Multi-path acoustic signal improvement for material detection

Information

  • Patent Grant
  • 11585690
  • Patent Number
    11,585,690
  • Date Filed
    Monday, December 6, 2021
    3 years ago
  • Date Issued
    Tuesday, February 21, 2023
    a year ago
Abstract
A multi-path acoustic signal apparatus, system, and apparatus for use in material detection are provided. The apparatus has a plurality of acoustic sensors positioned along a first portion of a fluid container. At least one acoustic signal is transmitted into the fluid container by each of the plurality of acoustic sensors. At least one additional acoustic sensor is positioned along a second portion of the fluid container, wherein the second portion is substantially opposite the first portion. The at least one additional acoustic sensor receives at least a portion of the acoustic signals from the plurality of acoustic sensors. A reflected acoustic signal is generated from an impedance barrier between the fluid container and a fluid therein. A characteristic of a material of the fluid container and/or the fluid therein are determined.
Description
FIELD OF THE DISCLOSURE

The present disclosure is generally related to acoustic signals and more particularly is related to multi-path acoustic signal improvements for material detection.


BACKGROUND OF THE DISCLOSURE

Many materials that are transported through pipes have significant acoustic impedance difference with material that the pipe sidewall is formed from. For example, fluids, liquids, and other viscous materials have a significant acoustic impedance difference relative to pipes or pipelines formed from metals, such as cast iron, steel, aluminum, or the like. Similarly, materials stored in containers, especially metal containers such as oil and gas storage tanks, have characteristically big differences with the material that the container wall is formed from.


With regards to the oil and gas industry specifically, steel is the material often used for pipelines. A steel pipe carrying crude oil has an acoustic impedance barrier which reflects approximately 88% of the energy of the acoustic wave back into the pipe wall depending on the temperature. Only approximately 12% from the energy of the incident wave is transmitted into the crude oil itself. In a similar example, when a cast iron pipe is used to transport water, the amount of the reflected energy is approximately 98.30311% from the incidence wave energy. Due to this reflection of the acoustic wave energy, pipelines and containers with larger sizes often present a challenge for nondestructive analysis since most of the initial signal is lost just crossing the sidewall of the pipe or container containing the fluid.


Thus, a heretofore unaddressed need exists in the industry to address the aforementioned deficiencies and inadequacies.


SUMMARY OF THE DISCLOSURE

Embodiments of the present disclosure provide a multi-path acoustic signal system, apparatus, and related methods for use in material detection. Briefly described, in architecture, one embodiment of the apparatus, among others, can be implemented as follows. The apparatus has a plurality of acoustic sensors (or transceivers) positioned along a first portion of a fluid container. At least one acoustic signal is transmitted into the fluid container by each of the plurality of acoustic sensors. At least one additional acoustic sensor is positioned along a second portion of the fluid container, wherein the second portion is substantially opposite the first portion. The at least one additional acoustic sensor receives at least a portion of the acoustic signals from the plurality of acoustic sensors. A reflected acoustic signal is generated from an impedance barrier between the fluid container and a fluid therein. A characteristic of a material of the fluid container and/or the fluid therein are determined.


The present disclosure can also be viewed as providing methods of detecting a material within a fluid container. In this regard, one embodiment of such a method, among others, can be broadly summarized by the following steps: transmitting at least one acoustic signal from each of a plurality of acoustic sensors positioned along a first portion of the fluid container; receiving, with at least one additional acoustic sensor positioned along a second portion of the fluid container, the at least one transmitted acoustic signal, wherein the second portion is substantially opposite the first portion of the fluid container; and determining, based on the at least one received acoustic signal, a composition of the material within the fluid container.


Other systems, methods, features, and advantages of the present disclosure will be or become apparent to one with skill in the art upon examination of the following drawings and detailed description. It is intended that all such additional systems, methods, features, and advantages be included within this description, be within the scope of the present disclosure, and be protected by the accompanying claims.





BRIEF DESCRIPTION OF THE DRAWINGS

Many aspects of the disclosure can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present disclosure. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.



FIG. 1 is a diagrammatical illustration of a multi-path acoustic signal apparatus, in accordance with a first exemplary embodiment of the present disclosure.



FIG. 2 is a diagrammatical illustration of a variation of the multi-path acoustic signal apparatus of FIG. 1, in accordance with the first exemplary embodiment of the present disclosure.



FIG. 3 is a side-view, diagrammatical illustration of a variation of the multi-path acoustic signal apparatus of FIG. 1, in accordance with the first exemplary embodiment of the present disclosure.



FIG. 4 is a diagrammatical illustration of the multi-path acoustic signal apparatus of FIG. 1 in communication with a computer processor, in accordance with the first exemplary embodiment of the present disclosure.



FIG. 5 is a flow chart illustrating a method of detecting a material within a fluid container, in accordance with the first exemplary embodiment of the present disclosure.





DETAILED DESCRIPTION

To improve upon the use of acoustic signals for the detection of materials in fluid-holding pipes, pipelines, containers, or other structures, a multi-path acoustic signal apparatus 10 is provided. In particular, it has been discovered that using a sheer wave through the sidewall of a container holding a material will increase the amount of acoustic energy that is transmitted into the material within the container. In one example, the increase of acoustic energy exceeded 21%. However, the acoustic shear waves are generated with smaller initial energy. Accordingly, to increase the energy of the initial signal, and therefore the effective signal received at a receiving acoustic sensor which is positioned across the container, it is possible to use multiple signals from multiple acoustic sensors that are directed towards the same location on the other side of the container.



