The present invention relates to a mixing process of a multi-part binder-based pyrotechnic composition using two pre-mixed compositions.
The present invention relates to a mixing process of a multi-part binder-based pyrotechnic composition for safe pre-mixing and storage of less hazardous, partially processed multi-part binder based pyrotechnics.
Typically, a number of pyrotechnic ingredients (e.g., fuel, oxidizer, binder, additives) will be subsequently added to a mixing bowl until a homogeneous mixture is obtained. The binder is often composed of a resin and a curing agent and sometimes one or more modifying ingredients. In many pyrotechnic mixing processes, the binder ingredients are pre-blended and added to the mixer as a single component. In other cases, the binder ingredients can be added individually but often early in the process, to give the binder time to coat all of the other pyrotechnic ingredients or to coat the most sensitive material first. Most often, the binder is premixed and added to the fuel first to coat it and make it less sensitive then the other ingredients are added one at a time each being coated. If the energetic mix was blended beforehand without the binder, it could be hazardous and problematic to store. To this point, once the resin and curing agent portions of the binder come into contact, the overall process becomes time-limited because the cross-linking polymeric chemistry has a finite time before it cures and hardens. Furthermore, the curing process will ideally take place in the items form factor to provide mechanical strength to the end-item. Therefore, the mixed pyrotechnic composition has a limited “pot life” where all subsequent processing steps (e.g., granulation, extrusion, multi-step pressing) must be completed in a relatively short time frame; sometimes as short as a few hours. As such, if one does not process a batch of multi-part binder based pyrotechnic into its form factor within that timeframe, one may have to dispose of the remaining composition at significant cost or risk making suspect-quality end-items.
According to an illustrative embodiment of the present disclosure, mixing allows for safe pre-mixing and storage of less hazardous, partially processed multi-part binder based pyrotechnics. Two pre-mixtures can be combined on an as-needed basis and the final processing step can occur significantly faster than a conventional mixing process since the binder ingredients have already been dispersed in the previous pre- mixing steps. As such, when the two parts of the pre-mixed materials are combined, the final composition can be rapidly generated and post-processed on an as-needed basis.
According to a further illustrative embodiment of the present disclosure, one of the binder ingredients (e.g., resin or curing agent) is premixed with the pyrotechnic fuels and can also include other pyrotechnic additives and processing aides. The resulting mixtures are not explosive and are therefore easier to store and much safer to handle. The other binder ingredients (e.g., resin or curing agent) can be premixed with the pyrotechnic oxidizers and can also include other pyrotechnic additives and processing aides. The resulting mixtures are not explosive and are therefore easier to store and much safer to handle. These pre-mixed mixtures can be stored in bulk until needed and rapidly combined to achieve final composition.
Additional features and advantages of the present invention will become apparent to those skilled in the art upon consideration of the following detailed description of the illustrative embodiment exemplifying the best mode of carrying out the invention as presently perceived.
The detailed description of the drawings particularly refers to the accompanying figures in which:
The embodiments of the invention described herein are not intended to be exhaustive or to limit the invention to precise forms disclosed. Rather, the embodiments selected for description have been chosen to enable one skilled in the art to practice the invention.
In at least some embodiments, different combinations of fuel, oxidizer, binder curing agent, and binder resin can be used. The fuel and oxidizer should always be kept in separate pre-mixed compositions. Binder curing agents and binder resins should be kept in separate pre-mixed compositions to prevent premature hardening of the compositions.
Additives generally have a tendency to act as either a fuel or an oxidizer, and it is preferred to add additives to the mixture matching their tendencies (e.g., oxidizer additives added to the oxidizer) to minimize potential for energetic reactions. For example, graphite tends to act as a fuel, and can be included as an additive in the first pre-mixed composition. By keeping fuel and oxidizer separate as well as curing agent and resin separate, there are two primary permutations of pre-mixed compositions: (1) fuel + curing agent and oxidizer + resin; and (2) fuel + resin and oxidizer + curing agent. Viscous curing agents (e.g., Versamid 140) can be effectively mixed with coarse oxidizers.
The proportion of fuel to oxidizer will be set based on the desired pyrotechnic composition. The amount of binder ingredients required will be based on the selected fuel and oxidizer. Exemplary methods can use predetermined proportions of each ingredient typically used to prepare selected pyrotechnic combinations without varying the amount of binder required to evenly mix with other ingredients (e.g., fuel, oxidizer). By coating the fuel with binder ingredients, the fuel becomes far less likely to oxidize during storage, even when exposed to air. As such, a pre-mixed composition including fuel can be stored for long periods of time without needing to vacuum seal the pre-mixed composition. Mixing compatibility between binder ingredients and either fuel or oxidizer will depend on the type of mixer selected. For example, RAM mixers are more likely to cause clumping when adding a viscous curing agent to a fuel, whereas mix-muller mixers will be comparatively easier.
This method can be utilized using a variety of mixers such as bowl, mix-muller, twin-screw extrusion or resonant acoustic mixing. The concept of separate mixing and holding can potentially be used for many different applications, the illumination flare just happened to be the flare of choice however, this method is adaptable to colored flares, IR flares, and any other pyrotechnic with a multi-part binder system
Although the invention has been described in detail with reference to certain preferred embodiments, variations and modifications exist within the spirit and scope of the invention as described and defined in the following claims.
The present application is a continuation of U.S. Pat. Application Serial No. 16/290,200, filed Mar. 1, 2019, entitled “THREE PART MIXING PROCESS FOR ENERGETIC MATERIALS AND EPOXY BINDER,” which claims the benefit of and priority to U.S. Provisional Pat. Application Serial No. 62/636,932, filed Mar. 1, 2018, entitled “THREE PART MIXING PROCESS FOR ENERGETIC MATERIALS AND EPOXY BINDER,” the disclosures of which are expressly incorporated by reference herein.
The invention described herein was made in the performance of official duties by employees of the Department of the Navy and may be manufactured, used and licensed by or for the United States Government for any governmental purpose without payment of any royalties thereon. This invention (Navy Case 200433US03) is assigned to the United States Government and is available for licensing for commercial purposes. Licensing and technical inquiries may be directed to the Technology Transfer Office, Naval Surface Warfare Center Crane, email: Crane T2@navy.y.mil.
Number | Date | Country | |
---|---|---|---|
62636932 | Mar 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16290200 | Mar 2019 | US |
Child | 18224755 | US |