The present invention relates generally to phase/frequency modulators, and more particularly, to a multi-mode architecture for direct phase/frequency modulation of a phase-locked loop.
Phase modulation schemes are very effective and are therefore widely used in communication systems. A simple example of a phase modulation scheme is quaternary phase shift keying (QPSK).
The I/Q modulator provides a straightforward approach to generating phase-modulated signals that is also suitable for more complex schemes such as wideband Code-Division Multiple Access (CDMA) and Orthogonal Frequency Division Multiplexing (OFDM) systems. It is also possible to generate the phase-modulated signals using a phase-locked loop (PLL). This approach offers reduced circuitry and lower power consumption and, as a result, finds widespread use in narrowband systems. Unfortunately, the flexibility of the voltage-controlled oscillator (VCO) within the PLL architecture is limited. This is a severe disadvantage in multi-mode systems. It would therefore be advantageous to have a flexible, multi-mode VCO for use by a phase modulator.
A very efficient system for multi-mode phase modulation is provided. Embodiments of the inventive system include circuitry for direct modulation of a multi-mode voltage-controlled oscillator (VCO) used in a phase-locked loop (PLL) to synthesize a radio frequency carrier signal.
In one aspect the present invention is directed to a phase-locked loop module which includes a multi-mode voltage-controlled oscillator for generating an output signal of a frequency determined at least in part by a control voltage. The multi-mode voltage-controlled oscillator is characterized by a first frequency gain during operation in a first mode and a second frequency gain during operation in a second mode. The phase-locked loop module also includes divider circuit for dividing the output signal to produce a frequency-divided signal. A phase/frequency detector is disposed to compare phases between an input reference signal and the frequency-divided signal and to produce at least one phase error signal. A charge pump circuit produces a charge pump signal in response to the at least one phase error signal. A loop filter produces the control voltage in response to the charge pump signal.
In another aspect the invention relates to a multi-mode voltage-controlled oscillator including a first input port, a second input port and an LC tank circuit. The LC tank circuit is configured to operate in accordance with a first frequency gain in response to a first signal received at the first input port and in accordance with a second frequency gain in response to a second signal received at the second input port.
The present invention also pertains to a multi-mode modulation apparatus comprising a phase-locked loop and a switching network. The phase-locked loop includes a multi-mode voltage-controlled oscillator configured to realize a first frequency gain in response to a first control signal and a second frequency gain in response to a second control signal. The switching network is disposed to generate the first control signal during operation in a first mode and the second control signal during operation in a second mode.
The foregoing aspects and the attendant advantages of the embodiments described herein will become more readily apparent by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:
a shows a detailed view of a voltage-controlled oscillator (VCO);
b shows one embodiment of a VCO tank circuit that includes an auxiliary port to support linear phase/frequency modulation;
The PLL 305 uses feedback to minimize the phase difference between a very accurate reference signal and its output (RF) signal. As such, it produces an output signal at a frequency given by
fVCO=NfREF,
where fvco is the frequency of the VCO 310 output signal, N is the value of the feedback counter 320, and fREF is the frequency of the reference signal.
The VCO 310 produces an output signal at a frequency set by the control voltage νctrl according to
νout(t)=A cos(ω0t+Kvco∫νctrl(t)dt),
where ωo is the free-running frequency of the VCO 310 and Kvco is the gain of the VCO 310. The gain Kvco describes the relationship between the excess phase of the carrier Φout and the control voltage Vctrl with
where Kvco is in rads/V. The VCO 310 drives the feedback counter 320, which simply divides the output phase Φout by N.
When the PLL 305 is locked, the phase detector 330 and charge pump 340 generate an output signal iCP that is proportional to the phase difference Δθ between the two signals applied to the phase detector 330. The output signal iCP can therefore be expressed as
where Kpd is in A/radians and Δθ is in radians.
Attention is now drawn to
where a zero (e.g., at 1/R1C1) has been added to stabilize the second order system and the capacitor C2 530 has been included to reduce any ripple on the control voltage νcrtl. Combining the above relationships yields the composite open-loop transfer function
which includes two poles at the origin (due to the VCO 310 and the integration filter 350). The closed-loop response of the system is
which includes the stabilizing zero and two complex poles. The equation T(s) describes the response of the PLL 305 to the low-noise reference signal.
