The presently disclosed subject matter relates generally to the retention of earthen formations and the field of retaining walls and more particularly to multi-oriented segmental wall blocks, a soil reinforcing system, and methods related thereto.
Retaining walls are commonly used for architectural and site development applications and such soil reinforced earthen works have now become a recognized civil engineering structure useful in the retention of hillsides, right of way embankments, and the like. The wall facing elements, which typically consist of masonry blocks, concrete blocks, concrete panels or welded wire forms, must withstand lateral pressures exerted by backfill soils. Reinforcement and stabilization of the soil backfill in mechanically stabilized earth applications is commonly provided using geosynthetic materials such as geogrids or geotextiles that are placed horizontally in the soil fill behind the wall face. The geosynthetic materials interlock with the soil and create a stable reinforced soil mass. The geosynthetic materials are connected to the wall face elements.
A preferred form of grid-like tie-back sheet material used to reinforce the soil behind a retaining wall structure, known as an integral geogrid, is commercially available from The Tensar Corporation of Alpharetta, Ga. (“Tensar”) and is made by the process disclosed in U.S. Pat. No. 4,374,798 (“the '798 patent”). Integral geogrid tie-back sheet material may be uniaxially oriented according to the '798 patent to provide grid-like sheets including a plurality of elongated, parallel, molecularly oriented strands with transversely extending bars integrally connected thereto by less oriented or unoriented junctions, the strands, bars and junctions together defining a multiplicity of elongated openings. With biaxial (i.e., 2-dimensional) stretching, the bars may be oriented into elongated strands. While integral geogrids are preferred as reinforcing materials in the construction of retaining walls, other forms of tie-back sheet materials have been used in a similar manner.
The use of full height pre-cast concrete wall panels for wall-facing elements in a retaining wall is known such as is disclosed in U.S. Pat. Nos. 5,568,998 and 5,580,191. These types of systems typically require, during construction, that the panels be placed using a crane because they are very large, perhaps 5 feet (1.5 m) by 10 feet (3.0 m) or even larger and, as a result, are quite heavy such that they cannot be readily man-handled. To avoid such problems in the use of pre-cast wall panels, other types of retaining wall structures have been developed.
As one known example, retaining walls have been formed from modular wall blocks which are typically relatively small cementitious blocks as compared to cast wall panels. The assembly of modular wall blocks usually does not require heavy equipment. Such modular wall blocks can be handled by a single person and are used to form retaining wall structures by arranging a plurality of blocks in courses superimposed on each other, much like laying of brick or the like. Each block includes a body with a front face which forms the exterior surface of the formed retaining wall. Examples of such modular wall block systems are disclosed in U.S. Pat. Nos. 5,010,707; 5,522,682; 5,568,999; 5,823,709; 5,911,539; 5,934,838; and 6,287,054.
The use of welded wire (ww) facing units in the construction of retaining walls is also well known to reinforce earthen formations. U.S. Pat. Nos. 4,856,939; 6,595,726; and 8,197,159 disclose the construction of geogrid-reinforced earthen retaining walls incorporating welded wire facing units wherein portions of the face sections of the wire facing units include kinks or hooks which serve, inter alia, to retain the ends of geogrids, the remainder of the geogrids being designed to extend rearwardly into the fill to reinforce the wall. U.S. Pat. No. 4,904,124 also discloses the use of wire “baskets” that are designed to be filled with granular or rock material to define the forward or face of the wall, the elements of which are also reinforced with grid-like reinforcing sheet material to provide stability of the soil mass.
In the case of modular wall blocks that are typically used, several companies have begun utilizing blocks in a manner to create a more aesthetic wall pattern, such as the use of multiple sized blocks to create a segmented wall pattern. While providing end customers with more aesthetic pattern choices to choose from, this has typically lead to several disadvantages including the need for additional block manufacturing molds, increased time for delivery of varying sized blocks, and increased costs for the smaller block sections. As such, improvements in the art are desired to provide a retaining wall block system that utilizes one size and shaped block that can be multi-oriented to create random wall patterns while maintaining connection with the reinforcing sheet material as known in traditional block wall systems.
Multi-oriented segmental wall blocks, soil reinforcing system, and methods related thereto are disclosed. The wall block may be a concrete masonry block used for constructing retaining walls.
