The current disclosure is directed at fiber optic sensors, i.e., methods and apparatus, for distributed monitoring of a multitude of physical parameters along a single fiber optic cable. Simultaneous measurement of temperature, liquid and gas pressure, vibration, mechanical strain, liquid level, liquid flow rate, and deformation in a distributed fashion generates a 3-D environmental data map.
Since their inception, fiber optic sensors have been used in several industries for performance monitoring, process control, condition monitoring, and failure diagnostics. The competitive advantages of fiber optic sensors versus electronic based sensors can be realized by consolidating multi-parameter sensing in a single strand of fiber optic cable and having it collect as much information as possible from its surrounding environment. Fiber optics, by its nature, is simultaneously sensitive to a multitude of parameters (i.e., strain and temperature) in such a way that independent parameter measurement requires the use of complicated compensation mechanisms or the use of additional sensors. Over the past decades, many approaches have been taken by the research community to solve this problem; examples are a thermal fiber optic packages for temperature compensation, on-fiber thin film coatings, laser microstructured fiber optics, etc. The majority of the proposed approaches are only applicable for compensating unwanted parameters without the capability for multi-parameter sensing. Many of the proposed solutions for multi-parameter sensing are so complicated that compromise the performance of fiber optic sensor technology in harsh environment sensing. Additionally, the proposed solutions are mostly limited to a special type of fiber optic sensor and cannot be extended to a variety of fiber optic sensor technologies. As an example, proposed approaches for temperature compensation of Fiber Bragg Gratings (FBG) are not usable with distributed fiber optic strain sensors based on Rayleigh scattering.
Fiber optic sensors for distributed monitoring of physical parameters along a fiber optic cable are disclosed. A sensor comprises a fiber optic cable mounted to a flexible member disposed in a sensor housing body. The flexible member is coupled to the body and to a bladder in the body. The bladder is exposed to an immediate external environment to the sensor through a port in the body so that changes in pressure or liquid level in the environment cause changes to the size of the bladder, which in turn change the shape of the flexible body to impart mechanical strain on the cable. The cable may be inscribed by fiber Bragg gratings. Changes in spectra may be analyzed to measure the physical parameters.
There is disclosed a combination of a fiber optic cable sensor, optical data acquisition system (ODAQ), and optical data analysis algorithm which is configured to measure and report environmental/physical parameters such as temperature, liquid and gas pressure, vibration, mechanical strain, liquid level, liquid flow rate, and deformation in an environment about the sensor. When a plurality of fiber optic cable sensors are distributed in an environment, such as in an array, the measurements may generate a 3-dimensional map of the physical parameters.
The fiber optic sensor system may have a multitude of fiber optic cables and one ODAQ, where at each point on each cable a multitude of parameters including but not limited to temperature, liquid and gas pressure, vibration, mechanical strain, liquid level, and deformation are measured simultaneously.
The fiber optic sensor may be encapsulated in a metallic or non-metallic structure at multiple points where each point has the capability to measure a multitude of parameters including but not limited to temperature, liquid and gas pressure, vibration, mechanical strain, liquid level, and deformation to generate a 3D map of these parameters.
The metallic or non-metallic structure is a combination of moving and stationary parts/components, called sub-components, linked together and at least one section of the optic fiber is embedded, encapsulated, or bonded to a moving or stationary part.
The fiber can be embedded, encapsulated, or bonded to multiple moving or stationary parts at multiple locations in a single metallic or non-metallic structure.
The sub-components are made of metallic or non-metallic materials.
The fiber is bonded, embedded, or encapsulated in the moving or stationary parts using a multitude of methods including polymeric adhesive bonding, conductive adhesives (i.e., conductive epoxies), electroplating, electroless plating, brazing, low temperature soldering, and low-temperature casting.
The fiber optic to be embedded, encapsulated, or bonded could be pre-coated with layers of polymer (polyimide or Acrylate coating), metal layer or a combination of both, called coating seed layers. It could also be a pure glass without any coating.