FIG. 1 is a diagrammatical illustration of the multi-path acoustic signal apparatus 10, in accordance with a first exemplary embodiment of the present disclosure. The multi-path acoustic signal apparatus 10, which may be referred to simply as ‘apparatus 10’ includes a plurality of acoustic sensors 20 positioned along a first portion 42 of a fluid container 40, such as a pipeline, as shown in FIG. 1. Any plural number of the acoustic sensors 20 or transducers may be used, and the acoustic sensors 20 may be positioned along a single side or location of the container 40. For instance, in FIG. 1, the acoustic sensors 20 are positioned along a first portion 42 of the container 40, which generally includes a finite area of radial curvature of the container 40, or a portion encompassing less than the entire circumference or perimeter of the fluid container 40. In one example, the first portion 42 may extend to no more than half of the circumference or perimeter of the fluid container 40. For containers 40 that have planar or substantially planar sidewalls, the acoustic sensors 20 may be positioned on a single sidewall or a portion thereof.


At least one acoustic signal 50 is transmitted by each of the acoustic sensors 20 into the fluid container 40, and into a material 12 within the container 40. To aid in clarity of disclosure, the apparatus 10 is described herein relative to a container 40 that is a pipe or pipeline which carries a fluid oil or gas product, but the apparatus 10 can be used in other fields with other containers, such as those holding or transporting water, chemicals, or other materials. The acoustic signal 50 that is transmitted travels through the sidewall 46 of the container 40, through the interior of the container 40 and through any material 12 therein, and through the sidewall 46 of the container 40 on a substantially opposite side of the container 40 from the locations of the acoustic sensors 20. When the signal 50 passes through the sidewall 46 for the second time, it is received within at least one additional acoustic sensor 30, which is positioned along a second portion 44 of the fluid container 40.


As shown in FIG. 1, the second portion 44 of the container 40 may be substantially opposite the first portion 42, such that as the signal 50 is transmitted between the sensors 20, 30, it travels through the interior of the container 40. In one example, the second portion 44 may include any portion of or position along the circumference of the fluid container 40. In another example, the second portion 44 may be less than the entire circumference of the fluid container 40. In another example, the second portion 44 may be the portion of the circumference that is not the first portion 42. In another example, at least a portion of the first and second portions 42, 44 may overlap. The sensors 20, 30 are located on the exterior surface of the container 40 and may be positioned in a location to account for the transmission angle of the signal 50 from the acoustic sensor 20 and changes in crossing the impedance barrier between the material forming the container 40 and the material 12 within the container. In one example, the sensors 20, 30 may be in direct contact with the container 40. In another example, a couplant material may be used between the sensors 20, 30 and the container 40 to ensure proper transfer of the acoustic signals 50. During the installation of the apparatus 10, locations of each acoustic sensor 20, 30 may be determined depending on the geometry of the container, e.g., cylindrical pipe, cylindrical tank, cuboid tank, etc., the material which is used to form the sidewall 46 of the container 40, and the material 12 or materials inside the container 40. In one example, the acoustic sensors 20 may be positioned at equal distances, one from another, such that the adjacent sensors 20 are spaced apart evenly. In another example, the acoustic sensors 20 may be separated and spaced apart from each other at different distances, one from another. In another example, the acoustic sensors 20 may be positioned at desired angular positions, for instance, at 0°, 15°, 30°, 45°, 60°, or any desired angle. In another example, the acoustic sensors 20 may be separated according to desired angular increments, such as increments of 5°, 10°, 15°, and so on. The angular placement of the acoustic sensors 20 may be determined relative to an orientation of the at least one additional acoustic sensor 30 or to an axis extending through a cross-section of the fluid container 40.


In one example, at least one acoustic sensor 20 may be directly opposite the at least one additional acoustic sensor 30. In other words, at least one acoustic sensor 20 may be positioned directly opposite the additional acoustic sensor 30 relative to the fluid container 40. An acoustic signal 50 transmitted from the acoustic sensor 20 may propagate through an entire diameter or internal length of the fluid container 40, depending on the geometry. The acoustic signal 50 may propagate through a center or central area of the interior of the fluid container 40. Other acoustics sensors 20 may be positioned so that the acoustic signals 50 transmitted from those sensors 20 may have traveled shorter distances than the entire diameter or internal length of the fluid container 40 to reach the additional acoustic sensor 30.


In one example, the plurality of acoustic sensors 20 and the at least one additional acoustic sensor 30 may be positioned so that the transmitted acoustic signals 50 travel through a distance of at least half of a diameter of the fluid container 12. For instance, one acoustic sensor 20 may be positioned at an angle of 0° relative to the additional acoustic sensor 30. Subsequent acoustic sensors 20 may be positioned at larger angles relative to the additional acoustic sensor 30, but not closer than half the circumference or interior length of the fluid container 12.


At least one additional acoustic sensor 30 receives at least a portion of the acoustic signals 50 from the acoustic sensors 20 transmitting the signals 50. Due to the impedance barrier between the materials of the container 40 and the material 12 therein, a reflected acoustic signal is generated. This reflected acoustic signal may be received at the acoustic sensors 20 or it may dissipate, thereby leaving the portion of the original acoustic signal 50. From the acoustic signal 50 received at the acoustic sensor 30, and/or the reflected signals, and commonly a combination thereof, it is possible to analyze the signals to identify a characteristic of the material forming a sidewall 46 of the fluid container 40 and/or the fluid 12 or other material within the container 40.



