The invention relates to a multi-part piston ring.
DE 100 41 802 C1 discloses a single-part compression piston ring which is provided with a piston ring joint region and has cross section weak points on the ring circumference, the ring circumference of the compression piston ring being divided into four quadrants, wherein, when one piston ring joint edge is positioned in the first and the other piston ring joint edge is positioned in the fourth of the imaginary quadrants, the respective cross section weak point is only provided in the first and fourth quadrants.
DE 12 92 447 discloses an oil scraper ring for internal combustion engine pistons, having a helical spring ring which provides its tension and rests in an annular groove, the annular groove which receives the helical spring ring having a flat recess in the region of the piston ring joint.
DE 24 43 299 describes an oil scraper ring for a piston of an internal combustion engine, having slots distributed over the circumference and a spring which presses the oil scraper ring against the cylinder walls, the oil scraper ring having an at least approximately constant area moment of inertia over the entire circumference. In order to achieve the area moment of inertia, material is removed between slots on radially inner rotationally symmetrical areas of the oil scraper ring.
The invention is based on the object of developing a multi-part piston ring consisting of a spring support and spring element such that the radial pressure distribution, viewed over the entire circumference of the piston ring, can be made more uniform by optimising the spring support in functional connection with the spring element. The radial pressure distribution of the piston ring in the cylinder under the effect of temperature should in particular be made more uniform.
This object is achieved by a multi-part piston ring, containing an at least single-part spring support which is provided with a piston ring joint region and an at least single-part spring element, which is positioned in a groove provided in the region of the inner circumferential face of the spring support, wherein the wall thickness of the spring support is essentially equal in the region of the ends of the spring support facing the piston ring joint and in the rear region of the spring support, and a pocket which extends over a circumferential range of at least 60° and is created by local reduction of the wall thickness of the spring support is provided in each case between the rear region and the piston ring joint ends. Additionally, the radial depth of the circumferential groove, in the circumferential direction of the spring support, is modified by a cross-sectional change in the radial wall thickness relative to the running surface of the spring support in such a manner that the annular spring element is positioned inside the groove with a predefined ovality in a plane perpendicular to the axial direction of the piston ring.
Advantageous developments of the subject matter of the invention can be found in the dependent claims.
Analogously to the prior art according to DE 100 41 802 C1, the piston ring can notionally be divided into four quadrants. The respective pocket can be situated in the first or fourth quadrant. Alternatively, the pocket can be situated in the second or third quadrant.
It is likewise conceivable for the pocket to be made across quadrants in the spring support between the rear of the ring and the respective piston ring joint end.
It is particularly advantageous with respect to the radial pressure distribution if the pockets are provided symmetrically in the region of the respective quadrant.
It is furthermore advantageous if the cross-sectional change of the groove is only provided in the region of the respective pocket of the spring support.
The subject matter of the invention should generally in the first instance be applied to any type of piston ring. However, it is particularly advantageous to use the piston ring according to the invention as an at least two-part oil scraper ring, as compression rings are generally formed as single-part piston rings.
If the piston ring according to the invention is an oil scraper ring, it is furthermore proposed that the spring support be provided with at least two running surface webs.
With the subject matter of the invention, the surface pressure onto the cylinder wall by the contact faces of the spring support can be locally adjusted, by adapting the spring position and by locally changing the area moment of inertia of the spring support. In this case a cross-section change is made locally on the circumference (local change in the area moment of inertia), which advantageously affects both the spring position and the spring contact forces on the spring support and thus on the cylinder wall.
Temperature effects in the system on the spring support produce a positive ovality in the running of the fuelled engine. These positive ovalities (increased radial pressure on the piston ring joint end, which acts on the cylinder wall) result in negative effects in the cylinder such as poor oil scraping and formation of striations on the cylinder wall. As a result of the local change in the ring support, the radial pressure distribution in the cylinder can be made uniform under the influence of temperature.
According to the invention, a spring-supported piston ring, in particular an oil scraper ring, with non-uniform radial pressure distribution is thus proposed in such a manner that the radial pressure distribution assumes a minimum value in the region of the piston ring joint ends and assumes a maximum value in the range of 20 to 120° starting from the piston ring joint. The change in wall thickness is in this case produced from the superposition of a fifth order cosine function with the radius of curvature of the open spring support such that the radial pressure distribution on the running surface assumes a constant function and thus has no jumps.
The subject matter of the invention is shown in the drawing using an exemplary embodiment and is described as follows: In the figures:
The circumferential range α-α′ is in this case produced by forming pockets 2′, 2″, which entail the reduction in wall thickness a-b.
The pockets 2′, 2″ indicated in
This is different in
Number | Date | Country | Kind |
---|---|---|---|
10 2009 049 788 | Oct 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2010/063243 | 9/9/2010 | WO | 00 | 8/7/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/047922 | 4/28/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2951732 | Brenneke | Sep 1960 | A |
5664536 | Bigsby | Sep 1997 | A |
6322080 | Feistel | Nov 2001 | B1 |
6367808 | Feistel | Apr 2002 | B1 |
6631908 | Mittler et al. | Oct 2003 | B2 |
20030184023 | Masuyama et al. | Oct 2003 | A1 |
20120306159 | Mittler et al. | Dec 2012 | A1 |
Number | Date | Country |
---|---|---|
1292447 | Apr 1969 | DE |
2000923 | Jul 1971 | DE |
2443299 | Mar 1976 | DE |
3821 193 | Sep 1989 | DE |
3821193 | Sep 1989 | DE |
4310249 | Dec 1994 | DE |
10041802 | Feb 2002 | DE |
9196171 | Jul 1997 | JP |
Number | Date | Country | |
---|---|---|---|
20120306159 A1 | Dec 2012 | US |