This disclosure relates generally to electrical contacts and, more particularly, to electrical contacts for interconnecting electrical/electronic substrates, such as printed circuit boards (PCB) and/or connecting a substrate to an electrical or electronic device.
Electrical contacts are widely used to interconnect electrical/electronic substrates and/or to connect electrical/electronic devices to such substrates. Some contacts are configured to have multiple types of connections. One such multi-connection type of contact has an end that is surface mounted to an electrical/electronic substrate, such as by soldering, while the other end is press-fit into a plated hole of another electrical/electronic substrate or other type of electrical/electronic device. Typically, the surface mounting of the contact occurs first, followed by the press-fitting. In such a case, when the contact is press-fit into the plated hole, a significant amount of stress is placed on the surface mounting bond, which may cause it to break. Accordingly, many multi-connection contacts are provided with a deformable segment to absorb some of the force that is applied during the press-fitting. These contacts, however, are typically difficult to manufacture and often result in wasted material. Accordingly, there is a need for a multi-connection contact with a deformable segment, wherein the contact is simple to produce and does not result in wasted material. The present disclosure is directed to such a contact.
In accordance with the disclosure, an electrical contact is provided for connecting together substrates. The electrical contact has a longitudinal axis and includes first and second structures. The first structure extends along the longitudinal axis and has a rigid construction. The second structure includes a spring portion and a mounting portion. The spring portion is resiliently deflectable in the direction of the longitudinal axis. The mounting portion is adapted for securement to one of the substrates. One of the first and second structures includes a press-fit portion that extends along the longitudinal axis and is adapted for press-fit insertion into a hole of the other one of the substrates. The first and second structures are connected together to prevent relative movement between each other in at least the direction of the longitudinal axis.
The features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings where:
It should be noted that in the detailed description that follows, identical components have the same reference numerals, regardless of whether they are shown in different embodiments of the present disclosure. It should also be noted that for purposes of clarity and conciseness, the drawings may not necessarily be to scale and certain features of the disclosure may be shown in somewhat schematic form.
Spatially relative terms, such as “top”, “bottom”, “lower”, “above”, “upper”, and the like, are used herein merely for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as they are illustrated in (a) drawing figure(s) being referred to. It will be understood that the spatially relative terms are not meant to be limiting and are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the drawings.
As used herein, the term “printed circuit board” and its acronym “PCB” shall mean any substrate that mechanically supports and electrically connects electrical or electronic components using conductive tracks, pads and/or other structures formed from one or more layers of conductive metal. A printed circuit board may be single-sided, double-sided, multilayered, rigid, flexible and/or have a metal core.
Referring now to
The first structure 12 is rigid and includes a mounting or press-fit portion 16 that is configured for press-fit insertion in the Y direction, into a plated hole of a printed circuit board (PCB) or other type of electrical/electronic substrate. The press-fit portion 16 may have an eye-of-the-needle construction (EON), with two beams separated by a piercing. The press-fit portion 16 is joined by a body portion 20 to a base portion 22. A tab 24 extends downwardly from a bottom edge of the base portion 22. A circular hole 26 (shown best in
Referring now also to
The support portion 34 of the second structure 14 has a main body 47 joined to a center tab 48 and a pair of arms 50, with the center tab 48 being disposed between the arms 50. The center tab 48 extends upwardly from the main body 47, while the arms 50 are bent so as to extend upwardly and rearwardly from the main body 47. As such, the arms 50 are disposed in a different plane than the center tab 48 and the main body 47. A circular hole 54 passes through the main body 47. The hole 54 and the arms 50 function as alignment features. A plurality of deformations 56 may be formed in the main body 47 to facilitate the welding of the support portion 34 to the base portion 22 of the first structure 12, as will be described below. The deformations 56 comprise indentations in a front surface of the main body 47 and raised bosses on a rear surface of the main body 47, as best shown in
As set forth above, the second structure 14 is secured to the first structure 12 to form the electrical contact 10. However, before they are secured together, the two sections are aligned with each other. The hole 54 in the second structure 14 is aligned with the hole 26 in the first structure 12 and the arms 50 of the second structure 14 are aligned with the body portion 20 of the first structure 12 such that the arms 50 extend into the indentations 30. With the second structure 14 and the first structure 12 so aligned, the main body 47 of the second structure 14 is welded to the base portion 22 of the first structure 12, such as by resistive, laser, e-beam, or ultrasonic welding. The deformations 56 provide focal points for welding currents when performing the welds.
