacitor coupled to one or more ports and the first circuit. The multi-mode transceiver further includes a second capacitor coupled to the one or more ports, the first capacitor and the second circuit. Further, the multi-mode transceiver includes a switch coupled to the second capacitor. The switch is responsive to a control signal to operate the multi-mode transceiver in at least one of the first mode and the second mode in conjunction with the first capacitor and the second capacitor. The control signal is generated based on a desired mode of operation of the multi-mode transceiver.
A multi-mode transceiver can transmit and receive signals in multiple modes. Examples of the modes include, but are not limited to, a wireless local area network (WLAN) mode, a bluetooth mode, a Zigbee mode, a wideband code division multiple access (W-CDMA) mode, an enhanced data rates for global system mobile communication evolution (EDGE) mode, a 3G mode, a 2.5G mode and a 2G mode. An example of a device using the multi-mode transceiver is a mobile phone. The multi-mode transceiver including various elements is explained in conjunction with
The transceiver 205 includes a first circuit 225, hereinafter referred to as the circuit 225, corresponding to a first mode and a second circuit 230, hereinafter referred to as the circuit 230, corresponding to a second mode. In one example, the first mode corresponds to the WLAN mode and the second mode corresponds to the bluetooth mode. Each circuit includes a transmitting portion and a receiving portion. The transmitting portion is configurable to operate a circuit 220 as a transmitter and the receiving portion is configurable to operate the circuit 220 as a receiver. The circuit 225 includes a pre-power amplifier (PPA) circuit 235A coupled to a power amplifier (PA) 240 in the transmitting portion, and an amplifier 245A, for example a low noise amplifier (LNA), in the receiving portion. The PA 240 and the amplifier 245A are coupled to the circuit 220. The circuit 230 includes a PPA 235B in the transmitting portion, and an amplifier 245B, for example the LNA, in the receiving portion. The PPA 235B and the amplifier 245B are coupled to the circuit 220.
The circuit 220 can be coupled between a port 250, for example an RF port and one or more of the amplifier 245A, the amplifier 245B, the PA 240 and the PPA 235B. In some embodiments, the circuit 220 can be coupled between the PPA 235A and the PA 240 of the transceiver 205.
The circuit 220 is configurable to operate the transceiver 205 in at least one of the first mode and the second mode. The circuit 220 can be coupled to one or more ports, for example the port 250, a bluetooth port, a WLAN port, a zigbee port, a 2G port, a 2.5G port, and a 3G port. The port 250 and the one or more ports can be coupled to the filter 215. The circuit 220 including various elements is explained in conjunction with
Referring to
The capacitor 305 is coupled to a transmitting portion 391 and a receiving portion 392 of WLAN mode using a balun 330. In one embodiment, the balun 330 is used to couple portions of the transceiver 205 having different impedances. A capacitor 335 isolates the transmitting portion 391 from the receiving portion 392. The transmitting portion 391 is configurable to operate the circuit 225 as a transmitter in the WLAN mode using a switch 340, a switch 345, and a switch 350. The receiving portion 392 is configurable to operate the circuit 225 as a receiver in the WLAN mode using the switch 340, a switch 355, and a switch 360. The switch 345 and the switch 350 are coupled to transistors 395 that can function as the PA. The switch 355 and the switch 360 are coupled to transistors 396 that can function as the LNA.
The capacitor 315 is coupled to a transmitting portion 393 and a receiving portion 394 of the circuit 230 using a tuning circuit 365. The transmitting portion 393 is configurable to operate the circuit 230 as a transmitter in bluetooth mode using a switch 370, a switch 375, and a switch 380. The receiving portion 394 is configurable to operate the circuit 230 as a receiver in the bluetooth mode using the switch 370, a switch 385, and a switch 390. The switch 375 and the switch 380 are coupled to transistors 397 that can function as the PA. The switch 385 and the switch 390 are coupled to transistors 398 that can function as the LNA.
It is noted that the circuit 225 and the circuit 230 can include more elements than that illustrated. Further, the circuit 225 and the circuit 230, and functioning of the circuit 225 and the circuit 230 are explained in detail in U.S. application Ser. No. 12/435,668, entitled “CIRCUITS, PROCESSES, DEVICES AND SYSTEMS FOR FULL INTEGRATION OF RF FRONT END MODULE INCLUDING RF POWER AMPLIFIER”, assigned to Texas Instrument Incorporated, which is incorporated herein by reference in its entirety.