FIG. 2 is a diagrammatical illustration of a variation of the multi-path acoustic signal apparatus 10 of FIG. 1, in accordance with the first exemplary embodiment of the present disclosure. It is noted that the receiving sensor 30 can be configured as a single sensor 30, as depicted in FIG. 1, or as multiple acoustic sensors 30, as depicted in FIG. 2, which illustrates a variation of the multi-path acoustic signal apparatus of FIG. 1. Additionally, as shown in FIG. 2, the acoustic sensors 30 may be configured as a sensor array which are mounted together on an array structure 32, and/or they may be movable in position, as indicated by arrows 34. An array of acoustic sensors 30 may increase the accuracy of the measurement of the incidence angles, which may in turn increase the accuracy of measured impedance. This may allow direct measurement of material density as an independent parameter using only the measured time of flight and the angle of transmission of shear wave signals after crossing one or more impedance barriers.


The movable acoustic sensor 30 which receives the signal 50 can be moved in a variety of directions and positions. For example, it can be moved along a plane tangential to the cylindrical shape and sidewall of the container 40. For containers 40 which have other shapes, such as cuboid, the acoustic sensor 30 may only need to be moved in a planar direction on one side of the container 40. This movement of the acoustic sensor 40 can catch signals 50 that reflect geometrically outside of the baseline acoustic sensor 30 location, e.g., as depicted in FIG. 1. This may be especially important for situations where there is a change of temperature or change of fluid composition of the material 12 inside the container 40. In one example, at least one of the acoustic sensors 30 may remain stationary. For instance, a central acoustic sensor 30 may remain in a fixed position, while other acoustic sensors 30 move about the fluid container 40. In another example, one or more acoustic sensors 30 may remain stationary at a first measurement time, but may move at or in order to acquire a subsequent measurement. It should be understood that any combination of stationary, moveable, and periodically moving sensors 30 is within the scope of the subject disclosure.


In one example, moving the acoustic sensor 30 may allow for the measurement and tracking of fluid material density changes or temperature changes, or any other material property changes within the volume of the material.


It may be possible to use a laser interferometer design in operation with the movable acoustic sensor 30, which may include an acoustic peak detector, similar to that used in radio signal transmission, where electromagnetic wave receivers change frequencies to find signals peak due to fading, which may be due to the fact that the carrier frequency may be modified but the frequency encoding is the same.


It is noted that the number of acoustic sensors 20 on the signal 50 transmission side can be determined from various factors, including the condition of the fluid material 12 inside the container 40, a movement or flow of the material 12 within the container, and/or a need for increased signal strength. It is also noted that the acoustic sensors 20 which transmit the signal 50 may be capable of moving position and/or rotating, as indicated by arrows 22, 24 in FIG. 2. For example, the acoustic sensors 20 may be capable of rotating or moving in a plane tangential to the surface of the container 40. This ability of the transmitting acoustic sensors 20 to change position or rotate allows for the signal transmission to compensate for any changing conditions in the material 12, and to control or steer the desired path of the signal 50.


The type of acoustic signal 50 transmitted from the acoustic sensors 20 through the sidewall 46 of the container 40 may include shear waves and/or longitudinal waves, since the incidence angles can be set to match the conditions of the apparatus 10, the container 40, and/or the material 12 therein. The frequency of the acoustic signal 50 may be any suitable acoustic frequency or combination of frequencies within the acoustic spectrum, including subsonic, sonic, and ultrasonic frequencies. The frequencies used may be determined based on the composition of the fluid container 40, the expected fluid material 12, or a combination thereof.


The acoustic sensors 30 sensing the material composition of the sidewall 46 of the container 40 may receive the first echo 52 when processing the signal from the acoustic sensors 20 transmitting the signal 50, as shown in FIG. 1. Then, the remaining signal 50 penetrates the inner surface of the sidewall 46 of the container. At this point, the reflections from this impedance barrier can be processed to determine the type of material 12 within the container 40. The use of additional acoustic sensors 20 which transmit additional signals 50 in additional pathways act to increase the signal fidelity and improve the accuracy of the apparatus 10.


Turning to FIG. 3, it is a side-view, diagrammatical illustration of a variation of the multi-path acoustic signal apparatus 10 of FIG. 1, in accordance with the first exemplary embodiment of the present disclosure. In particular, FIG. 3 illustrates the apparatus in use with a fluid material 12 which flows or moves through a container 40, such as a pipeline. When the fluid material 12 is flowing through the container 40, the acoustic sensors 20, 30 sensing the signals 50 can be added in two or more dimensions or positions along the direction of the flow of the fluid material 12, e.g., in a perpendicular direction of the flow of the fluid material 12. This allows the apparatus to determine the flow of the fluid material 12 and additional parameters of the fluid material 12, such as the type of material, the density of the material, or other characteristics. As shown in FIG. 3, one group of acoustic sensors 20, 30 is positioned near one side of the container 40 while a second group of sensors 20, 30 are positioned towards a different side of the container 40. Each group includes sending sensors 20 and the acoustic sensor 30 or sensors which receive the signal 50.


With respect to the apparatus 10 in FIGS. 1-3, the signals 50 transmitted may be phase synchronized since it may be necessary to combine their amplitudes in the receiving sensor 30 before processing of the signal 50. It is possible to use the wave physical properties to amplify the signal 50, such as by superimposing multiple waves 50 over time. While adding multiple signals 50 that measure the same parameters, the noise from the multiple signals 50 stays the same as for single transducer 20 due to the random characteristic of the noise. Attenuation is most affected by this process since this parameter is most sensitive to the material parameters. Additionally, acoustic wave absorption as well as speed of sound may be compensated for temperature, and as such, a temperature sensor 60 may be used to identify the temperature of the fluid material 12. The temperature sensor 60 may be in communication with the fluid material 12 either directly, or in indirect thermal communication in order to determine the temperature of the fluid material 12. In one example, the temperature sensor 60 may determine the temperature of the fluid container 40.


