This application is related to U.S. patent application Ser. No. 13/889,003, which was filed with the U.S. Patent and Trademark Office on even date as the present application and is incorporated herein by reference.
The present invention is directed to a three stream turbofan engine, and specifically to a diverter valve for a three stream turbofan engine.
Most aircraft engines finding use in military applications, such as air combat, reconnaissance and surveillance, are augmented turbofans. Augmentation provides additional thrust for the aircraft when called upon, that is, on-demand.
All turbofan engines include at least two air streams. All air utilized by the engine initially passes through a fan, and then it is split into the two air streams. The inner air stream is referred to as core air and passes into the compressor portion of the engine, where it is compressed. This air then is fed to the combustor portion of the engine where it is mixed with fuel and the fuel is combusted. The combustion gases then are expanded through the turbine portion of the engine, which extracts energy from the hot combustion gases, the extracted energy being used to run the compressor and the fan and to produce electrical power to operate accessories. The remaining hot gases then flow into the exhaust portion of the engine, producing the thrust that provides forward motion to the aircraft.
The outer air flow stream bypasses the engine core and is pressurized by the fan. No other work is done on the outer air flow stream which continues axially down the engine but outside the core. The bypass air flow stream also can be used to accomplish aircraft cooling by the introduction of heat exchangers in the fan stream. Downstream of the turbine, the outer air flow stream is used to cool engine hardware in the exhaust system. When additional thrust is required (demanded), some of the fan bypass air flow stream is redirected to the augmenter where it is mixed with core flow and fuel to provide the additional thrust to move the aircraft.
At the rear of the exhaust, a convergent-divergent (C-D) nozzle sets the correct back pressure so that the core runs optimally. The C-D nozzle accomplishes this by choking the gas flow through the nozzle throat, A8, and varying A8 as required to set the required mass flow.
Certain variable cycle aircraft engines achieve relatively constant airflow as thrust is varied by changing the amount of fan bypass flow utilizing a third duct. Aircraft utilizing these variable cycle engines are able to maintain inlet airflow at subsonic power settings more efficiently and over a broader flight envelope. One particular type of variable cycle engine is referred to as a FLADE™ engine, FLADE™ being an acronym for “blade-on-fan” and is characterized by an outer fan duct which flows air into a third air duct, the outer fan duct being generally co-annular with, and circumscribing the inner fan duct, which in turn, is co-annular and circumscribes the core. This third airstream is pressurized by a blade-on-fan arrangement as set forth in prior art FLADE™ disclosures. The FLADE™ blades are radially outward of and directly connected to rotating fan blades, the fan blades assembled to a disk mounted on a shaft. The position of the FLADE™ is a design consideration, the design selected based on the temperature and pressure of the FLADE™ air (third stream air) desired. The trade-off is based on the fact that a higher pressure of FLADE™ operating air produces FLADE™ operating air with a higher temperature. U.S. Pat. No. 5,404,713 issued to Johnson on Apr. 11, 1995, assigned to the Assignee of the present invention and incorporated herein by reference.
In these variable cycle designs, the inlet air is split to form a third stream of air, which is in addition to the bypass and core. This third stream of air may be provided at a lower temperature and pressure than either the core air stream or the bypass air stream discussed above. The pressure of this third stream of air can be increased, while still maintaining it at a temperature and pressure below the bypass air stream, using the blade-on-fan or FLADE™ airfoil and duct. Prior art third stream air flows have been exhausted into the core exhaust either just fore or aft of the C-D nozzle. However, placement of heat exchangers within the third air stream in recent embodiments to take advantage of the low temperatures of the air flowing in the third stream duct or FLADE™ duct have resulted in pressure drops of the air in the third stream duct or FLADE™ duct. The changes in pressure by the introduction of heat exchangers have resulted in the inability to exhaust the third stream air into the core exhaust at conditions in which exhaust pressure is high, such as at high power operation, and the inlet pressure to the third stream is low, such as low Mach points. The result would be cessation of flow of air, or insufficient flow of air, in the third stream duct under these flight conditions, which could result in stagnation of air flow in the third stream duct and even backflow of gases (reversal of flow). Stagnation of the third stream air flow can lead to stall conditions on the blade-on-fan arrangement under certain circumstances, resulting in possible hardware damage and additional drag on the aircraft due to fan inlet spill drag.
What is needed is an arrangement in which the third stream duct air can be exhausted continuously so that there is no cessation or significant reduction of air flow in the third stream duct or in the FLADE™ duct at any operational conditions of the engine, as insufficient air flow could adversely affect cooling of heat exchangers or other hardware dependent on third stream air for cooling. Ideally, the third stream duct air flow should be exhausted to a low pressure region in a manner that will add thrust and operability to the aircraft.