The value N of the feedback counter 320 sets the output frequency of the PLL 305. Its digital structure restricts N to integer numbers. As a result, the frequency resolution (or frequency step size) of the integer-N PLL 305 is nominally set by fREF. Fortunately, it is possible to dramatically decrease the effective frequency step by manipulating the value of N to yield a non-integer average value. This is the concept of a fractional-N PLL described with respect to
where N[x] is the sequence of values of the feedback counter 620. This expands to
N[x]=Nint+n[x],
where Nint is the integer part and n[x] is the fractional part of N[x]. The ΔΣmodulator 660 generates the sequence n[x], that satisfies
where k is the input to the ΔΣ modulator 660 with resolution M. In practice, the order of the ΔΣ modulator 660 dictates the range of n[x].
The ΔΣ modulator 660 introduces quantization noise that appears at the output of the PLL 605 along with other noise sources. These noise sources all map differently to the output of the PLL 605, depending on the associated transfer function. Noise applied with the reference signal is affected by the transfer function described earlier. This transfer function is represented by
which shows a low pass response. The above transfer function similarly shapes any noise at the output of the feedback counter 620. Noise generated by the VCO 610 is subject to a different transfer function
which shows a high pass response.
The noise at the output of the feedback counter 620 is dominated by the ΔΣ modulator 660. It creates a pseudo-random sequence n[x] possessing a quantization error approximately equal to ±½ N or
It follows that the quantization noise spectral density for this error, assuming a uniform distribution, is expressed by
over the frequency range of dc to fREF/2. This quantization noise is advantageously shaped by an Lth order ΔΣ modulator 660 according to
DS(z)=(1−z−1)L.
In the PLL 605, the feedback counter 620 acts as a digital accumulator and reduces the effects of the ΔΣ modulator 660. That is, the output phase from the feedback counter 620 depends on its previous output phase. The transfer function for the feedback counter 620 is therefore
Combining these terms shows that the output noise of the feedback counter 620 is equal to
n2(f)=erms2(f)[DS(f)]2[P(f)]2,
which yields
and appears at the output of the PLL 605 shaped by transfer function T1(s) presented above. Direct phase/frequency modulation further increases phase noise because an additional noise source is added to the system of
This is due to the fundamental relationship
which shows that frequency integrates over time.
Any noise present at the frequency modulation (FM) port of the VCO 710 appears at the output of the PLL 705 (e.g., RF signal), modified by the following transfer function
As shown in chart 800 of
The feedback of the PLL 705 naturally resists the direct phase/frequency modulation of the VCO 710. To avoid this effect, the FM signal is also applied to the feedback counter 720 through the ΔΣ modulator 760. This ideally subtracts the frequency modulation applied at the VCO 710 so that the output of the counter 720 represents only the RF carrier frequency.
Direct VCO modulation requires near exact control of the frequency of the VCO 710. This is because frequency errors produce phase deviations that accumulate with time. Fortunately, the feedback of the PLL 705 helps to reduce any frequency error. This is because the output of the VCO 710 is driven by the feedback of the PLL 705 to exactly
fVCO=NfREF+FMfREF,
which is also essentially equal to
fVCO=KVCOνctrl+KFMνFM,
where νctrl is the error signal produced by the phase/frequency detector 730, νFM is the FM signal applied to the VCO 710, and KFM is the gain of the VCO 710 associated with the FM signal. Consequently, the error signal νctrl compensates for any VCO 710 gain errors within the bandwidth of the integration filter 750.
Outside the bandwidth of the PLL 705, the effect of the feedback decreases. This makes setting the gain KFM of the VCO 710 (“VCO gain KFM”) to its designed value critical. As illustrated by chart 900 of
Calibration is required to accurately set the VCO gain KFM. This can be accomplished by scaling the FM signal (e.g., by α in
The KFMνFM product sets the range of the frequency modulation. That is, the maximum frequency deviation Δfmax is simply
Δfmax=KFMmax(νFM),
where max(νFM) represents the peak or amplitude of the FM signal. In general, the required Δfmax for reasonable performance is about four to five times the system's symbol rate.
The design shown in
The multi-mode VCO 710 provides selectable gains KFM to optimally accommodate the different frequency modulation ranges Δfmax. This advantageously allows the amplitude of the FM signal to remain close to its maximum limit, which minimizes added noise.