Furthermore, the wave absorption may be measured at different frequencies. Different frequencies can be used in certain cases, where the material acoustic attenuation allows for receiving of different signals 50 with each individual signal 50 using a separate frequency or range of frequencies. In this way, the signals 50 may not need to be synchronized and it may be possible to measure multiple points of the absorption vs. frequency curve at the same time periodically.


Additionally, it is noted that time of flight measurements may be taken, and additional processing may be used since each path of the signal 50 may have a different time of flight. In the case when each signal path is using different frequencies, the time of flight may be measured separately.


In operation, the apparatus 10 may be calibrated during assembly or before use. In one example, calibration may include mounting an acoustic sensor 20 to the exterior of the fluid container 40 along the first portion 42. The at least one additional acoustic sensor 30 may be mounted along the second portion 44. The additional acoustic sensor 30 may be moved about the fluid container 40 until a maximum signal point is found, which may be used to determine a first path of the signal between the acoustic sensors 20, 30. More acoustic sensors 20 may be mounted to the outside of the fluid container 40 at different locations along the first portion 42. The acoustic sensors 20 may be moved until a maximum signal point between the sensors 20 and the additional acoustic sensor 30 is found. This may allow the apparatus 10 to better operate within larger fluid containers 40.



FIG. 4 is a diagrammatical illustration of the multi-path acoustic signal apparatus 10 of FIG. 1 in communication with a computer processor 80, in accordance with the first exemplary embodiment of the present disclosure. The apparatus 10 may be understood with reference to FIGS. 1-3, above; however, for clarity of illustration, not all of the reference characters have been shown. The acoustic sensors 20, 30 may be in electrical communication over at least one network 70 with a computer processor 80. The at least one network 70 may include any suitable network systems, including wired data connections and wireless data connections, e.g., LAN, intranet, Internet, Wi-Fi®, Bluetooth®, NFC, radio, or any other type of network connection. The computer processor 80 may include any type and number of processors, including stationary processors, mobile processors, mobile devices, processor arrays, cloud processing networks, and the like. The computer processor 80 may include any components required for operation, including a power source, computer-readable memory, network communications, and the like.


Data from the acoustic sensors 20, 30 may be communicated to the computer processor 80 along the at least one network 70. Communicated data may include data from the plurality of acoustic sensors 20 positioned along the first portion 42 of the fluid container 40, such as characteristic information about any acoustic signals transmitted, and received data from any reflected acoustic signals received by the acoustic sensors 20. Communicated data may further include data from the at least one additional acoustic sensor 30 positioned along the second portion 44 of the fluid container 40, such as received data from the transmitted acoustic signals 50 received by the additional acoustic sensor 30. The communicated data may be analyzed to determine composition and other material characteristics of the material 12 within the fluid container 40.



FIG. 5 is a flow chart 500 illustrating a method of detecting a material within a fluid container, in accordance with the first exemplary embodiment of the present disclosure. It should be noted that any process descriptions or blocks in flow charts should be understood as representing modules, segments, portions of code, or steps that include one or more instructions for implementing specific logical functions in the process, and alternate implementations are included within the scope of the present disclosure in which functions may be executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those reasonably skilled in the art of the present disclosure.


Step 510 includes transmitting at least one acoustic signal from each of a plurality of acoustic sensors positioned along a first portion of the fluid container. In one example, at least one of the transmitted acoustic signals may differ from another transmitted acoustic signal in one or more ways. For instance, at least one transmitted acoustic signal may have a frequency different from another. At least one transmitted acoustic signal may have a pulse length or transmission length different from another. For example, one signal may include a shorter pulse, while another may include a long pulse. In one example, one transmitted acoustic signal may be continuous, while another is not. At least one transmitted acoustic signal may have a periodic or patterned transmission. In another example, one or more transmitted acoustic signals may have the same frequency, pulse length, or periodic or patterned transmission.


In one example, at least one of the transmitted acoustic signals may propagate through the fluid container in a direction different from another acoustic signal. For instance, the plurality of acoustic sensors may be positioned at different angular locations on the fluid container, but may each be oriented toward the same point. Put another way, all of the acoustic sensors may be located at different positions within a plane extending through the fluid container.


In one example, a phase of the transmitted acoustic signals may be synchronized between the signals such that periodic maxima and minima in the amplitude of the signals occur at the same time. This may allow the transmitted signals to be constructively or destructively interfered with one another.


Step 520 includes receiving, with at least one additional acoustic sensor positioned along a second portion of the fluid container, the at least one transmitted acoustic signal, wherein the second portion is substantially opposite the first portion of the fluid container. In one example, at least one of the transmitted acoustic signals may travel through the entire diameter of the fluid container. In another example, at least one of the transmitted acoustic signals may travel through less than the entire diameter of the fluid container.


Step 530 includes determining, based on the at least one received acoustic signal, a composition of the material within the fluid container.


Step 540 includes receiving, with at least one of the plurality of acoustic sensors positioned along the first portion of the fluid container, at least one reflected acoustic signal generated from an impedance barrier between the fluid container and the material.


Step 550 includes determining, based on the at least one received acoustic signal and the at least one reflected acoustic signal, a composition of the material within the fluid container. In one example, a temperature sensor may be used to determine a temperature of the material, the fluid container, or both. The determined temperature or temperatures may be used to determine the composition or other characteristics of the material within the fluid container.


It should be emphasized that the above-described embodiments of the present disclosure, particularly, any “preferred” embodiments, are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the disclosure. Many variations and modifications may be made to the above-described embodiment(s) of the disclosure without departing substantially from the spirit and principles of the disclosure. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present disclosure and protected by the following claim.