The sensor sensitivity is a function of the geometry and material properties of the coating seed layers and the moving and stationary parts on which the fiber is bonded or embedded.
The metallic and non-metallic components are designed in such a way that each section of the fiber optic, embedded, encapsulated, or bonded to these components will be exposed to changes in temperature or mechanical strain. Other parameters to be measured manifest themselves as changes in temperature or strain in the fiber optic.
The fiber optic disclosed in this invention can be single mode or multi-mode fiber, single-core or multi-core fibers, pure silica fiber, germanium-doped core fiber, hydrogen loaded glass fiber, fluorine loaded cladding fiber, polymer optical fiber (POF), and polarization-maintaining (PM) fiber. The fiber could also be made by splicing a multitude of all these types of fibers together.
The sections of the fiber optic embedded, encapsulated, or bonded may be one or a multitude of in-fiber pre-built fiber Bragg gratings (FBGs). The FBGs optical responses are interrogated either through the reflection or transmission of the optical waves passing through the fiber optic.
The sections of the fiber optic embedded, encapsulated, or bonded may be one or a multitude of in-fiber Fabry-Perot interferometers (also known as fiber Fabry-Perot cavity), where each in-fiber Fabry-Perot interferometer is made of two reflection planes separated by a known distance and where the reflection planes are in-fiber Bragg gratings.
The sections of the fiber optic embedded, encapsulated, or bonded may have no in-fiber structures and the sensing of external parameters may be based on the scattering of light from the optical fiber including, Raman scattering, Rayleigh scattering, and Brillouin scattering.
At least one section of the fiber optic embedded, encapsulated, or bonded may be made of Photonic Crystal Fiber (PCF).
At least one section of the fiber optic embedded, encapsulated, or bonded may be made of microstructured fiber optic.
Simultaneous measurement of multiple parameters may be achieved by compensating the effect of one parameter from the other one. This is achieved by special design of the metallic or non-metallic structure in a way that there is a strain or temperature gradient on the bonded section of the optical fiber. Different magnitudes of strain and temperature may be applied to different sections of the embedded or bonded optical fiber in such a way that each section is only sensitive to one parameter or each section has a unique sensitivity to these parameters.
The metallic or non-metallic structure may have one or multiple flexible/deformable components and the fiber optic may be bonded, encapsulated, bonded to at least one of the flexible components.
At least one of the flexible components may react to the changes in measured parameters, i.e., pressure, liquid level, vibration, external force, etc. The flexible components may be connected to each other in such a way that the deformation of one flexible component is transferred to the other flexible components and eventually to the bonded or embedded sections of the fiber optic.
In an application, the fiber optic sensor system may be applied for subterranean measurements, especially for soil and groundwater monitoring.
In an application, the fiber optic sensor system may be applied for the measurements of soil and groundwater during a remediation process including in-situ thermal remediation, ex-situ-thermal remediation, thermal desorption, air sparging, bioremediation, electrokinetic remediation, in-situ flushing, permeable reactive barriers, phytoremediation, pump-and-treat remediation, soil vapor extraction, and solidification and stabilization techniques.
In such an application, the measured parameters may be temperature, groundwater level, and hydraulic gradient.
Level measurement may be achieved through hydrostatic pressure measurement. As a result, the level sensor may be a pressure sensor with the capability of sensing small changes in pressure due to the changes in liquid level.
There is provided a fiber optic cable sensor for measuring physical parameters in an immediate environment external to the sensor. The sensor comprises: a housing body; a first flexible member; a second flexible member; and a fiber optic cable; wherein: the first flexible member is housed in the body with a first surface of the first flexible member exposed at one end, through a port in the body, with the immediate external environment to the sensor, the first flexible member changing size (expanding or collapsing) in response to changes in pressure or level of liquid in the immediate external environment; the second flexible member is coupled to and housed in the body and further coupled to a second surface of the first flexible member such that a change in the size of the first flexible member changes a shape of the second flexible member; a portion of the fiber optic cable, disposed in the body, is mounted in or embedded to the second flexible member so that the change in the shape of the second flexible member imparts a mechanical strain (deformation) along the portion of the fiber optic cable; and at least one end of the fiber optic cable extends out through the body.