The switch 325 can be a metal oxide semiconductor switch that is responsive to a control signal to operate the transceiver 205 in one of the WLAN mode and the bluetooth mode in conjunction with the capacitor 305 and the capacitor 315. The control signal is generated based on a desired mode of operation of the transceiver 205. The desired mode of operation can be selected by a user of an electronic device that includes the transceiver 205. For example, a positive enable signal can be generated as the control signal if the desired mode is the WLAN mode and a negative enable signal can be generated as the control signal if the desired mode is the bluetooth mode. The positive enable signal closes the switch 325 and the negative enable signal opens the switch 325. The control signal can be generated within the transceiver 205 or the generation can be external to the transceiver 205.
In the WLAN mode, the switch 325 is closed. The capacitor 305 and the capacitor 315 provide a path when the switch 325 is closed. Equivalent capacitance for transmitting or receiving a signal in the WLAN mode is equal to sum of capacitance of the capacitor 305 (C1) and of the capacitor 315 (C2) as shown in the equation below.
Equivalent capacitance (C)=C1+C2
An equivalent circuit of the transceiver 205 in the WLAN mode is illustrated in
In the bluetooth mode, the switch 325 is open. The equivalent capacitance is equal to the capacitance of the capacitor 305.
Equivalent capacitance (C)=C1
The equivalent circuit of the transceiver 205 in the bluetooth mode is illustrated in
In the WLAN mode, the switch 325 in conjunction with the capacitor 315 isolates a low power transceiver from high voltage swing due to PA of a high power transceiver. In one example, the low power transceiver includes the transmitting portion 393 and the receiving portion 394 and the high power transceiver includes the transmitting portion 391 and the receiving portion 392. The switch 325 in conjunction with the capacitor 315 also minimizes signal loss in the high power transceiver during the WLAN mode by isolating matching network of the low power transceiver. In one example, the matching network of the low power transceiver can be the tuning circuit 365.
In one embodiment, the transceiver 205 can transmit signals having output power, for example greater than 24 decibel milliwatt (dBm), in the WLAN mode by transforming 50 ohm impedance at the port 250 to a lower value using the balun 330. The transceiver 205 can also transmit signals having output power, for example, lower than 12 dBm in the bluetooth mode with minimum impedance transformation.
In another embodiment, when the capacitor 315 is not present, the WLAN port 310, the bluetooth port 320, and the port 250 can function independently.
Various configurations of the switches enabling various modes of the transceiver 205 are illustrated in Table 1.
Referring to Table 1, D/C represents “Do Not Care” condition wherein switch configuration does not affect functionality of the transceiver 205, GND represents electrical ground connection, VDD represents power supply, bias represents biasing voltage, and PA RF Input represents the RF signal from the power amplifier.
Referring to
The switch 505 and the switch 515 are coupled to a transmitting portion 530 of the WLAN mode and a transmitting portion 535 of the bluetooth mode using the transformer 510. The transmitting portion 530 is configurable as a transmitter in the WLAN mode using a switch 580, a switch 540 and a switch 545. The transmitting portion 535 is configurable as a transmitter in the bluetooth mode using the switch 580, a switch 550 and a switch 555. The switch 580 controls isolation between the transmitting portion 530 of the WLAN mode and the transmitting portion 535 of the bluetooth mode. The switch 580 also controls the isolation between a receiving portion 585 of the WLAN mode and a receiving portion 590 of the bluetooth mode. The receiving portion 585 of the WLAN mode and the receiving portion 590 of the bluetooth mode are coupled to the switch 505 and the switch 515 using the transformer 510. The receiving portion 585 is configurable as a receiver in the WLAN mode using the switch 580, a switch 560 and a switch 565. The receiving portion 590 is configurable as a receiver in the bluetooth mode using the switch 580, a switch 570 and a switch 575. The capacitor 525 in conjunction with the transformer 510 provides signal filtering and matching for the WLAN mode and the bluetooth mode.
The switch 540 and the switch 545 are coupled to transistors 591 that can function as at least one of the PA and the PPA in the transmitting portion 530 of the WLAN mode. The switch 560 and the switch 565 are coupled to transistors 593 that can function as a path to the LNA in the receiving portion 585 of the WLAN mode. The switch 550 and the switch 555 are coupled to transistors 592 that can function as at least one of the PA and the PPA in the transmitting portion 535 of the bluetooth mode. The switch 570 and the switch 575 are coupled to transistors 594 that can act as a path to the LNA in the receiving portion 590 of the bluetooth mode. The receiving portion 585 of the WLAN mode can be coupled to the capacitor 525 through nodes N1 and N2. The receiving portion 590 of the bluetooth mode can be coupled to the capacitor 525 through node N1.
The switch 540 and the switch 545 can be metal oxide semiconductor switches that are responsive to a control signal to operate the transceiver 205 in at least one of the WLAN mode and the bluetooth mode in conjunction with the transformer 510. The control signal can be a combination of one or more signals and can be generated based on desired mode of operation of the transceiver 205.