Claims
  • 1. A multi-path acoustic signal apparatus for use in material detection, the apparatus comprising: a plurality of acoustic transceivers positioned along a first portion of a fluid container;at least one acoustic signal transmitted into the fluid container by each of the plurality of acoustic transceivers;at least one additional acoustic transceiver positioned along a second portion of the fluid container, wherein the second portion is substantially opposite the first portion, and wherein the at least one additional acoustic transceiver receives at least a portion of the acoustic signals from the plurality of acoustic transceivers; anda reflected acoustic signal generated from an impedance harrier between the fluid container and a fluid therein, and wherein a characteristic of a physical material of the fluid container and/or the fluid therein is determinable based on, at least in part, the reflected acoustic signal generated form the impedance barrier.
  • 2. The multi-path acoustic signal apparatus of claim 1, wherein at least one of the plurality of acoustic transceivers is positioned directly opposite the at least one additional acoustic transceiver.
  • 3. The multi-path acoustic signal apparatus of claim 1, wherein the plurality of acoustic sensors are evenly spaced apart from one another.
  • 4. The multi-path acoustic signal apparatus of claim 1, wherein the plurality of acoustic transceivers are spaced apart from one another at different distances.
  • 5. The multi-path acoustic signal apparatus of claim 1, wherein at least one of the plurality of acoustic transceivers is rotatable within a plane tangential to a surface of the fluid container.
  • 6. The multi-path acoustic signal apparatus of claim 1, wherein the plurality of acoustic transceivers and the at least one additional acoustic transceiver are positioned so that the transmitted acoustic signals travel through a distance of at least half a diameter of the fluid container.
  • 7. The multi-path acoustic signal apparatus of claim 1, wherein at least one transmitted acoustic signal travels through a distance of an entire diameter of the fluid container.
  • 8. The multi-path acoustic signal apparatus of claim 1, wherein the first portion extends no more than half of a perimeter of the fluid container.
  • 9. The multi-path acoustic signal apparatus of claim 1, wherein the at least one additional acoustic transceiver is movable along a plane tangential to a sidewall of the fluid container.
  • 10. The multi-path acoustic signal apparatus of claim 1, further comprising a temperature sensor in communication with the material.
  • 11. The multi-path acoustic signal apparatus of claim 1, wherein the at least one additional acoustic transceiver comprises an array of acoustic transceivers.
  • 12. The multi-path acoustic signal apparatus of claim 11, wherein the acoustic transceivers in the array are movable about an exterior sidewall of the fluid container.
CROSS REFERENCE TO RELATED APPLICATION

This application claims benefit of U.S. Provisional Application Ser. No. 63/121,727 filed Dec. 4, 2020 and titled “Multi-Path Acoustic Signal Improvement for Material Detection”, the entire disclosure of which is incorporated herein by reference.