The cable may be embedded in the second flexible member. The cable may be mounted to or embedded in the second flexible member at multiple points. The cable may be embedded in a channel in the second flexible member, having a preferred channel depth between 50 μm and 1 mm. The cable may be mounted on or embedded in the second flexible member so that strain is distributed unevenly along the portion of the fiber optic cable.
The portion of the cable may comprises a thin film layer, preferably having a coating thickness between 20 nm and 10 μm. The portion of the cable is inscribed with at least one fiber Bragg grating (FBG). The portion of the cable may be mounted at multiple points and wherein: each point comprises a part of a single FBG or the entire FBG; or each point comprises a different FBG Bragg wavelength.
A portion of the cable that is used as a sensor may be made of in-fiber Fabry-Perot interferometers (also known as fiber Fabry-Perot cavity), where each in-fiber Fabry-Perot interferometer is made of two reflection planes separated by a known distance and where the reflection planes are in-fiber Bragg gratings.
Backscattered light (including Raman scattering, Rayleigh scattering, and Brillouin scattering) from the portion of the cable used as sensor may be collected and analyzed for sensing.
The second flexible member may be sealed from the external environment.
The body may comprise multiple chambers with a first chamber housing the first flexible member and second flexible member. The fiber cable may extend from the first chamber and then exit the body through a sealed liquid/gas fitting.
The second flexible member may be a beam, each end of which beam is mounted to the body. The fiber optic cable may extend longitudinally along a length of the beam, both ends of which cable extend out through the body. The first flexible member may be mounted perpendicularly to a longitudinal axis of the beam.
The second flexible member may be a ring or tube with the fiber optic cable mounted along at least a portion of an exterior surface of the ring or tube. When the second flexible member is a flexible tube, the fiber optic cable may be mounted along at least a portion of the exterior surface of the tube in a straight or spiral shape.
There is provided a length of fiber optic cable comprising a plurality of sensors in accordance with any one of the examples provided spaced along a length of the fiber optic cable and configured in a serial or star configuration.
There is provided a fiber optic sensor system comprising: an optical data acquisition system (ODAQ) configured to generate light and detect optical power; and, coupled the ODAQ, at least one fiber optic sensor or fiber optic cable comprising a plurality of sensors in accordance with any one of the examples provided. The ODAQ may be combined with (example, coupled to or defined to comprise) a micro-electromechanical switch to monitor multiple fiber optic cables, the switch controlled by a processing unit to generate a sequence of switching for example to define a 3D data map.
The fiber optic sensors may be inscribed with fiber Bragg gratings (FBG) and wherein the ODAQ analyses each FBG reflection spectrum based on the following parameters to measure physical parameters: a) Shift of Bragg wavelength (λB); b) Change in the bandwidth of the reflection spectrum, i.e. Full Width at Half Maximum (FWHM); c) Area under the reflection spectrum (Aref); and d) Intensity of side lobes in the reflection spectrum (l1+, l1−); and, wherein preferably the physical parameters comprise any one or more of: temperature, liquid and gas pressure, vibration, mechanical strain, liquid level, and deformation and further preferably the ODAQ generates a 3D data map of the physical parameters.
The fiber optic sensor system may be configured as a component of an in-situ thermal remediation system to provide at least one of: i) process performance monitoring and ii) feedback control of the remediation process. The in-situ thermal remediation system may be configured to remediate a ground environment in accordance with a process using any one of electric resistance heating (ERH), thermal conduction heating (TCH), steam-enhanced extraction (SEE), and gas thermal heating.