Various configurations of the switches in the transceiver 205 for various modes are illustrated in the Table 2.
Referring to Table 2, GND represents electrical ground connection, VDD represents power supply, Bias represents the biasing voltage and PA RF Input represents the RF signal from the power amplifier.
Referring to
The switch 505 and the switch 515 are coupled to a transmitting portion 530 of the WLAN mode and a transmitting portion 535 of the bluetooth mode using the transformer 510. The transmitting portion 530 is configurable as a transmitter in the WLAN mode using a switch 580, a switch 540 and a switch 545. The transmitting portion 535 is configurable as a transmitter in the bluetooth mode using the switch 580, a switch 550 and a switch 555. The switch 580 controls isolation between the transmitting portion 530 of the WLAN mode and the transmitting portion 535 of the bluetooth mode. The switch 580 also controls the isolation between a receiving portion 585 of the WLAN mode and a receiving portion 590 of the bluetooth mode. The receiving portion 585 of the WLAN mode and the receiving portion 590 of the bluetooth mode are coupled to the switch 505 and the switch 515 using the transformer 510. The receiving portion 585 is configurable as a receiver in the WLAN mode using the switch 580, a switch 560 and a switch 565. The receiving portion 590 is configurable as a receiver in the bluetooth mode using the switch 580, a switch 570 and a switch 575. The capacitor 525 in conjunction with the transformer 510 provides signal filtering and matching for the WLAN mode and the bluetooth mode.
The switch 540 and the switch 545 are coupled to transistors 591 that can function as at least one of the PA and the PPA in the transmitting portion 530 of the WLAN mode. The switch 560 and the switch 565 are coupled to transistors 593 that can function as a path to the LNA in the receiving portion 585 of the WLAN mode. The switch 550 and the switch 555 are coupled to transistors 592 that can function as at least one of the PA and the PPA in the transmitting portion 535 of the bluetooth mode. The switch 570 and the switch 575 are coupled to transistors 594 that can act as a path to the LNA in the receiving portion 590 of the bluetooth mode. The receiving portion 585 of the WLAN mode can be coupled to the capacitor 525 through nodes N1 and N2. The receiving portion 590 of the bluetooth mode can be coupled to the capacitor 525 through node N1.
Various positions of each of the switches in the transceiver 205 for various modes are illustrated in the Table 3.
Referring to Table 3, GND represents electrical ground connection, VDD represents power supply, Bias represents the biasing voltage and PA RF Input represents the RF signal from the power amplifier.
It is noted that
To illustrate the capability of the transformer 510 to select multiple RF outputs for different modes, a simplified form of the circuit 220 having the transmission portion corresponding to the modes is illustrated in
The circuit 220 is coupled to a circuit 635 (first circuit) that is configurable to operate as a transmitter in the first mode, for example the 3G mode. The circuit 220 is coupled to a circuit 640 (second circuit) that is configurable to operate as a transmitter in the second mode, for example a 2G mode and 2.5G mode. A network 645 is coupled between the transformer 615 and a PA 655 in the 3G mode that matches and isolates signals. A network 650 is coupled between the transformer 615 and a PA 660 in the 2G and 2.5G mode that matches and isolates the signals.
In one embodiment, the circuit 220 is coupled between a PPA 630 (3G PPA) and the PA 655 in the 3G mode and between the PPA 630 and a PA 660 in the 2G and 2.5G mode. The PPA 630 is coupled to a signal generator (W-CDMA/EDGE). The PPA 630 can receive an enable signal (EN—3GPPA).
The switch 610 and the switch 625 can be metal oxide semiconductor switches that are responsive to a biasing voltage to operate the transceiver 205 in one of the 3G mode and at least one of the 2G and the 2.5G mode in conjunction with the transformer 615. Biasing voltages can be generated by the biasing circuit 605 and the biasing circuit 620. The biasing circuit 605 and the biasing circuit 620 can together be referred to as a biasing circuit. In one embodiment, the biasing circuit 605 and the biasing circuit 620 can be pre-programmed to generate the biasing voltages specific to the 3G mode, the 2G and 2.5G mode. The biasing voltages can be generated based on the desired mode of operation of the transceiver 205.
In one example, the switch 610 and the switch 625 can be complementary metal oxide semiconductor switches.
The circuit 220 can be used in a non-converged configuration and a converged configuration. The non-converged configuration can refer to transmission using separate PA and matching circuits between the 3G mode and the 2G and 2.5G modes. The converged configuration can refer to transmission in the 3G mode and 2G and 2.5G mode using a single PA and a single matching circuit.