US Referenced Citations (165)
Number Name Date Kind
2449054 Chantlin Sep 1948 A
3019650 Worswick Feb 1962 A
3703829 Dougherty Nov 1972 A
3837218 Flambard et al. Sep 1974 A
3971962 Green Jul 1976 A
4065958 Krylova Jan 1978 A
4118983 Braznikov Oct 1978 A
4121468 Glover et al. Oct 1978 A
4182177 Prough Jan 1980 A
4280126 White Jul 1981 A
4320659 Lynnworth et al. Mar 1982 A
4501146 Greenhalgh Feb 1985 A
4580448 Skrgatic Apr 1986 A
4596266 Kinghorn et al. Jun 1986 A
4676098 Erlenkämper et al. Jun 1987 A
4852416 Boone et al. Aug 1989 A
4934191 Kroening Jun 1990 A
4954997 Dieulesaint et al. Sep 1990 A
4977780 Machida et al. Dec 1990 A
5015995 Holroyd May 1991 A
5038611 Weldon et al. Aug 1991 A
5148700 King Sep 1992 A
5195058 Simon Mar 1993 A
5295120 McShane Mar 1994 A
5325727 Miller et al. Jul 1994 A
5415033 Maresca, Jr. et al. May 1995 A
5438868 Holden et al. Aug 1995 A
5460046 Maltby et al. Oct 1995 A
5469749 Shimada et al. Nov 1995 A
5604314 Grahn Feb 1997 A
5770806 Hiismaki Jun 1998 A
5821427 Byrd Oct 1998 A
6035903 Few et al. Mar 2000 A
6151956 Takahashi et al. Nov 2000 A
6157894 Hess et al. Dec 2000 A
6192751 Stein Feb 2001 B1
6330831 Lynnworth et al. Dec 2001 B1
6368281 Solomon et al. Apr 2002 B1
6443006 Degrave Sep 2002 B1
6470744 Usui et al. Oct 2002 B1
6481287 Ashworth et al. Nov 2002 B1
6513385 Han Feb 2003 B1
6575043 Huang et al. Jun 2003 B1
6578424 Ziola et al. Jun 2003 B1
6631639 Dam et al. Oct 2003 B1
6672163 Han et al. Jan 2004 B2
6925868 Young et al. Aug 2005 B2
6938488 Diaz et al. Sep 2005 B2
7085391 Yamava Aug 2006 B1
7114375 Panetta et al. Oct 2006 B2
7246522 Diaz et al. Jul 2007 B1
7299136 DiFoggio et al. Nov 2007 B2
7330797 Bailey et al. Feb 2008 B2
7363174 Kishiro et al. Apr 2008 B2
7624650 Gysling et al. Dec 2009 B2
7624651 Fernald et al. Dec 2009 B2
7656747 Mandal et al. Feb 2010 B2
7694570 Dam et al. Apr 2010 B1
7962293 Gysling Jun 2011 B2
7966882 Greenwood Jun 2011 B2
8249829 Vass et al. Aug 2012 B2
8683882 Jackson Apr 2014 B2
8820182 Nikolay Nikolov et al. Sep 2014 B2
8850882 Qu et al. Oct 2014 B2
8915145 Van Orsdol Dec 2014 B1
9057677 Field Jun 2015 B2
9557208 Kuroda Jan 2017 B2
9891085 Muhammad et al. Feb 2018 B2
10122051 Kuhne et al. Nov 2018 B2
10458871 Norli Oct 2019 B2
10794871 Blackshire et al. Oct 2020 B1
11020793 De Monte et al. Jun 2021 B2
20020170753 Clare Nov 2002 A1
20040079150 Breed et al. Apr 2004 A1
20040173021 Lizon et al. Sep 2004 A1
20040226615 Morikawa et al. Nov 2004 A1
20050055136 Hofmann et al. Mar 2005 A1
20050128873 LaBry Jun 2005 A1
20050178198 Freger et al. Aug 2005 A1
20050247070 Arshansky et al. Nov 2005 A1
20060196224 Esslinger Sep 2006 A1
20070068253 Carodiskey Mar 2007 A1
20070157737 Gysling et al. Jul 2007 A1
20070205907 Schenk, Jr. Sep 2007 A1
20080092623 Lynch et al. Apr 2008 A1
20080101158 Hosseini et al. May 2008 A1
20090143681 Jurvelin et al. Jun 2009 A1
20100111133 Yuhas et al. May 2010 A1
20100199779 Liu et al. Aug 2010 A1
20100242593 Lagergren et al. Sep 2010 A1
20110029262 Barkhouse Feb 2011 A1
20110072904 Lam et al. Mar 2011 A1
20110120218 Aldridge May 2011 A1
20110239769 Schmitt et al. Oct 2011 A1
20110271769 Kippersund et al. Nov 2011 A1
20110284288 Sawyer et al. Nov 2011 A1
20120024067 Oberdoerfer et al. Feb 2012 A1
20120055239 Sinha Mar 2012 A1
20120259560 Woltring et al. Oct 2012 A1
20120262472 Garr et al. Oct 2012 A1
20120281096 Gellaboina et al. Nov 2012 A1
20130002443 Breed et al. Jan 2013 A1
20130068027 Sullivan et al. Mar 2013 A1
20130080081 Dugger et al. Mar 2013 A1
20130090575 Rupp et al. Apr 2013 A1
20130120155 Hagg May 2013 A1
20130128035 Johns et al. May 2013 A1
20130213714 Fuida Aug 2013 A1
20140020478 Ao et al. Jan 2014 A1
20140027455 Castellano et al. Jan 2014 A1
20140076415 Dunki-Jacobs et al. Mar 2014 A1
20140107435 Sharf et al. Apr 2014 A1
20140223992 Harper et al. Aug 2014 A1
20140301902 Fernald et al. Oct 2014 A1
20140375169 Na et al. Dec 2014 A1
20150075278 Dockendorff Mar 2015 A1
20150212045 Raykhman et al. Jul 2015 A1
20150247751 Kutlik et al. Sep 2015 A1
20150260003 McHugh et al. Sep 2015 A1
20150276463 Milne et al. Oct 2015 A1
20150369647 Kumar et al. Dec 2015 A1
20160025545 Saltzgiver et al. Jan 2016 A1
20160041024 Reimer et al. Feb 2016 A1
20160108730 Fanini et al. Apr 2016 A1
20160146653 Skelding May 2016 A1
20160169839 Gottlieb et al. Jun 2016 A1
20160216141 Leaders et al. Jul 2016 A1
20160320226 Schaefer et al. Nov 2016 A1
20170002954 Brown et al. Jan 2017 A1
20170010144 Lenner et al. Jan 2017 A1
20170010145 Lenner et al. Jan 2017 A1
20170010146 Kassubek et al. Jan 2017 A1
20170059389 Moore et al. Mar 2017 A1
20170082650 Hies et al. Mar 2017 A1
20170087526 Luharuka Mar 2017 A1
20170102095 Kunita et al. Apr 2017 A1
20170097322 Giese et al. Jun 2017 A1
20170199295 Mandal Jul 2017 A1
20170202595 Shelton, IV Jul 2017 A1
20170239741 Furuta Aug 2017 A1
20170268915 Gestner et al. Sep 2017 A1