There is provided a process of manufacturing comprising: coating a portion of a fiber optic cable with a thin film layer; placing the fiber optical cable as coated in a channel of a fiber carrying flexible member for a fiber optic sensor; and embedding the cable as coated in the channel using one of: a thermal curing process after filling the channel with a metallic liquid suspension or polymeric adhesive; and an electroplating or electroless plating process. The thin film layer may be a conductive thin film layer. Filling the channel may comprise performing a controlled dispensing using an automated process, such as an automated drop-on-demand deposition process. The process of manufacturing may comprise: assembling the fiber carrying flexible member and cable, as embedded, in a housing body with an expanding/collapsing capable flexible member; wherein a first surface of the expanding/collapsing capable flexible member is exposed at one end, through a port in the body, with the immediate external environment to the sensor, the expanding/collapsing capable flexible member changing size (expanding or collapsing) in response to changes in pressure or level of liquid in the immediate external environment; wherein the fiber carrying flexible member is coupled to and housed in the body and further coupled to a second surface of the expanding/collapsing capable flexible member such that an expanding or collapsing of the expanding/collapsing capable flexible member changes a shape of the fiber carrying flexible member; and wherein at least one end of the fiber optic cable extends out through the body.
There is provided process of manufacturing comprising: placing a coated or uncoated fiber optical cable in a channel of a flexible member for a fiber optic sensor; and using micro-laser welding or electron beam welding to locally melt the flexible membrane areas adjacent to the fiber optic resulting in the flow of the melted liquid around the fiber to create a solid structure with embedded fiber after solidification.
There is provided a process comprising: performing in-situ thermal remediation using an in-situ thermal remediation system according to a remediation process using thermal heating, the in-situ thermal remediation system having as a component a fiber optic system of as provided herein; and performing at least one of i) process performance monitoring and ii) feedback control of the remediation process using the fiber optic sensor system. The thermal heating may comprise any one of electric resistance heating (ERH), thermal conduction heating (TCH), steam-enhanced extraction (SEE), and gas thermal heating.
These and other aspects, features and characteristics will be apparent to one of ordinary skill in the art.
One or more examples of the various aspects disclosed are illustrated in the drawings in which:
In an example as shown in
Chamber 1 and Chamber 2 are connected through a hole where the fiber optic passes through. From Chamber 2 to Chamber 3 there is a fiber optic seal fitting 414 to isolate Chamber 2 and Chamber 1 from the external fluid. Chamber 3 is connected to a liquid/gas fitting 416 connected to a pipe (see
The fiber optic seal fitting is shown in more detail in
Another example of the pressure/level and temperature sensor 300A is shown in
The example of
The distribution of strain in the respective beam (
Fiber embedding process is a multi-stage process. In one method, the sections of the fiber optic to be embedded are coated with a conductive thin-film layer (i.e., metal nano particle suspensions such as silver nano-particle suspension) and thermally cured. Fiber coating can also be conducted through a controlled dipping process, in which the fiber optic is inserted and moved in a liquid along its longitudinal axis and the surface tension will allow the fiber to be coated by the liquid. Fiber optic coating can also be conducted through physical deposition methods (such as Physical Vapor Deposition (PVD) or sputtering) or chemical deposition methods (such as Chemical Vapor Deposition). The thickness of the coating on the fiber varies between 20 nanometer and 10 micrometer and is a function of the coating material and deposition process. Thermal curing is conducted either by bulk heating (using furnace or hot plate) or point and localized heating using laser or infra-red heat sources. Both bare fiber optic (fiber optic with no jacket) and fiber optic cables with standard acrylate or polyimide coatings can be used in this process without removing the jackets. The coated fiber is then placed in a pre-cut groove on the flexible membrane (beam or ring) (e.g. in groove 1002A of
The thermal curing temperature range depends on the type of bonding material and can vary from room temperature (i.e., 20° C.) to 1000° C.
