The present invention relates generally to G-Rake receivers, and more particularly to the estimation of combining weights for a G-Rake receiver.
Conventional Rake receivers for Code Division Multiple Access (CDMA) systems exploit multipath reception for improved signal-to-noise ratios. In operation, each of two or more Rake fingers obtains despread values from a received CDMA signal by correlating the received signal against a known spreading sequence. By aligning the processing delay of each Rake finger with a different path delay of the multipath signal, the Rake receiver effectively obtains a different copy of the desired signal for each Rake finger. Maximum ratio combining of the despread values from each Rake finger yields, at least in theory, a combined signal having an improved signal-to-noise ratio as compared to the signal from any one Rake finger.
The “standard” Rake receiver works well in white noise environments, where the signal impairments are uncorrelated across the Rake fingers. Standard Rake receiver performance becomes sub-optimum in colored noise environments, where at least some components of the overall received signal impairments may be strongly correlated across the Rake fingers. In other words, the standard Rake receiver does not perform well in terms of suppressing colored interference, where the received signal impairments across Rake fingers may exhibit significant correlations.
The “Generalized Rake” (G-Rake) receiver was developed to better suppress interference by taking into account impairment correlations across Rake fingers. The basic operation of a G-Rake receiver is described in Bottomley, et al., Generalized Rake Reception for Cancelling Interference from Multiple Base Stations,” IEEE Vehicular Technology Conference (2000) and U.S. Pat. No. 6,363,104 B1 to Bottomley et al. The best interference suppression is achieved if up-to-date covariance information (the “instantaneous color” of the impairment) is used when determining the combining weights. U.S. Pat. No. 6,714,585 B1 to Wang et al. describes a method for computing G-Rake combining weights based on received signal impairment correlations.
Rather than directly calculating received signal impairment correlations, it is known to represent received signal impairments according to a parametric model that is dynamically “fitted” to ongoing observations of impairment, which may be short-term, somewhat “noisy” snapshots of received signal impairment. In parametric G-Rake receivers, an overall received signal covariance matrix is constructed based on available channel information and is expressed as the combination of various constituent components of the impairment. The relative weights (fitting parameters) of these components are determined dynamically, such as by fitting the model terms to ongoing impairment correlation measurements. U.S. Published Application No. 2005/0201447 A1 to Cairns et al. describes an exemplary parametric G-Rake receiver.
One problem with the parametric G-Rake receiver is the estimation of the scaling parameters. In parametric G-Rake receivers, the performance of the receiver in terms of interference suppression depends on the accuracy of the fitting parameters. The introduction of higher-order modulation and multiple-input, multiple-output in Release 7 of the WCDMA standard will increase the signal-to-interference ratio (SINR) at the receiver and will make parameter estimation less reliable. Therefore, there is considerable interest in finding and developing new techniques for obtaining reliable estimates of scaling parameters in a parametric G-Rake receiver.
The present invention provides a method and apparatus for computing combining weights in a parametric G-Rake receiver. A G-Rake processor computes initial estimates of one or more scaling parameters and initial combining weights for G-Rake combining. The G-Rake processor separately estimates the SINR of a received signal based on a mean pilot symbol estimate and the initial combining weights. Revised estimates for one or more scaling parameters are then computed by the G-Rake processor based on the estimated SINR and the initial combining weight estimates. The revised scaling parameter estimates are used to compute revised combining weights for G-Rake combining.
Referring now to the drawings,
In one exemplary embodiment, G-Rake processor 106 uses a parametric model of the impairment covariance to compute the G-Rake combining weight vector w. An impairment covariance matrix R is modeled as a weighted sum of an interference covariance matrix Ri and a noise covariance matrix Rn as shown below:
R=αR
i
+βR
n. Eq. (1)
In the above model, α is a scaling parameter for a modeled interference covariance matrix Ri, and β is a scaling parameter for a modeled thermal noise covariance matrix Rn. The combining weight vector w for a G-Rake receiver 100 may be computed according to:
w=R−1h, Eq. (2)
where h is the channel response vector corresponding to the pilot channel. Substituting the parametric model given by Eq. 1 into Eq. 2 then gives:
w=(αRi+βRn)−1h. Eq. (3)
The interference covariance matrix Ri and noise covariance matrix Rn may be calculated based on knowledge of the channel delays, channel coefficients, pulse shape, and finger placement as known in the art. The scaling parameters α and β may be estimated by measuring the impairment covariance R on the common pilot channel and adjusting the scaling parameters α and β to fit the parametric model given by Eq. 1 to the measured impairment covariance R. A least squares (LS) fitting process may be used to estimate the scaling parameters as described in Bottomley.
One problem with the parametric approach is the determination of the scaling parameters α and β. The use of higher order modulation and multi-input multiple-output (MIMO) in Release 7 of the WCDMA standard has increased the required signal-to-interference ratios (SINRs) of WCDMA receivers. The G-Rake receiver 100 improves the estimation of the scaling parameters by using a separate measure of the SINR to refine the initial estimates of the scaling parameters α and β to obtain revised estimates.
Conventionally, the SINR in a parametric G-Rake receiver, denoted herein by {circumflex over (γ)}, is computed according to:
To improve the estimation of the scaling parameters α and β, the G-Rake processor 106 exploits the fact that the scaling parameters α and β may be expressed as a function of {circumflex over (γ)}. Solving Eq. (4) for β yields:
By obtaining a separate estimate of the SINR, the G-Rake processor 106 may compute a revised estimate of β from Eq. 5. The same process may be used to express α as a function of {circumflex over (γ)} and to obtain a revised estimate of α.
One possible measurement of the SINR may be obtained based on the mean pilot symbol
where yk is a vector of despread values from the G-Rake combiner 104 associated with the kth pilot symbol and w0 represents a conventional solution of the combining weights for a G-Rake receiver 100. The noise power, denoted {circumflex over (σ)}n2, may be estimated as the variance of the mean pilot symbol, which is given by:
The signal power of the mean pilot symbol is calculated as the square of the mean pilot symbol |
It may be noted that a small portion of the noise estimate σn2 may be subtracted from the mean pilot symbol power |
Using an independent estimate {circumflex over (γ)} of the SINR to generate revised (2 d pass) estimates {circumflex over (α)}1, {circumflex over (β)}1 of the scaling parameters α and β may significantly improve the final G-Rake combining weights, resulting in better interference suppression during Rake combining and better error rate performance.
The present invention may, of course, be carried out in other ways than those specifically set forth herein without departing from essential characteristics of the invention. The present embodiments are to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.