The aircraft turbofan engine of the present invention includes a fan portion that provides three streams of air flow to the engine. The engine utilizes three streams of air: the traditional core air flow, the traditional bypass air flow and a third stream or FLADE™ stream. A flow diverter valve is placed in a third duct to control the third air stream or FLADE™ stream. The flow diverter valve directs the third air stream or FLADE™ stream to either the primary nozzle or to a secondary nozzle or both, so that the third air stream may be exhausted. The diverter valve enables the third stream to be directed to the exhaust location where it is most useful for the circumstances being encountered. Thus, all FLADE™ stream air can be directed to a secondary nozzle to optimize thrust generation during cruise, improving specific fuel consumption (SFC). The exhaust of the secondary nozzle is almost always at a lower pressure than the pressure at A8 or just aft of A8 such that flow will constantly exhaust even at low third stream pressures. Alternatively, the diverter valve directs FLADE™ stream air to the primary nozzle when the pressure at A8 or just aft of A8 is lower to provide thrust and assist in cooling the divergent flaps and seals during augmentation and high speed cruise conditions, thereby extending the life of these parts. The diverter valve may also direct FLADE™ stream air simultaneously to both the primary and secondary nozzles, if desired, to balance system requirements and address potential flow limitations.
The exhaust of third stream or FLADE™ air allows the core to run at higher temperatures since the reliable supply of cooler third stream cooling air allows for protection of the turbine. Heat exchangers in the third stream can be used to reduce the temperature of the turbine cooling air and allow the turbine hardware to survive in the increased temperature environment.
Another advantage of the present invention is that cooling air from the third duct is made available to cool the divergent flaps and seals under augmentation as well as high speed cruise, when the exhaust temperatures are expected to be the highest.
Finally, the third duct or FLADE™ duct now can be relied upon not only to exhaust the cooler, low pressure third stream air or FLADE™ duct air continuously, but also to intake the air at the inlet. The third duct or FLADE™ duct now accepts much of the inlet wall distortion and minimizes the inlet distortion on the fan, the core or bypass air. This allows the fan and core/compressor to operate with less stall margin. When the fan and core operate at less stall margins, the engine can operate at higher pressure ratios, which translates into greater thrust and efficiency. Also, when the diverter valve directs flow to the secondary nozzle, the third stream duct or FLADE™ duct flow over the outer flaps additionally reduces boat tail drag while producing a more stable flow field over the outer flaps.
Other features and advantages of the present invention will be apparent from the following more detailed description of the preferred embodiment, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The differences between the turbofan of the present invention having the FLADE™ air stream and a conventional turbofan engine having two air streams can be appreciated with reference to
In
Core air proceeds through the engine in the manner well known by those skilled in the art. Core air is fed from compressor portion 14 into combustor portion 20, where it is mixed with fuel and burned. The hot gases of combustion then flow to turbine portion 22 where the hot gases of combustion are expanded. An augmenter portion 24 resides aft of the turbine portion 22 and is available to provide additional power as needed, on demand, although it is not normally operational during cruise mode of flight. The augmenter portion 24 is positioned at the front of exhaust portion 26 of engine 10, which receives the hot gases of combustion as they exit turbine 22. At the aft of exhaust portion 26 is a nozzle 28, which is a convergent-divergent (C-D) nozzle. Hot gases passing through nozzle 28 provide thrust to move the aircraft forward. The minimum nozzle diameter is designated in
Bypass air passing through bypass duct 18, as shown in
Core and fan air in an augmented turbofan engine can be further split to form a third stream of air flowing through a third duct, which is sometimes referred to as a FLADE™ duct when the air is supplied to the third stream using a blade-on-fan arrangement. Alternately, the third stream may be bled from the fan at a fan stage fore or prior to the fan stage that provides bypass air, so that the third stream duct and its air supply are not referred to as a FLADE™ stream. Since the present invention is directed to exhausting air from the third duct, it is of no consequence whether the air in the third duct is sourced from a blade-on-fan arrangement or by diverting air flow from a fan stage fore of the source of bypass air. Any arrangement that utilizes a third duct 132 which bleeds air from the fan portion of the engine can be used in the present invention. The air that is bled to the third duct, or otherwise supplied to the third duct, must have a lower pressure and temperature than the air that is utilized as bypass air. This means that the third duct must be pressurized less than the bypass air. A convenient way of accomplishing this task is to bleed air or pressurize air from a fan stage that is fore of the fan stage used for bypass air, as this air will be at a lower temperature and pressure. As depicted in
Prior art third stream air flows have been exhausted into the core exhaust either just fore or aft of the C-D nozzle. However, placement of the heat exchangers 130 as shown in
In
The use of a diverter valve 140, as shown in
Divergent slot 144 depicted in
Diverter valve 140 may be any device that selectively directs the air flow to either secondary nozzle 142 or divergent slot 144.