It is noted that
Signal transmission in the 3G mode utilizing EDGE non-converged mode and W-CDMA converged mode is explained in conjunction with
Referring to
Switch 610 is closed and switch 625 is open. A biasing circuit 605 is biased at a voltage VDD. True and complementary outputs of PPA 705 (2/2.5G PPA) are configured to a high impedance state. The switch 610 and the switch 625, and the biasing circuit 605 are configured to enable the EDGE signal from PPA 630 to couple through transformer 615 to circuit 640.
The PPA 705 is coupled to a signal generator (GSM/GPRS). The PPA 705 can receive signals, EN_OUT+ and EN_OUT−, and output signals 2/2.5GOUT+ and 2/2.5GOUT−
Referring to
Switch 610 is open and switch 625 is closed. A biasing circuit 620 is biased at a voltage equal to half of VDD. In one example the VDD=5V, and the biasing circuit 620 is biased at 2.5V. The true and complementary outputs of the PPA 705 are configured to the high impedance state. The switch 610 and the switch 625 and the biasing circuit 620 are configured to enable the signal from the PPA 630 to couple through transformer 615 to circuit 635.
Signal transmission in the 2G mode utilizing global system for mobile communication (GSM) and general packet radio service (GPRS) is explained in conjunction with
Referring to
In the 2G converged mode, biasing circuit 620 is biased to VDD, switch 625 is closed, and switch 610 is open. The true output of the PPA 705 is configured to the high impedance state and the complementary output of the PPA 705 is configured to provide a 2G signal. The 2G signal is coupled through the PPA 705 to the converged circuit 635. The transformer 615 functions as an RF choke while supplying a DC bias from the biasing circuit 620.
In the 2G non-converged mode, the biasing circuit 605 is biased to VDD, the switch 610 is closed, and the switch 625 is open. The true output of the PPA 705 is configured to the high impedance state and the complementary output of the PPA 705 is configured to provide the 2G signal. The 2G signal is coupled through the PPA 705 to non-converged circuit 640. The transformer 615 functions as an RF choke while supplying the DC bias from the circuit 605.
The true and complementary outputs of PPA 630 are configured to the high impedance state and a 2G signal is driven through PPA 705.
In the 2G converged mode, biasing circuit 620 is biased to VDD, switch 625 is closed, and switch 610 is open. The complementary output of the PPA 705 is configured to the high impedance state and the true output of the PPA 705 is configured to provide a 2G signal. The 2G signal is coupled from the PPA 705 to a PA 710 through a matching network 715. The PA 710 can be a 3G, 2G, and 2.5G converged PA. The matching network 715, for example can be a 3G matching network. The transformer 615 functions as an RF choke while supplying a DC bias from the circuit 620.
The true and complementary outputs of PPA 705 are configured to the high impedance state and a 3G signal is driven through PPA 630.
In the 3G converged mode, circuit 620 is biased to VDD, switch 625 is closed, and switch 610 is open. The 3G signal is coupled from the PPA 630 to a PA 710 through a matching network 715. A transformer 615 functions as an RF choke while supplying a DC bias from the circuit 620.
In one embodiment, the circuit 220, the circuit 635 and the circuit 640 can be present in the transceiver 205. Having the transformer 615, the switch 610 and the switch 625 reduces the cost of having separate transceiver and front end module.
In some embodiments, the capacitor 315, the capacitor 305, and the switch 325 reduces the cost of having separate transceiver and front end module.
At step 805, a control signal is generated in response to a desired mode of operation of the multi-mode transceiver. The desired mode can be selected based on an input of a user of an electronic device including the multi-mode transceiver.
In some embodiments, step 805 can be performed by the multi-mode transceiver or by a circuit external to the multi-mode transceiver.
At step 810, one or more switches of the multi-mode transceiver are configured based on the control signal. The control signal can also include biasing voltages. In one example, the switch 325 of the transceiver 205 of
At step 815, the multi-mode transceiver is operated in response to the control signal as at least one of a transmitter and a receiver in at least one of the first mode and the second mode using the one or more switches, one or more elements and one or more circuits of the multi-mode transceiver. In one example, the multi-mode transceiver is operated in at least one of the WLAN mode or the bluetooth mode using the switch 325, the capacitor 305, and the capacitor 315 of the transceiver 205 of
In the foregoing discussion, the term “coupled” refers to either a direct electrical connection between the devices connected or an indirect connection through intermediary devices. The term “signal” means at least one current, voltage, charge, data, or other signal.
The foregoing description sets forth numerous specific details to convey a thorough understanding of embodiments of the disclosure. However, it will be apparent to one skilled in the art that embodiments of the disclosure may be practiced without these specific details. Some well-known features are not described in detail in order to avoid obscuring the disclosure. Other variations and embodiments are possible in light of above teachings, and it is thus intended that the scope of disclosure not be limited by this Detailed Description, but only by the Claims.