In one embodiment, the wall block may include a front face; a rear cavity opposing the front face and formed by an inner rear face, an outer rear face on three sides of the inner rear face and spaced apart therefrom, and a shelf defined therein by the inner rear face and the outer rear face; a troughed top face residing between the front face and the outer rear face; a flat bottom face opposing the troughed top face; a first side face residing between the front face and the outer rear face, and between the troughed top face and the flat bottom face; a second side face opposing the first side face; a trough running along the length of the troughed top face and along the length of the first side face; a first groove disposed within the trough and running along the length of the troughed top face and along the length of the first side face; and a second groove running along the length of the second side face.
The front face of the segmental wall block can include an aesthetic feature disposed thereon or the front face can include one or more grooves or line features disposed thereon to create the appearance of the block face being comprised of multiple pieces.
The troughed top face of the segmental wall block can include one or more score lines to facilitate splitting or cutting of the wall block, or the troughed top face can include one or more imprints disposed thereon to assist in orienting of the block in use.
The segmental wall block can include at least one hollow open core extending from the troughed top face through to the flat bottom face.
The segmental wall block can include mechanical connectors, and a first mechanical connector can be disposed within the first groove and a second mechanical connector can be disposed within the second groove. The first groove can include a first width and the second groove can include a second width, the first width and second width are typically both measured from the front face to the outer rear face and are distinct. The first width can be less than the second width.
The mechanical connector can include a cross bar member and further include a first member including at least one serrated leg member extending from the cross bar member, and a second member including a peg member extending in an opposing direction from the cross bar member. In one embodiment, the first member of the mechanical connector is securable within the first groove and the second member of the mechanical connector is securable within the second groove.
A soil reinforcing system is also disclosed including a plurality of segmental wall blocks as described hereinabove along with a plurality of connectors that secure the plurality of segmental wall blocks together, each connector secured within the first groove or the second groove of each of the segmental wall blocks.
The system can further include a soil reinforcing element for reinforcement of the wall blocks in a soil mass and the soil reinforcing element can be a geogrid.
The plurality of connectors can further secure the soil reinforcing element to at least one of the plurality of segmental wall blocks.
In the system, the front face of each of the segmental wall blocks can include a height and a length, the height typically being a distance less than the length. The plurality of segmental wall blocks of the soil reinforcing system can be arranged in a standard running configuration or a pilaster configuration. A configuration of the plurality of segmental wall blocks of the soil reinforcing system can include vertically oriented blocks or can include vertically oriented blocks in combination with horizontally oriented blocks.
A method of reinforcing soil is also disclosed and includes the steps of providing a plurality of segmental wall blocks as described hereinabove; orienting a first wall block of the plurality of wall blocks in a desired orientation; providing a connector having a first member and a second member; engaging the first member of the connector in the first groove of the first wall block; orienting a second wall block of the plurality of wall blocks in a desired orientation adjacent to the first wall block; and engaging the second member of the connector in the second groove of the second wall block.
The method can further include the steps of providing a plurality of connectors each having a first member and a second member; engaging the first member of multiple connectors of the plurality of connectors in the first groove of the first wall block; and engaging the second member of multiple connectors of the plurality of connectors in the second groove of the second wall block.
The method can still further include the steps of providing a soil reinforcing element for reinforcement of the wall blocks in a soil mass; and connecting the soil reinforcing element with the plurality of wall blocks through use of the plurality of connectors wherein the second member of the connector engages in the second groove of the second wall blocks.
In an alternative embodiment, the wall block may include a front face; a rear face opposing the front face, the rear face having a tapered portion; a top face residing between the front face and the rear face; a bottom face opposing the top face and also residing between the front face and the rear face; a tapered end disposed adjacent to the tapered portion of the rear face; a flat end opposing the tapered end; a first groove disposed along the top face and the flat end; and a second groove disposed along the bottom face and the tapered end.
The front face of the segmental wall block can include an aesthetic feature disposed thereon.
The wall block can include a hollow core extending from the top face through the bottom face.
The wall block can include mechanical connectors and a first mechanical connector can be disposed within the first groove and a second mechanical connector can be disposed within the second groove.
The first groove can include a first width and the second groove can include a second width, the first width and second width are both typically measured from the front face to the rear face and are distinct. The first width can be greater than the second width.