The flow of air through diverter valve 140 is dependent on engine operating conditions. The position of diverter valve 140 may be determined by sensors that measure the air pressure in third duct 132 and in primary nozzle at A8 or just aft of A8. An independent controller or a Full Authority Digital Engine Control (FADEC™), a complex controller for the aircraft engine, can analyze the readings and determine the proper position of diverter valve, when diverter valve 140 is an active valve.
Alternatively, the pressure of air through third duct 132 and at A8 or just aft of A8 can be measured during testing at different operating conditions and the proper position of diverter valve can be determined based on these measurements. The position of diverter valve 140 at these operating conditions can be programmed into the engine FADEC™, and the engine FADEC™ can instruct diverter valve 140 to move to the appropriate position to direct air to either the secondary nozzle, the divergent slot or both, based on the operating condition of the engine.
In
The diverter valve may be located at any position in third stream duct 132. A most preferred location of diverter valve 140 is within third stream duct 132 adjacent to primary nozzle cross-section A7 where no additional plumbing is required to direct the flow of third stream air to either the primary or secondary nozzle. Diverter valve 140 may be located at other locations within third stream duct 132, although additional plumbing may be required for effective operation at these locations.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2940252 | Reinhart | Jun 1960 | A |
3210934 | Smale | Oct 1965 | A |
3296800 | Keenan et al. | Jan 1967 | A |
3449914 | Brown | Jun 1969 | A |
3792584 | Klees | Feb 1974 | A |
3841091 | Sargisson et al. | Oct 1974 | A |
3854286 | Klees | Dec 1974 | A |
3879941 | Sargisson | Apr 1975 | A |
3886737 | Grieb | Jun 1975 | A |
3910375 | Hache et al. | Oct 1975 | A |
3915413 | Sargisson | Oct 1975 | A |
3970252 | Smale et al. | Jul 1976 | A |
3981143 | Ross et al. | Sep 1976 | A |
3990638 | Johnson | Nov 1976 | A |
4004416 | Amelio et al. | Jan 1977 | A |
4010608 | Simmons | Mar 1977 | A |
4026472 | Rabone | May 1977 | A |
4043121 | Thomas et al. | Aug 1977 | A |
4050242 | Dusa | Sep 1977 | A |
4064692 | Johnson et al. | Dec 1977 | A |
4066214 | Johnson | Jan 1978 | A |
4069661 | Rundell et al. | Jan 1978 | A |
4086761 | Schaut et al. | May 1978 | A |
4095417 | Banthin | Jun 1978 | A |
4136518 | Hurley et al. | Jan 1979 | A |
4214441 | Mouritsen et al. | Jul 1980 | A |
4290262 | Wynosky et al. | Sep 1981 | A |
4791783 | Neitzel | Dec 1988 | A |
4993663 | Lahti et al. | Feb 1991 | A |
5054288 | Salemann | Oct 1991 | A |
5058617 | Stockman et al. | Oct 1991 | A |
5074118 | Kepler | Dec 1991 | A |
5113649 | Siedlecki, Jr. | May 1992 | A |
5261227 | Giffin, III | Nov 1993 | A |
5402638 | Johnson | Apr 1995 | A |
5402963 | Carey et al. | Apr 1995 | A |
5404713 | Johnson | Apr 1995 | A |
5809772 | Giffin, III | Sep 1998 | A |
6502383 | Janardan et al. | Jan 2003 | B1 |
7134271 | Baughman | Nov 2006 | B2 |
7614210 | Powell et al. | Nov 2009 | B2 |
7758303 | Wadia | Jul 2010 | B1 |
7811050 | Roth | Oct 2010 | B2 |
7926290 | Johnson | Apr 2011 | B2 |
20050047942 | Grffin et al. | Mar 2005 | A1 |
20050126174 | Lair | Jun 2005 | A1 |
20050188676 | Lair | Sep 2005 | A1 |
20050204742 | Lair | Sep 2005 | A1 |
20070000232 | Powell et al. | Jan 2007 | A1 |
20080141655 | Johnson et al. | Jun 2008 | A1 |
20100107600 | Hillel et al. | May 2010 | A1 |
20120167549 | Lariviere et al. | Jul 2012 | A1 |
Number | Date | Country |
---|---|---|
1895142 | Mar 2008 | EP |
1939437 | Jul 2008 | EP |
Entry |
---|
International Search Report and Written Opinion issued in connection with corresponding PCT Application No. PCT/US2014/035497 on Feb. 11, 2015. |
David Lynn Dawson et al., filed May 7, 2013, U.S. Appl. No. 13/889,003. |
US Non-Final Office Action issued in connection with corresponding U.S. Appl. No. 13/889,003 dated Dec. 31, 2015. |
US Final Office Action issued in connection with related U.S. Appl. No. 13/889,003 dated Jul. 27, 2016. |
Chinese Office Action issued in connection with related CN Application No. 201480026254.9 dated Aug. 30, 2016. |
Number | Date | Country | |
---|---|---|---|
20140345253 A1 | Nov 2014 | US |