20170309989 Waelde et al. Oct 2017 A1
20180035603 Kremmer et al. Feb 2018 A1
20180044159 Crouse et al. Feb 2018 A1
20180080809 Tokarev et al. Mar 2018 A1
20180149505 Ploss et al. May 2018 A1
20180266874 Montoya et al. Sep 2018 A1
20180299317 Truong et al. Oct 2018 A1
20180306628 Parrott Oct 2018 A1
20180348169 Lee et al. Dec 2018 A1
20190011304 Cunningham et al. Jan 2019 A1
20190063984 Bowley Feb 2019 A1
20190078927 Takayama Mar 2019 A1
20190137310 Xiao et al. May 2019 A1
20190195629 Vaissiere Jun 2019 A1
20190195830 Tamura et al. Jun 2019 A1
20190272496 Moeller Sep 2019 A1
20200018628 Head et al. Jan 2020 A1
20200182736 Kim et al. Jun 2020 A1
20200378283 Zhang et al. Dec 2020 A1
20200378812 Heim Dec 2020 A1
20200378818 Heim et al. Dec 2020 A1
20210382014 Xu et al. Dec 2021 A1
20220178879 Bivolarsky Jun 2022 A1
20220178881 Bivolarsky Jun 2022 A1
Foreign Referenced Citations (10)
Number Date Country
105548370 May 2016 CN
10 2010 029 254 Dec 2011 DE
2450701 May 2012 EP
2962096 Aug 2019 EP
200174618 Mar 2000 KR
WO-8704793 Aug 1987 WO
WO 8809895 Dec 1988 WO
WO 2007149605 Dec 2007 WO
WO 2014167471 Oct 2014 WO
WO 2020136945 Jul 2020 WO
Non-Patent Literature Citations (80)
Entry
Amjad, Umar et al, “Advanced signal processing technique for damage detection in steel tubes” Proceedings of SPIE, Health Monitoring of Structural and Biological Systems 2016, 980511 (Apr. 1, 2016); 14 pgs.
Amjad, Umar et al. “Change in time-to-flight of longitudinal (axisymmetric) wave modes due to lamination in steel pipes” Proceedings of SPIE vol. 8695, Health Monitoring of Structural and Biological Systems 2013, 869515 (Apr. 17, 2013); 10 pgs.
Amjad, Umar et al., “Effects of transducers on guided wave based structural health monitoring” Proceedings of SPIE, vol. 10600, Health Monitoring of Structural and Biological Systems XII, 106000F (Apr. 23, 2018), 10 pgs.
Amjad, U. et al., “Generalized representations and universal aspects of Lamb wave dispersion relations” Proceedings of SPIE, vol. 7650, Health Monitoring of Structural and Biological Systems 2010, 76502F (Apr. 8, 2010), 9 pgs.
Amjad, Umar et al., “Detection and quantification of pipe damage from change in time of flight and phase” Ultrasoncis vol. 62 (2015) pp. 223-236, Jun. 11, 2015, 14 pgs.
Amjad, Umar et al., “Detection and quantification of diameter reduction due to corrosion in reinforcing steel bars” Structural Health Monitoring 2015, vol. 14(5) 532-543, 12 pgs.
Amjad, Umar et al., “Detection and quantification of delamination in laminated plates from the phase of appropriate guided wave modes” Optical Engineering 55(1), Jan. 2016, 11 pgs.
API: American Petroleum Institute Preliminary Program, Oct. 16-17, 2019, 5 pages.
Gurkov, Andrey “Gigantic Druzhba oil pipeline paralyzed for weeks” May 7, 2019, 3 pages, https://www.dw.com/en/gigantic-druzhba-oil-pipeline-paralyzed-for-weeks/a-48638989.
Hassanzadeh et al., “Investigation of factors affecting on viscosity reduction of sludge from Iranian crude oil storage tanks”, Petroleum Science, vol. 15, Jul. 2018, pp. 634-643.
Kak et al., “Principles of Computerized Tomographic Imaging”, IEEE, 1988, Chapter 2, 48 pgs.
Luck, Marissa “Deer Park fire a ‘blemish’ for the petrochemical industry's image” Houston Chronicle, Mar. 26, 2019, 3 pages https://www.houstonchronicle.com/business/energy/article/Deer-Park-fire-a-blemish-for-the-image-of-13717661.php.
Pandey, “Ultrasonic attenuation in condensed matter”, Dissertation for V.B.S. Purvanchal University, 2009, Chapter 1, 36 pgs.
Pluta et al., “Stress Dependent Dispersion Relations of Acoustic Waves Travelling on a Chain of Point Masses Connected by Anharmonic Linear and Torsional Springs” International Congress on Ultrasonics AIP Conf. Proc. 1433, 471-474 (2012); 5 pgs.
Shelke, et al., “Mode-Selective Excitation and Detection of Ultrasonic Guided Waves for Delamination Detection in Laminated Aluminum Plates” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, No. 3, Mar. 2011, 11 pgs.
“TOPS Terminal Operating Practices Symposium” Program Agenda, Apr. 11, 2018, 1 page.
Zadler, et al., “Resonant Ultrasound Spectroscopy: theory and application”, Geophysical Journal International, vol. 156, Issue 1, Jan. 2004, pp. 154-169.
Examination Report No. 1 issued in Australian Application No. 2020283140 dated Jan. 4, 2022, 6 pgs.
Examination Report No. 1 issued in Australian Patent Application No. 2020302919, dated Feb. 15, 2022, 4 pgs.
International Search Report and Written Opinion issued in PCT/US20/35404, dated Aug. 24, 2020, 11 pages.
International Search Report and Written Opinion issued in PCT/US20/39966, dated Sep. 18, 2020, 13 pages.
International Preliminary Report on Patentability issued in PCT/US20/35404 dated Nov. 16, 2021, 8 pgs.
International Preliminary Report on Patentability issued in PCT/US20/39966 dated Dec. 28, 2021, 10 pgs.
Notice of Allowance issued in U.S. Appl. No. 16/888,469, dated Dec. 23, 2020, 16 pgs.