The groove in which the fiber is embedded can be made by a high accuracy CNC machine or other micromachining techniques including laser micromachining.
The depth of the groove varies between 50 micro-meter and 1 mm.
The flexible component on which the fiber 410 is bonded or embedded could be in the form of a hollow cylinder (i.e., a tube). Such a tube could replace the ring or beam of
In general, any flexible body with regular or un-regular shape could be used as a flexible component for bonding the fiber optic. The yield strength of the flexible body should be high enough that it will not be plastically deformed as a result of applied load. Although it is ideal to have a flexible material with linear response (linear deformation vs load without hysteresis and memory effects), any non-linearity could be compensated by calibration. The magnitude of strain in all these cases could be between −4000 to 4000 microstrain; this range is a function of the shape, geometry, and material of the flexible component.
The embedding process could also be conducted through electroplating or electroless plating process. In this process, the coated sections of the fiber are placed in the pre-cut groove, and the beam-fiber assembly is placed in an electroless plating or electroplating bath. In the electroless or electroplating bath metal particles are deposited on the coated fiber and the groove and will result in the embedding of the fiber in the flexible membrane. The electroless or electroplating process can only be applied to flexible components made of metals or pre-coated with a conductive layer. The most common method of electro or electroless plating is Nickel plating; however, a wide range of metals can be used in this process such as gold, silver, and chromium. The thickness of the coating on the fiber varies between 100 nanometer and 2 mm.
The optical signal demodulation to obtain the measurement values is conducted through the measurement and analysis of the optical reflection spectrum from the optical fiber.
In examples, the locations of the fiber embedded or bonded to the flexible components are pre-inscribed with fiber Bragg gratings (FBGs). Usually, the gratings are inscribed before adding the thin film layers. FBGs are periodic modulations of the index of refraction which are laser-inscribed inside the core of optical fiber. FBGs result in the reflection of the light at a certain wavelength, called Bragg wavelength (λB), which is a function of the period of the grating modulation (Λ) and the effective mode index of refraction (neff) in the optical fiber, i.e. λB=2neffΛ. The shape and the location of the reflection spectrum (
As an example, uniform temperature or strain along the FBG only causes shift in the Bragg wavelength (
In the aforementioned transducer design, the embedded locations on the fiber could be part of a single FBG or each point can have a different Bragg grating. In the former case, the signal analysis will be based on the demodulation of one reflection spectrum and in the later case the signal analysis will be based on the demodulation of multiple reflection spectrums. In both cases, the reflection spectrum may shift or change its shape as a result of the deformation in the flexible component on which the fiber optic cable is bonded or embedded.
Each FBG reflection spectrum is analyzed based on the following parameters (
Table 1 lists the effect of temperature and mechanical load (pressure, change in level, and mechanical strain) on each of these parameters:
The examples of sensors explained above (e.g.
The aforementioned invention for pressure/temperature/level sensing has the ranges and accuracy levels described in Table 2.
The fiber optic cable can be monitored by any optical data acquisition system that has the capability for generating light (i.e., lasers, light emitting diodes, or broadband light source) and an optical power detector. These units are commercially available or can be designed and built by integrating standard OEM components.
In an example, an optical data acquisition unit (e.g. a system 1900) can be combined with a micro-electromechanical switch 2002 to form architecture 2000 to monitor multiple cables (
P=+A1λ12+A2λ1+B1λ22+B2λ2+C
where A1, A2, B1, B2, and C are constant numbers. This formula has temperature compensation embedded in it. However, temperature can be obtained from a different formula, as follows:
T=D1λ12+D2λ1+E1λ22E2λ2+F
This invention has several industrial applications. One of the applications is the monitoring of the groundwater level and temperature during in-situ thermal remediation (ISTR). ISTR is an industry standard process for remediating contaminated lands. In this process, heating electrodes are inserted into the soil and cause the evaporation of the contaminants which are then collected through a vacuum extraction system. Measurement of groundwater level is important to obtain the hydraulic gradients in the water table and get insight into the direction of the movement of contaminated substances.