The segmental wall block can further include a mechanical connector, the mechanical connector can include a first member having a first width and a second member having a second width, wherein the second width is distinct from the first width. In one embodiment, the first width of the first member corresponds to the first width of the first groove so that the first member of the mechanical connector is securable within the first groove of the segmental wall block. In another embodiment, the second width of the second member corresponds to the second width of the second groove so that the second member of the mechanical connector is securable within the second groove of the segmental wall block.
A soil reinforcing system and method of reinforcing soil are also disclosed in relation to the alternative embodiment and as described hereinabove and hereinbelow.
Having thus described the presently disclosed subject matter in general terms, reference will now be made to the accompanying Drawings, which are not necessarily drawn to scale, and wherein:
The presently disclosed subject matter now will be described more fully hereinafter with reference to the accompanying Drawings, in which some, but not all embodiments of the presently disclosed subject matter are shown. Like numbers refer to like elements throughout. The presently disclosed subject matter may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Indeed, many modifications and other embodiments of the presently disclosed subject matter set forth herein will come to mind to one skilled in the art to which the presently disclosed subject matter pertains having the benefit of the teachings presented in the foregoing descriptions and the associated Drawings. Therefore, it is to be understood that the presently disclosed subject matter is not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims.
In some embodiments, the presently disclosed subject matter provides multi-oriented segmental wall blocks, a soil reinforcing system, and methods related thereto. The presently disclosed multi-oriented segmental wall blocks can be, for example, concrete masonry blocks used for constructing retaining walls. The wall blocks may allow for the formation of variable architectural patterns utilizing singular concrete facing elements that have multiple orientation configurations.
The presently disclosed wall blocks include both “full-length” blocks and “half-length” blocks, wherein (1) “full-length” means that the ratio of the front face-length to the front face-height is approximately 2:1, thereby providing a rectangular wall block; (2) “half-length” means that the ratio of the front face-length to the front face-height is approximately 1:1, thereby providing a substantially square wall block; and (3) the “full-length” blocks and the “half-length” blocks have substantially the same heights.
An aspect of the presently disclosed wall blocks is that they may support the construction of modular block wall systems, wherein the wall block designs can be used in either the horizontal or vertical orientation.
Another aspect of the presently disclosed wall blocks is that they may include a “behind the face” groove for receiving mechanical connectors for simple connection to adjacent wall blocks and/or to any other soil reinforcing elements, such as, but not limited to, a geogrid.
Yet another aspect of the presently disclosed wall blocks is that they may be oriented in the horizontal or vertical direction and still maintain connection with other wall blocks as well as with any other soil reinforcing elements.
Still another aspect of the presently disclosed wall blocks is that they may feature decreased block weight as compared with conventional wall blocks.
Referring now to
The wall block 100 can be, for example, a concrete masonry block used for constructing retaining walls, such as the soil reinforcing system shown in
In this example, a “T” imprint feature is provided on the troughed top face 118 to indicate the first side face 122 of the wall block 100 (to indicate “Top” when vertically oriented). Similarly, a “B” imprint feature is provided on the troughed top face 118 to indicate the second side face 124 of the wall block 100 (to indicate “Bottom” when vertically oriented). Further, a trough 126 is provided along the troughed top face 118 and then continues around the corner and along the first side face 122. Additionally, two hollow open cores 128 pass through the wall block 100, extending from the troughed top face 118 to the flat bottom face 120. It is understood that more, or less, open cores 128 could be provided.
Further, the front face 110 may have one or more grooves or line features 130 of such width and depth as to create the appearance of the block face being comprised of multiple pieces. Also, the front face 110 can be textured to provide a certain appearance and/or aesthetic. Further, multiple score lines 132 are typically provided on the troughed top face 118 of the wall block 100. The score lines 132 may be used to facilitate splitting or cutting of the wall block 100 to form corners, angles or other geometric shapes.