When the second structure 14 and the first structure 12 are secured together, the aligned holes 26, 54 form a through hole that extends through the electrical contact 10 in the Z-direction. In addition, the tab 24 of the base portion 22 of the first structure 12 extends through the slot 46 in the spring portion 32 of the second structure 14. Moreover, the bottom edge of the base portion 22 is in contact with, or in close proximity to, the middle part 38 on opposite sides of the slot 46. In this manner, when a downwardly-directed force is applied to the press-fit portion 16, the base portion 22 contacts the middle part 38 and transfers a portion of the force to the middle part 38 of the spring portion 32. Some of the downwardly-directed force is also transferred to the anterior bend 40 of the spring portion 32 through the support portion 34. The force transferred to the spring portion 32 causes the spring portion 32 to deflect and absorb the force.
The two-part construction of the electrical contact 10 allows it to be constructed from two different sheets or blanks of metal, having different thicknesses. More specifically, the first structure 12 and the second structure 14 may be formed by stamping in separate operations, using metal blanks of different thicknesses. In this regard,
Since the first structure 12 and the second structure 14 may be formed from metal blanks of different thicknesses, the second structure 14 may be formed from thin, flexible metal that allows the spring portion 32 to be resiliently deflectable in the Y-direction (as well as the X and Z directions), while the first structure 12 may be formed from thick metal that is rigid and does not deform in the Y-direction.
Referring now to
The electrical contact 10 may be manipulated, such as by a “pick-and-place” machine, to place the mounting portion 36 of the electrical contact 10 on the pad 76 of the substrate 70, where it is soldered to form a bond between the mounting portion 36 and the pad 76. After the mounting portion 36 is soldered to the pad 76, the substrate 74 is manipulated to have the plated hole 80 aligned above press-fit portion 16 of the electrical contact 10. A downwardly-directed force (in the Y direction) is then applied to the substrate 74 to move the press-fit portion 16 into the hole 80.
As the press-fit portion 16 (relatively) moves into the hole 80, the beams of the press-fit portion 16 are deflected toward each other, thereby allowing the press-fit portion 16 to deform in the X direction and be securely disposed within the hole 80. In the longitudinal or Y direction, the first structure 12 maintains its rigidity and does not deform. The second structure 14, however, resiliently deflects in the Y direction to absorb some of the downwardly-directed force. If the substrates 70, 74 are misaligned, the second structure 14 will also deflect in the X direction and/or Z direction to absorb any force(s) in this/these direction(s). In so deflecting, the second structure 14 relieves some of the stress that would otherwise have been applied to the bond between the pad 76 of the substrate 70 and the mounting portion 36 of the electrical contact 10.
Referring now to
The first structure 102 is comprised of plastic and is rigid. The first structure 102 may be formed from any strong, stiff plastic. The plastic may also have good electrical insulating properties. Examples of such plastic include polybutylene terephthalate (PBT), nylon 6-6, and liquid crystal polymer (LCP). The first structure 102 has a lower end 102a and an upper end 102b. The first structure 102 includes first and second beams 106, 108 that are joined to a rear support wall 112 and extend forwardly therefrom. The second beam 108 extends downwardly farther than the first beam 106, such that a lower end 108a of the second beam 108 is disposed below a lower end 106a of the first beam 106. In addition, the second beam 108 extends outwardly (forwardly) farther than the first beam 106. The first and second beams 106, 108 are spaced-apart so as to form a groove 114 therebetween.
The rear support wall 112 of the first structure 102 includes an upper surface 116 and a lower surface 118. The upper surface 116 is disposed in a plane that is parallel to the longitudinal axis of the contact 100 and has an elongated opening extending therethrough. The lower surface 118 slopes downwardly and forwardly from the upper surface 116. Most of the upper surface 116 is disposed inside the groove 114, while the lower surface 118 is disposed below the groove 114.
The second structure 104 may be a unitary or monolithic structure and is comprised of electrically conductive metal, such as a tin-plated copper alloy. The second structure 104 includes a mounting or press-fit portion 122, a body portion 124, a spring portion 126 and a mounting portion 128.
The press-fit portion 122 is configured for press-fit insertion in the Y direction, into a plated hole of a printed circuit board (PCB) or other type of electrical/electronic substrate. The press-fit portion 122 may have an eye-of-the-needle construction (EON), with two beams separated by a piercing. The press-fit portion 122 is joined to the body portion 124. Both the press-fit portion 122 and the body portion 124 extend along the longitudinal axis. The body portion 124 includes a pair of shoulders 130 disposed proximate to the press-fit portion 122. The shoulders 130 extend in the X direction.
The spring portion 126 is joined between the body portion 124 and the mounting portion 128. The spring portion 126 slopes downwardly and forwardly from the body portion 124 so as to be disposed at an angle to the longitudinal axis. The spring portion comprises first and second lateral bends 134, 136 that are oppositely-directed. The first lateral bend 134 is disposed above the second lateral bend 136. An upper bend 138 connects the spring portion 126 to the body portion 124, while a lower bend 140 connects the spring portion 126 to the mounting portion 128. The mounting portion 128 may be L-shaped and has a substantially flat bottom surface so as to be adapted for securement, such as by soldering, to a pad of an electrical/electronic substrate, such as a PCB. The bends 134, 136, 138, 140 permit the spring portion 126 to be resiliently deflectable in the longitudinal or Y direction, as well as in the X direction and the Z direction.