A detailed view of the VCO 710 is shown in
which is set by the resonance of the LC tank circuit shown in
The LC tank circuit shown in
The gate-to-bulk voltage VGB applied to each MOSFET device N3-N4 depends on the VCO's 710 output signal A sin ωt, the FM signal νFM, and the common-mode voltage Vcm that exists at the connection of the back-to-back devices. The symmetric structure of the VCO 710 means that signals VLO+ and VLO−V1 and V2 are differential with
VLO+=A sin ωt & VLO−=−A sin ωt,
where A is the peak signal of each sinusoidal output and is the oscillation frequency. It follows then that
VC3=A sin ωt+νFM−νcm & VC3=−A sin ωt+νFM−νcm,
which describe the gate-to-bulk voltages VGB applied to MOSFET devices N3 and N4. The two MOSFET devices N3 and N4 connect back-to-back in the VCO 710, so their individual capacitances behave oppositely.
The modulation signal νFM affects the MOSFET devices N3 and N4 as follows. The devices nominally present a capacitance equal to
As the FM signal νFM moves positive, both MOSFET devices N3 and N4 reach their maximum capacitance values Cmax, so that for a period of time of approximately
the structure in
As illustrated in
Those skilled in the art can readily recognize that numerous variations and substitutions may be made in the invention, its use and its configuration to achieve substantially the same results as achieved by the embodiments described herein. Accordingly, there is no intention to limit the invention to the disclosed exemplary forms. Many variations, modifications and alternative constructions fall within the scope and spirit of the disclosed invention as expressed in the claims.
This application claims priority under 35 U.S.C. §119(e) of co-pending U.S. Provisional Patent Application Ser. No. 60/800,970, entitled A MULTI-MODE VCO FOR DIRECT FM SYSTEMS, filed on May 16, 2006. This application is also related to U.S. patent application entitled “DIRECT SYNTHESIS TRANSMITTER” Ser. No. 10/265,215, U.S. patent application entitled “HIGHLY LINEAR PHASE MODULATION” Ser. No. 10/420,952, and U.S. Provisional Patent Application entitled “LINEAR, WIDEBAND PHASE MODULATION SYSTEM” Ser. No. 60/658,898, the disclosures of which are incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4263560 | Ricker | Apr 1981 | A |
4430627 | Machida | Feb 1984 | A |
4769588 | Panther | Sep 1988 | A |
4816772 | Klotz | Mar 1989 | A |
4926135 | Voorman | May 1990 | A |
4965531 | Riley | Oct 1990 | A |
5006818 | Koyama et al. | Apr 1991 | A |
5015968 | Podell et al. | May 1991 | A |
5030923 | Arai | Jul 1991 | A |
5289136 | DeVeirman et al. | Feb 1994 | A |
5331292 | Worden et al. | Jul 1994 | A |
5399990 | Miyake | Mar 1995 | A |
5491450 | Helms et al. | Feb 1996 | A |
5508660 | Gersbach et al. | Apr 1996 | A |
5548594 | Nakamura | Aug 1996 | A |
5561385 | Choi | Oct 1996 | A |
5581216 | Ruetz | Dec 1996 | A |
5625325 | Rotzoll et al. | Apr 1997 | A |
5631587 | Co et al. | May 1997 | A |
5648744 | Prakash et al. | Jul 1997 | A |
5677646 | Entrikin | Oct 1997 | A |
5739730 | Rotzoll | Apr 1998 | A |
5767748 | Nakao | Jun 1998 | A |
5818303 | Oishi et al. | Oct 1998 | A |
5834987 | Dent | Nov 1998 | A |
5862465 | Ou | Jan 1999 | A |
5878101 | Aisaka | Mar 1999 | A |
5880631 | Sahota | Mar 1999 | A |
5939922 | Umeda | Aug 1999 | A |
5945855 | Momtaz | Aug 1999 | A |
5949286 | Jones | Sep 1999 | A |
5990740 | Groe | Nov 1999 | A |
5994959 | Ainsworth | Nov 1999 | A |
5999056 | Fong | Dec 1999 | A |