The wall block 100 has a length L, a height H, and a depth D. The length L of the wall block 100 can generally be from about 12 inches (30.48 cm) to about 24 inches (60.96 cm), and in one example is about 16 inches (40.64 cm). The height H of the wall block 100 can generally be from about 6 inches (15.24 cm) to about 12 inches (30.48 cm), and in one example is about 8 inches (20.32 cm). The depth D of the wall block 100 can generally be from about 5 inches (12.7 cm) to about 15 inches (38.1 cm), and in one example is about 9 inches (22.86 cm). The ratio of length L to height H is approximately 2:1 to allow for both horizontal alignment and vertical alignment with the same facing element (see
In one example, the wall block 100 has a length L of about 16 inches (40.64 cm), a height H of about 8 inches (20.32 cm), and a depth D of about 9 inches (22.86 cm), which provides the end customer with more aesthetic pattern choices using one mold and block style only, and decreased time for delivery compared with those of varying sized blocks and therefore reduce the overall cost of structure. In this example, the U-shaped outer rear face 114 creates the rear block shelf 116. The function of the rear block shelf 116 is to capture soil and/or stone fill, which increases the overturning resistance of the wall block 100. Further, the rear block shelf 116 allows for reductions to the block weight without compromising the stability of the wall block 100. This is desirable feature as compared to other blocks because the weight of the block directly impacts the delivery, handling and installation costs of the wall structure. The weight of the wall block 100 is about 65 lbs (29.48 kg), which is a decrease as compared with conventional wall blocks that typically weigh about 75 lbs (34.02 kg) to 90 lbs (40.82 kg). The “T” imprint feature and the “B” imprint feature 133 on the U-shaped outer rear face 114 serve as indicators to differentiate top (i.e., first side face 122) and bottom (i.e., second side face 124) when the wall block 100 is set vertically.
The wall block 100 can be used in combination with one or more connectors, such as mechanical connectors 150 (see
Referring now to
The top-half wall block 140 has a length L, a height H, and a depth D. The height H and the depth D of the top-half wall block 140 are substantially the same as the height H and depth D, respectively, of the wall block 100. However, the length L of the top-half wall block 140 is about half the length L of the wall block 100.
Referring now to
The bottom-half wall block 145 has a length L, a height H, and a depth D. The height H and the depth D of the bottom-half wall block 145 are substantially the same as the height H and depth D, respectively, of the wall block 100. However, the length L of the bottom-half wall block 145 is about half the length L of the wall block 100.
The terms “top,” “bottom,” “front,” “back,” “rear,” “over,” “under,” “side” and “on” are used throughout the description with reference to the relative positions of components of the wall blocks 100, the top-half wall blocks 140, and the bottom-half wall blocks 145, such as relative positions of the front, rear, top, and bottom faces of the wall blocks. It will be appreciated that the wall blocks 100, the top-half wall blocks 140, and the bottom-half wall blocks 145 are functional regardless of their orientation in space.
Optionally, the top-half wall block 140 and the bottom-half wall block 145 can include the groove 134 on both the troughed top face 118 and the flat bottom face 120, as described in
Referring now to
Further, the serrated leg members 154 of the mechanical connector 150 are designed to engage with the edge of a soil reinforcing element. For example,
Referring again to
A multitude of patterns may be arrived at to form a soil reinforcing system, such as shown in
Referring now to
In the soil reinforcing system 300 shown in
However, by way of example, the soil reinforcing system 300 shown in
In one example, the soil reinforcing elements 310 are geogrid structures. The soil reinforcing elements 310 may be, for example, a synthetic material, such as high density polyethylene (HDPE) and polyester geogrids, or may be a steel reinforcing mesh, steel strips, or other soil reinforcing elements. A “geogrid” is a grid whose primary purpose is to strengthen or reinforce soil and has open meshes into which soil particles can lock. Namely, in the process of constructing the soil reinforcing system 300, the arrangement of the horizontal wall blocks 100′, the vertical wall blocks 100″, the top-half wall blocks 140, the bottom-half wall blocks 145, and the soil reinforcing elements 310 is backfilled with soil 320.