The body portion 124 of the second structure 104 is pressed into the groove 114 of the first structure 102 so as to be held therein through a friction fit. The shoulders 130 of the second structure 104 adjoin, or are in close proximity to, the upper ends 106b, 108b of the first and second beams 106, 108, respectively, while the lower end 106a of the first beam 106 adjoins, or is in close proximity to, a top portion of the first lateral bend 134 and the lower end 108a of the second beam 108 adjoins, or is in close proximity to, a top portion of the second lateral bend 136. Thus, the first beam 106 is trapped between one of the shoulders 130 and the first lateral bend 134, and the second beam 108 is trapped between the other one of the shoulders 130 and the second lateral bend 136. In this manner, the first structure 102 is substantially prevented from moving in the longitudinal or Y-direction relative to the second structure 104.
With the body portion 124 of the second structure 104 held in the groove 114 of the first structure 102 as described above, the spring portion 126 of the second structure 104 is disposed adjacent to, and may be parallel to, the sloping lower surface 118 of the first structure 102. In addition, the first structure 102 is positioned between the shoulders 30 and the mounting portion 128 of the second structure 104, with a small space or gap 144 (shown in
Referring now to
The electrical contact 100 may be manipulated, such as by a “pick-and-place” machine, to place the mounting portion 128 of the electrical contact 100 on the pad 76 of the substrate 70, where it is soldered to form a bond between the mounting portion 128 and the pad 76. After the mounting portion 128 is soldered to the pad 76, the substrate 74 is manipulated to have the plated hole 80 aligned above press-fit portion 122 of the electrical contact 100. A downwardly-directed force (in the Y direction) is then applied to the substrate 74 to move the press-fit portion 122 into the hole 80, which causes the beams of the press-fit portion 122 to deflect toward each other and become securely disposed within the hole 80.
The first structure 102 provides a reaction force to the shoulders 130 of the second structure 104 as the downwardly-directed force is applied to the press-fit portion 122. The first structure 102 maintains its rigidity and does not deform in the Y-direction or otherwise; however, the gap 144 permits the first structure 102 (and the body portion 124 of the second structure 104) to move downward, toward the mounting portion 128. This downward movement is accommodated by the spring portion 126, which resiliently deflects in the Y direction to thereby absorb some of the downwardly-directed force. If the substrates 70, 74 are misaligned, the spring portion 126 will also deflect in the X direction and/or Z direction to absorb any force(s) in this/these direction(s). In so deflecting, the spring portion 126 relieves some of the stress that would otherwise have been applied to the bond between the pad 76 of the substrate 70 and the mounting portion 128 of the electrical contact 100.
As can be appreciated, the first structure 102 helps support and stabilize the second structure 104 to prevent it from being deformed too much when a downwardly-directed force is applied to the press-fit portion 122. In this regard, the first structure 102 will abut the mounting portion 128 of the second structure 104 after the spring portion 126 compresses by the amount of the gap 144.
Referring now to
An upper portion of the first structure 152, which may be recessed, is welded to the body portion 124 of the second structure 104, such as by resistive, laser, e-beam, or ultrasonic welding. When the first structure 152 is secured to the second structure 104, a small space or gap 156 (shown in
When the contact 150 is used to connect together spaced-apart substrates, such as the substrate 70 and the substrate 74, the downwardly-directed force applied to the substrate 74 is not transferred to the first structure 152 through the shoulders 130, as in the contact 100. Instead, a portion of the force may be transferred to the first structure 152 through the weld between the first structure 152 and the body portion 124 of the second structure 104 (when the first structure 152 contacts the mounting portion 18). The first structure 152, however, still helps support and stabilize the second structure 104 to prevent it from being deformed too much. In this regard, the first structure 152 will abut the mounting portion 128 of the second structure 104 after the spring portion 126 compresses by the amount of the gap 156.
It is to be understood that the description of the foregoing exemplary embodiment(s) is (are) intended to be only illustrative, rather than exhaustive. Those of ordinary skill will be able to make certain additions, deletions, and/or modifications to the embodiment(s) of the disclosed subject matter without departing from the spirit of the disclosure or its scope.
This application claims the benefit of priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application No.: 62/803,915 filed on Feb. 11, 2019, and U.S. Provisional Patent Application No.: 62/835,577 filed on Apr. 18, 2019, which are both herein incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/017208 | 2/7/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62803915 | Feb 2019 | US | |
62835577 | Apr 2019 | US |