6011437 | Sutardja et al. | Jan 2000 | A |
6018651 | Bruckert et al. | Jan 2000 | A |
6031425 | Hasegawa | Feb 2000 | A |
6044124 | Monahan et al. | Mar 2000 | A |
6052035 | Nolan et al. | Apr 2000 | A |
6057739 | Crowley et al. | May 2000 | A |
6060935 | Shulman | May 2000 | A |
6091307 | Nelson | Jul 2000 | A |
6100767 | Sumi | Aug 2000 | A |
6114920 | Moon et al. | Sep 2000 | A |
6163207 | Kattner et al. | Dec 2000 | A |
6173011 | Rey et al. | Jan 2001 | B1 |
6191956 | Foreman | Feb 2001 | B1 |
6204728 | Hageraats | Mar 2001 | B1 |
6211737 | Fong | Apr 2001 | B1 |
6229374 | Tammone, Jr. | May 2001 | B1 |
6246289 | Pisati et al. | Jun 2001 | B1 |
6255889 | Branson | Jul 2001 | B1 |
6259321 | Song et al. | Jul 2001 | B1 |
6288609 | Brueske et al. | Sep 2001 | B1 |
6298093 | Genrich | Oct 2001 | B1 |
6333675 | Saito | Dec 2001 | B1 |
6370372 | Molnar et al. | Apr 2002 | B1 |
6392487 | Alexanian | May 2002 | B1 |
6404252 | Wilsch | Jun 2002 | B1 |
6476660 | Visocchi et al. | Nov 2002 | B1 |
6515553 | Filiol et al. | Feb 2003 | B1 |
6559717 | Lynn et al. | May 2003 | B1 |
6560448 | Baldwin et al. | May 2003 | B1 |
6571083 | Powell, II et al. | May 2003 | B1 |
6577190 | Kim | Jun 2003 | B2 |
6583671 | Chatwin | Jun 2003 | B2 |
6583675 | Gomez | Jun 2003 | B2 |
6639474 | Asikainen et al. | Oct 2003 | B2 |
6664865 | Groe et al. | Dec 2003 | B2 |
6667668 | Henrion | Dec 2003 | B1 |
6683509 | Albon et al. | Jan 2004 | B2 |
6693977 | Katayama et al. | Feb 2004 | B2 |
6703887 | Groe | Mar 2004 | B2 |
6711391 | Walker et al. | Mar 2004 | B1 |
6724235 | Costa et al. | Apr 2004 | B2 |
6734736 | Gharpurey | May 2004 | B2 |
6744319 | Kim | Jun 2004 | B2 |
6751272 | Burns et al. | Jun 2004 | B1 |
6753738 | Baird | Jun 2004 | B1 |
6763228 | Prentice et al. | Jul 2004 | B2 |
6774740 | Groe | Aug 2004 | B1 |
6777999 | Kanou et al. | Aug 2004 | B2 |
6781425 | Si | Aug 2004 | B2 |
6795843 | Groe | Sep 2004 | B1 |
6798290 | Groe et al. | Sep 2004 | B2 |
6801089 | Costa et al. | Oct 2004 | B2 |
6845139 | Gibbons | Jan 2005 | B2 |
6856205 | Groe | Feb 2005 | B1 |
6870411 | Shibahara et al. | Mar 2005 | B2 |
6917791 | Chadwick | Jul 2005 | B2 |
6940356 | McDonald, II et al. | Sep 2005 | B2 |
6943600 | Craninckx | Sep 2005 | B2 |
6975687 | Jackson et al. | Dec 2005 | B2 |
6985703 | Groe et al. | Jan 2006 | B2 |
6990327 | Zheng et al. | Jan 2006 | B2 |
7062248 | Kuiri | Jun 2006 | B2 |
7065334 | Otaka et al. | Jun 2006 | B1 |
7088979 | Shenoy et al. | Aug 2006 | B1 |
7123102 | Uozumi et al. | Oct 2006 | B2 |
7142062 | Vaananen et al. | Nov 2006 | B2 |
7148764 | Kasahara et al. | Dec 2006 | B2 |
7171170 | Groe et al. | Jan 2007 | B2 |
7215215 | Hirano et al. | May 2007 | B2 |
20020071497 | Bengtsson et al. | Jun 2002 | A1 |
20020135428 | Gomez | Sep 2002 | A1 |
20020193009 | Reed | Dec 2002 | A1 |
20030078016 | Groe et al. | Apr 2003 | A1 |
20030092405 | Groe et al. | May 2003 | A1 |
20030118143 | Bellaouar et al. | Jun 2003 | A1 |
20030197564 | Humphreys et al. | Oct 2003 | A1 |
20040017862 | Redman-White | Jan 2004 | A1 |
20040051590 | Perrott et al. | Mar 2004 | A1 |
20050052250 | Tanzawa | Mar 2005 | A1 |
20050093631 | Groe | May 2005 | A1 |
20050099232 | Groe et al. | May 2005 | A1 |
20050242895 | Lotfi | Nov 2005 | A1 |
20060003720 | Lee et al. | Jan 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20070291889 A1 | Dec 2007 | US |
Number | Date | Country | |
---|---|---|---|
60800970 | May 2006 | US |