In an in-situ thermal remediation field (environment) and with reference to
In another type of installation, sensor cables with a level sensor point at the end of the cable are lowered in pre-drilled wells down to the groundwater to measure the groundwater level during a remediation project. These cables might have temperature sensing points along the cable in addition to the level sensor at the end of the cable. The level sensor data is used to calculate the hydraulic gradients and mobility of the contaminants during the remediation project.
Both thermal and groundwater level sensor data are required for process performance monitoring and contractual requirements. The data is also used for feedback control of the remediation process. The fiber optic sensor system is applicable to a wide range of in-situ thermal remediation technologies including electric resistance heating (ERH), thermal conduction heating (TCH), steam-enhanced extraction (SEE), and gas thermal heating. In general, the fiber optic sensor system can be applied to any in-situ thermal remediation technology regardless of the type of heating technology. A limiting factor for installation is the diameter of the sensor cable which is an engineering design parameter.
In addition to fiber Bragg gratings, other types of fiber optic sensors can be used in this invention. In an example, the sections of the fiber optic embedded, encapsulated, or bonded is one or a multitude of in-fiber Fabry-Perot interferometers (also known as fiber Fabry-Perot cavity), where each in-fiber Fabry-Perot interferometer is made of two reflection planes separated by a known distance and where the reflection planes are in-fiber Bragg gratings.
In an example, the sections of the fiber optic embedded, encapsulated, or bonded has no in-fiber structures and the sensing of external parameters is based on the scattering of light from the optical fiber including, Raman scattering, Rayleigh scattering, and Brillouin scattering.
In an example, at least one section of the fiber optic embedded, encapsulated, or bonded is made of Photonic Crystal Fiber (PCF).
In an example, at least one section of the fiber optic embedded, encapsulated, or bonded is made of microstructured fiber optics.
Throughout the description and claims of this specification, the word “comprise” and “contain” and variations of them mean “including but not limited to” and they are not intended to (and do not) exclude other components, integers or steps. Throughout the description and claims of this specification, singular encompasses the plural unless the context requires otherwise. In particular, where the indefinite article is used, the specification is to be understood as contemplating plurality as well as singularity, unless the context requires otherwise.
Features, integers characteristics, compounds, chemical moieties or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example unless incompatible therewith. All of the features disclosed herein (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, ma be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The invention is not restricted to the details of any foregoing examples or embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings) or to any novel one, or any novel combination, of the steps of any method or process disclosed.
This application is a divisional of parent application U.S. Ser. No. 16/006,027 filed Jun. 12, 2018, which parent application claims the benefit of U.S. Provisional Application No. 62/518,101 filed Jun. 12, 2017, the contents of which parent application and which provisional application are respectively incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
5177805 | Groger et al. | Jan 1993 | A |
6016702 | Maron | Jan 2000 | A |
8706305 | Jiang et al. | Apr 2014 | B2 |
10077649 | LeBlanc | Sep 2018 | B2 |
10161924 | Chavez | Dec 2018 | B2 |
20130145852 | Guida et al. | Jun 2013 | A1 |
20140123764 | Abtahi et al. | May 2014 | A1 |
20170089187 | Hytken | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
1137920 | Apr 2001 | EP |
2016182429 | Nov 2016 | WO |
Entry |
---|
International Search Report dated Oct. 18, 2018 for Corresponding International PCT Patent Application No. PCT/CA2018/050697; 5 Pages. |
Written Opinion dated Oct. 18, 2018 for Corresponding International PCT Patent Application No. PCT/CA2018/050697; 7 Pages. |
Number | Date | Country | |
---|---|---|---|
20210116266 A1 | Apr 2021 | US |
Number | Date | Country | |
---|---|---|---|
62518101 | Jun 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16006027 | Jun 2018 | US |
Child | 17113618 | US |