In the presently disclosed soil reinforcing system 300, multiple mechanical connectors 150 may be used to couple together adjacent wall blocks 100, top-half wall blocks 140, and bottom-half wall blocks 145, as well as to couple any types of walls blocks to the soil reinforcing elements 310, as shown, for example, in
Referring now to
Referring now to
Referring now to
Referring now to
In this example, two wall blocks 100 are produced face-to-face (i.e., one combined wall block 100A/100B), which when split create the appearance of the now split faced wall block 100A and wall block 100B being comprised of multiple pieces. The wall block 100A has the groove or line feature 130 to the left side thereof and the wall block 100B has the groove or line feature 130 to the right side thereof. When the wall block 100A and wall block 100B are rotated in the vertical configuration, the addition of the groove or line feature 130 creates the appearance of additional facing blocks while utilizing only one block size. Additional aesthetic patterns and appearances may be created by additional insert shapes and sizes between the split faced wall blocks 100A and 100B. Further, in this example, uniquely shaped splitter knives (not shown) can be used to split the initially combined wall block 100A/100B into separate wall blocks 100A and 100B.
At a step 410, at least two of the presently disclosed wall blocks 100 are provided.
At a step 415, the first wall block 100 may be disposed in any desired orientation (horizontal or vertical).
At a step 420, one or more of the mechanical connectors 150 may be installed (engaged) in the grooves of the first wall block 100. For example, the cylinder-shaped peg members 158 of the mechanical connectors 150 are engaged with the wide grooves 136 and/or the open cores 128 of the first wall block 100 and/or the serrated leg members 154 of the mechanical connectors 150 are engaged with the narrow grooves 134 of the first wall block 100.
At a step 425, the next wall block 100 may be disposed in relation to the first wall block 100 and in any desired orientation (horizontal or vertical) while at the same time the mechanical connectors 150 of the first wall block 100 may be engaged within the grooves of next wall block 100. Namely, the cylinder-shaped peg members 158 of the mechanical connectors 150 may be engaged with the wide grooves 136 and/or the open cores 128 of the next wall block 100 and/or the serrated leg members 154 of the mechanical connectors 150 may be engaged with the narrow grooves 134 of the next wall block 100.
The presently disclosed wall blocks (e.g., the wall blocks 100, the top-half wall blocks 140, and the bottom-half wall blocks 145) provide a significant manufacturing improvement over prior art modular wall blocks and soil reinforcing systems. Namely, because the presently disclosed wall blocks may be oriented in either the vertical or horizontal directions, the equipment necessary to fabricate the presently disclosed wall blocks is minimized. Additionally, the shape and design of the presently disclosed wall blocks often provide for reduced materials and ease in manufacturability when compared to prior art modular wall blocks. Further, the shape and design of the presently disclosed wall blocks provide for significant weight reduction of the block as compared with prior art modular wall blocks. Finally, the assembly of the wall blocks to create the presently disclosed soil reinforcing system represents a significant improvement over prior art systems because of the simplicity in design, reduced number of distinct components, and ability to modify the components to the desired soil system configuration.
Referring now to
The wall block 500 can be, for example, a concrete masonry block used for constructing retaining walls. Namely, the wall block 500 is an example of a modular wall block. The wall block 500 includes a front face 510, a rear face 512 that has a rear face tapered portion 514, a top face 516, and a bottom face 518. Accordingly, the wall block 500 has a flat end 520 and a tapered end 522. Optionally, the wall block 500 can have a hollow core 530 to reduce the weight and cost of the wall block 500. Further, the front face 510 of the wall block 500 can be textured to provide a certain appearance and/or aesthetic feature.
The wall block 100 has a length L, a height H, and a depth D. The length L of the wall block 100 can generally be from about 12 inches (30.48 cm) to about 24 inches (60.96 cm), and in one example is about 16 inches (40.64 cm). The height H of the wall block 100 can generally be from about 6 inches (15.24 cm) to about 12 inches (30.48 cm), and in one example is about 8 inches (20.32 cm). The depth D of the wall block 100 can generally be from about 5 inches (12.7 cm) to about 15 inches (38.1 cm), and in one example is about 9 inches (22.86 cm). The ratio of length L to height H is approximately 2:1 to allow for both horizontal alignment and vertical alignment with the same facing element (see
In one example, the wall block 500 has a length L of about 18 inches (45.72 cm), a height H of about 9 inches (22.86 cm), and a depth D of about 9 inches (22.86 cm). In this example, the area of the front face 510 of the wall block 500 is about 1.125 sq ft (0.1 sq m), which is an increase as compared with conventional wall blocks that have a face area of about 1 sq ft (0.093 sq m). This means that fewer wall blocks 500 are needed for a given area as compared with using conventional wall blocks. Additionally, in this example, because of the hollow core 530 and the tapered end 522, the weight of the wall block 500 is about 60 lbs (27.2155 kg), which is a decrease as compared with conventional wall blocks that weigh about 75 lbs (34.0194 kg).