Notice of Allowance issued in U.S. Appl. No. 17/148,122 dated Jun. 16, 2021, 8 pgs.
Notice of Allowance issued in U.S. Appl. No. 16/914,092 dated Oct. 28, 2021, 14 pgs.
Office Action issued in Canadian Patent Application No. 3,140,008, dated Feb. 14, 2022, 4 pgs.
Office Action issued in U.S. Appl. No. 16/888,469, dated Aug. 5, 2020, 8 pages.
Office Action issued in U.S. Appl. No. 16/888,469, dated Sep. 8, 2020, 20 pages.
Office Action issued in U.S. Appl. No. 16/914,092, dated Nov. 10, 2020, 22 pgs.
Office Action issued in U.S. Appl. No. 16/914,092, dated Mar. 1, 2021, 25 pgs.
Office Action issued in U.S. Appl. No. 16/914,092, dated Jun. 24, 2021, 24 pgs.
Office Action issued in U.S. Appl. No. 17/148,122, dated Mar. 2, 2021, 26 pgs.
International Search Report and Written Opinion issued in PCT/US21/61962 dated Feb. 16, 2022, 9 pgs.
International Search Report and Written Opinion issued in PCT/US21/61924 dated Feb. 16, 2022, 9 pgs.
International Search Report and Written Opinion issued in PCT/US21/62010 dated Feb. 16, 2022, 9 pgs.
International Search Report and Written Opinion issued in PCT/US21/61970 dated Feb. 18, 2022, 17 pgs.
International Search Report and Written Opinion issued in PCT/US21/61925 dated Feb. 18, 2022, 9 pgs.
International Search Report and Written Opinion issued in PCT/US21/61646 dated Feb. 25, 2022, 9 pgs.
International Search Report and Written Opinion issued in PCT/US21/65664 dated Mar. 11, 2022, 9 pgs.
International Search Report and Written Opinion issued in PCT/US21/62001 dated March 9, 2022, 9 pgs.
International Search Report and Written Opinion issued in PCT/US21/61926 dated Mar. 8, 2022, 9 pgs.
Notice of Acceptance issued in Australian Application No. 2020302919 dated Mar. 2, 2022, 4 pgs.
Notice of Acceptance issued in Australian Application No. 2020283140 dated Mar. 30, 2022, 4 pgs.
Notice of Allowance issued in Canadian Application No. 3,140,008 dated May 5, 2022, 1 pg.
Office Action issued in Australian Patent Application No. 2020283140, dated Mar. 18, 2022, 5 pgs.
Office Action issued in U.S. Appl. No. 17/542,461, dated Mar. 10, 2022, 18 pages.
Office Action issued in U.S. Appl. No. 17/542,465, dated Mar. 11, 2022, 22 pages.
Office Action issued in U.S. Appl. No. 17/542,872, dated Mar. 17, 2022, 21 pages.
Office Action issued in U.S. Appl. No. 17/566,020, dated Mar. 18, 2022, 20 pages.
Office Action issued in U.S. Appl. No. 17/541,036, dated Mar. 31, 2022, 22 pages.
Office Action issued in U.S. Appl. No. 17/543,152, dated Apr. 19, 2022, 17 pages.
Office Action issued in U.S. Appl. No. 17/542,814, dated Apr. 25, 2022, 21 pages.
Vermeersch, “Influence of substrate thickness on thermal impedance of microelectronics structures”, Microelectronics Reliability, 47, 2007, pp. 437-443.
U.S. Appl. No. 17/540,021, filed Dec. 1, 2021, Heim et al.
U.S. Appl. No. 17/541,036, filed Dec. 2, 2021, Heim et al.
U.S. Appl. No. 17/543,152, filed Dec. 6, 2021, Bivolarsky et al.
U.S. Appl. No. 17/542,814, filed Dec. 6, 2021, Burcham et al.
U.S. Appl. No. 17/542,461, filed Dec. 5, 2021, Burcham et al.
U.S. Appl. No. 17/542,465, filed Dec. 5, 2021, Bivolarsky et al.
U.S. Appl. No. 17/542,872, filed Dec. 6, 2021, Bivolarsky et al.
U.S. Appl. No. 17/542,462, filed Dec. 5, 2021, Bivolarsky et al.
U.S. Appl. No. 17/566,020, filed Dec. 30, 2021, Bivolarsky et al.
U.S. Appl. No. 17/746,622, filed May 17, 2022, Bivolarsky et al.
U.S. Appl. No. 17/746,640, filed May 17, 2022, Bivolarsky et al.
Office Action issued in U.S. Appl. No. 17/542,462, dated May 27, 2022, 28 pages.
Office Action issued in U.S. Appl. No. 17/542,461, dated June 27, 2022, 13 pages.
Office Action issued in U.S. Appl. No. 17/566,020, dated Jul. 12, 2022, 20 pages.
Office Action issued in U.S. Appl. No. 17/746,622, dated Jul. 22, 2022, 19 pages.
Office Action issued in U.S. Appl. No. 17/541,036, dated Aug. 9, 2022, 22 pages.
Office Action issued in U.S. Appl. No. 17/746,640, dated Aug. 18, 2022, 19 pages.
Notice of Allowance issued in U.S. Appl. No. 17/542,465, dated Jul. 11, 2022, 18 pages.
Notice of Allowance issued in U.S. Appl. No. 17/542,872, dated Jul. 11, 2022, 13 pages.
Notice of Allowance issued in U.S. Appl. No. 17/543,152, dated Jul. 29, 2022, 16 pages.
Office Action issued in U.S. Appl. No. 17/542,814, dated Aug. 26, 2022, 22 pages.
Office Action issued in U.S. Appl. No. 17/540,021, dated Sep. 15, 2022, 40 pages.
Office Action issued in U.S. Appl. No. 17/542,462, dated Nov. 14, 2022, 11 pgs.
Office Action issued in U.S. Appl. No. 17/566,020, dated Nov. 14, 2022, 21 pgs.
Notice of Allowance issued in U.S. Appl. No. 17/542,461, dated Oct. 12, 2022, 9 pages.
Notice of Allowance issued in U.S. Appl. No. 17/746,622, dated Nov. 8, 2022, 16 pages.
Related Publications (1)
Number Date Country
20220178731 A1 Jun 2022 US
Provisional Applications (1)
Number Date Country
63121727 Dec 2020 US