This non-provisional application claims priority under 35 U.S.C. §119(a) on Patent Application No(s). 098118226 filed in Taiwan, R.O.C. on 2 Jun. 2009, the entire contents of which are hereby incorporated by reference.
The present invention relates to a wireless data dissemination method and a system thereof, in particular to a multi-path data dissemination method for a magnetic diffusion wireless network and a system thereof.
As science and technology advance rapidly, small and reliable sensors are used extensively in our living environments for transmitting various parameters of our environment such as an automatic detection of room temperature capable of fine tuning an air conditioning system can produce just enough cold air, or an automatic detection of abnormal heartbeat can avoid unrecoverable injuries caused by arrhythmias of a cardiac patient. Therefore, a timely, accurate and reliable data transmission and a high-efficiency energy source become increasingly important.
A magnetic diffusion (MD) data dissemination mechanism is developed from magnetic physical characteristics. Magnetic diffusion is a simple data dissemination mechanism for ensuring the timeliness and reliability of the data dissemination and provides a high efficiency of using an energy source, and whose principle is mainly based on the force interaction of magnets in the nature, wherein a data sink acts as a magnet, and data are like nails attracted by the data sink, and it is similar to the situation of having nails attracted by the magnets in the direction of a magnetic field. The magnetic field is created by setting an appropriate quantity of magnetic charges for each sensing node within a magnetic range of the data sink. The quantity of magnetic charges depends on a hop distance of the data sink and the resources provided by the data sink. After the magnetic field is created, data will be transmitted from a node with more magnetic charges to a node with less magnetic charges.
With reference to
For every time of hopping a hop distance to a next node, the quantity of magnetic charges will be decremented by 1, and the same hop distance from the data sink 101 includes the same quantity of magnetic charges. If a node has received an interest message to produce an item and also received an interest message from another node, the node will compare the quantity of magnetic charges minus 1 included in the interest message with the quantity of magnetic charges in the item. If the quantity of magnetic charges included in the interest message after the decrement is still greater than the quantity of magnetic charges in the item, then the node will update the quantity of magnetic charges in the item as the numeric value minus 1 in the interest message, and transmit the interest message to its neighbor. If the quantity of magnetic charges included in the interest message after the decrement is smaller than the quantity of magnetic charges in the item, then the node will know that the interest message is not transmitted from a node close to the data sink 101 and will discard the interest message.
The magnetic field is created after the quantity of magnetic charges for each node is set according to the aforementioned sequence. The quantity of magnetic charges decreased from the data sink 101 to a plurality of sources A˜D guides the data to flow in an opposite direction, similar to the situation of a nail being attracted from a position with less magnetic charges towards a position with more magnetic charges in a magnetic field, and data are transmitted from a node with less magnetic charges to a node with more magnetic charges in the magnetic field.
In
With reference to
However, the data dissemination of a wireless network is asymmetrical, meaning that valid data disseminations in a direction does not necessarily implies valid data disseminations in the opposite direction. With reference to
Therefore, it is a primary objective of the present invention to provide a multi-path data dissemination method for a magnetic diffusion wireless network and a system thereof and prevents a data dissemination path from having a dissemination hindrance of an asymmetrical transmission to enhance the reliability of the magnetic diffusion dissemination mechanism and assure data to be disseminated to a data sink successfully, so as to achieve a wireless dissemination mechanism with a high reliability and a high efficiency of using energy sources.
Another objective of the present invention is to explore the signal strength of each node in the magnetic field before a magnetic field of a magnetic diffusion wireless network is created, such that the signal strength can be used as a basis for establishing the rules of selecting a reliable dissemination path after the magnetic field is created.
To achieve the foregoing objectives, the present invention provides a multi-path data dissemination method for a magnetic diffusion wireless network, and the method comprises the following steps: (a) A node in a magnetic diffusion wireless network sends out a good-neighbor exploratory message; (b) If other nodes receives the good-neighbor exploratory message, each of these other nodes records the node into its own good-neighbor table; (c) The steps (a) and (b) are repeated until each node in the magnetic diffusion wireless network has transmitted the good-neighbor exploratory message and completed each one's good-neighbor table; and (d) The good-neighbor table of each node is used as a basis to create a magnetic field. If it is necessary to set the quantity of magnetic charges for any one of the neighbor nodes, the neighbor node must be listed in the good-neighbor table of any one of the nodes, or else no setup will take place, such that the magnetic field can determine a reliable data dissemination path.
In a preferred embodiment, the step (b) further comprises a step: If the good-neighbor exploratory message has a signal strength greater than a good-neighbor table threshold, the node will be recorded into each good-neighbor table of the aforementioned other nodes, wherein the good-neighbor table threshold is −85 dbm.
To achieve the foregoing objectives, the present invention provides a multi-path data dissemination system for a magnetic diffusion wireless network, and the system is applied in a magnetic field, and the magnetic field comprises: a data sink for receiving a data; and a plurality of nodes, acting as broadcast nodes of the data dissemination; wherein each of the nodes and the data sinks has a good-neighbor table, and each respective good-neighbor table records a signal strength greater than a good-neighbor table threshold of a neighbor node, and when the magnetic field is created, the good-neighbor table of each node is used as a basis to set up the quantity of magnetic charges of the neighbor node of each node, and the good-neighbor table threshold is −85 dbm.
Therefore, the multi-path data dissemination method for a magnetic diffusion wireless network and a system thereof in accordance with the present invention allows each node to keep a good-neighbor table used as a basis of creating the following magnetic field in order to overcome the dissemination hindrance of the asymmetry produced by environmental interferences of the wireless data transmission. Once a node shows up in the good-neighbor table, it means the data dissemination is successful when the node disseminates data, and there is no issue of disseminating data but having a hindrance of returning the data occurred in the conventional way of creating magnetic fields, so as to assure that the data can be transmitted to a data sink successfully.
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments with reference to the accompanying drawings. Same numerals are used for same respective elements in the drawings and the preferred embodiments.
The present invention explores the signal strength of each node in the magnetic field before a magnetic field of a magnetic diffusion wireless network is created, and then uses the created magnetic field as a basis to establish rules of selecting a reliable dissemination path.
With reference to
Each node (including the data sink S) in the magnetic diffusion wireless network has transmitted the good-neighbor exploratory message EM to complete establishing each respective good-neighbor table. With reference to
With reference to
With reference to
While the invention has been described by means of specific preferred embodiments, numerous modifications and variations could be made thereto by those skilled in the art without departing from the scope and spirit of the invention set forth in the claims.
Number | Date | Country | Kind |
---|---|---|---|
98118226 A | Jun 2009 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
20070050240 | Belani et al. | Mar 2007 | A1 |
20080306358 | Minai | Dec 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20100304662 A1 | Dec 2010 | US |