The wall block 500 can be used in combination with one or more connectors, such as mechanical connectors 540 (see
Referring now to
In this example, the soil reinforcing system 600 includes four horizontal wall blocks 500′ and two vertical wall blocks 500″ that are arranged as shown. The soil reinforcing system 600 may also include a first soil reinforcing element 550 that is integrated at a lower portion of the horizontal wall blocks 500′ and vertical wall blocks 500″ and a second soil reinforcing element 550 that maybe integrated at an upper portion of the horizontal wall blocks 500′ and vertical wall blocks 500″. In one example, the soil reinforcing elements 550 are geogrid structures. The soil reinforcing elements 550 may be, for example, a synthetic material, such as HDPE and polyester geogrids, or may be a steel reinforcing mesh, steel strips, or other soil reinforcing elements.
In the soil reinforcing system 600 of the present invention, multiple mechanical connectors 540 may be used to couple one wall block 500 to another and to couple the wall blocks 500 to the soil reinforcing elements 550. The mechanical connectors 540 are often mechanical block connectors and alignment devices. As discussed herein, each of the mechanical connectors 540 may have a wide member 542 that is designed to fit into wide groove 524 of the wall block 500 and a narrow member 544 that is designed to fit into narrow groove 526 of the wall block 500.
Referring now to
Referring again to
The wall blocks 500 may be stacked using varying horizontal and vertical alignments. The wall blocks 500 may be aligned using the mechanical connectors 540 that may also serve to attach soil reinforcing elements 550 to the wall blocks 500 whether in vertical (e.g., vertical wall blocks 500″) or horizontal (e.g., horizontal wall blocks 500′) alignment.
Following long-standing patent law convention, the terms “a,” “an,” and “the” refer to “one or more” when used in this application, including the claims. Thus, for example, reference to “a subject” includes a plurality of subjects, unless the context clearly is to the contrary (e.g., a plurality of subjects), and so forth.
Throughout this specification and the claims, the terms “comprise,” “comprises,” and “comprising” are used in a non-exclusive sense, except where the context requires otherwise. Likewise, the term “include” and its grammatical variants are intended to be non-limiting, such that recitation of items in a list is not to the exclusion of other like items that can be substituted or added to the listed items.
For the purposes of this specification and appended claims, unless otherwise indicated, all numbers expressing amounts, sizes, dimensions, proportions, shapes, formulations, parameters, percentages, quantities, characteristics, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about” even though the term “about” may not expressly appear with the value, amount or range. Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are not and need not be exact, but may be approximate and/or larger or smaller as desired, reflecting tolerances, conversion factors, rounding off, measurement error and the like, and other factors known to those of skill in the art depending on the desired properties sought to be obtained by the presently disclosed subject matter. For example, the term “about,” when referring to a value can be meant to encompass variations of, in some embodiments ±100%, in some embodiments ±50%, in some embodiments ±20%, in some embodiments ±10%, in some embodiments ±5%, in some embodiments ±1%, in some embodiments ±0.5%, and in some embodiments ±0.1% from the specified amount, as such variations are appropriate to perform the disclosed methods or employ the disclosed compositions.
Further, the term “about” when used in connection with one or more numbers or numerical ranges, should be understood to refer to all such numbers, including all numbers in a range and modifies that range by extending the boundaries above and below the numerical values set forth. The recitation of numerical ranges by endpoints includes all numbers, e.g., whole integers, including fractions thereof, subsumed within that range (for example, the recitation of 1 to 5 includes 1, 2, 3, 4, and 5, as well as fractions thereof, e.g., 1.5, 2.25, 3.75, 4.1, and the like) and any range within that range.
Although the foregoing subject matter has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be understood by those skilled in the art that certain changes and modifications can be practiced within the scope of the appended claims.
The presently disclosed subject matter is related to and claims priority to U.S. Provisional Patent Application No. 62/292,441 entitled “Multi-Oriented Segmental Wall Blocks, Soil Reinforcing System, and Methods” filed on Feb. 8, 2016; the entire disclosure of which is incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US17/17002 | 2/8/2017 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62292441 | Feb 2016 | US |