Multi-path digitation based on input signal fidelity and output requirements

Information

  • Patent Grant
  • 10545561
  • Patent Number
    10,545,561
  • Date Filed
    Wednesday, August 10, 2016
    8 years ago
  • Date Issued
    Tuesday, January 28, 2020
    4 years ago
Abstract
A system may include a plurality of processing paths and a controller. The processing paths may include a first processing path configured to generate a first digital signal based on an analog input signal and one or more other processing paths each configured to consume a smaller amount of power than the first processing path, and each configured to generate a respective digital signal based on the analog input signal, wherein one of the other processing paths has a noise floor based on fidelity characteristics of the analog input signal or subsequent processing requirements of a digital output signal generated from at least one of the first digital signal and the respective digital signals. The controller may be configured to select one of the first digital signal and the respective digital signals as the digital output signal of the processing system based on a magnitude of the analog input signal.
Description
FIELD OF DISCLOSURE

The present disclosure relates in general to signal processing systems, and more particularly, to multiple path signal processing systems.


BACKGROUND

The use of multipath analog-to-digital converters (ADCs) and analog front ends (AFEs) (e.g., two or more path ADCs/AFEs) in electrical circuits is known. Example multipath ADCs and AFEs and use of them in multiple electrical circuit paths are disclosed in U.S. Pat. No. 5,714,956 entitled “Process and System for the Analog-to-Digital Conversion of Signals” to Jahne et al. (“Jahne patent”), U.S. Pat. No. 5,600,317 entitled “Apparatus for the Conversion of Analog Audio Signals to a Digital Data Stream” to Knoth et al. (“Knoth patent”) and U.S. Pat. No. 6,271,780 entitled “Gain Ranging Analog-to-Digital Converter with Error Correction” to Gong et al. (“Gong patent”). The use of multipath circuits may reduce noise as one path may be optimized for processing small amplitude signals (e.g., for processing low noise signals) while another circuit path with another set of ADC and AFE is optimized for large amplitude signals (e.g., allowing for higher dynamic range).


An example application for multipath ADCs/AFEs is use of them in a circuit for an audio system application, such as an audio mixing board or in a digital microphone system. Such an example application is disclosed in the Jahne patent. In designing a circuit with multipath ADCs/AFEs that are used in respective multiple circuit paths, a tradeoff may exist between allowing larger signal swing (e.g., to allow swing of a signal between larger scale amplitudes) and low noise. Furthermore, the multipath ADCs/AFEs may provide high dynamic range signal digitization, with higher dynamic range for a given input power, and lower overall area than would be possible with conventional means. In other words, by allowing a separate optimization for each type of signal (e.g., large and small signals) that is provided each respective path, multipath ADCs/AFEs allow the overall circuit to burn less power, consume less area, and save on other such design costs.


SUMMARY

In accordance with the teachings of the present disclosure, certain disadvantages and problems associated with implementation of a multiple AFE/ADC path may be reduced or eliminated.


In accordance with embodiments of the present disclosure, a processing system may include a plurality of processing paths and a controller. The plurality of processing paths may include a first processing path having a first analog gain and configured to generate a first digital signal based on an analog input signal and one or more other processing paths each having a respective second analog gain, each configured to consume a smaller amount of power than the first processing path, and each configured to generate a respective digital signal based on the analog input signal, wherein one of the one or more other processing paths has a noise floor based on fidelity characteristics of the analog input signal or subsequent processing requirements of a digital output signal generated from at least one of the first digital signal and the respective digital signals. The controller may be configured to select one of the first digital signal and the respective digital signals as the digital output signal of the processing system based on a magnitude of the analog input signal.


In accordance with these and other embodiments of the present disclosure, a processing system may include a plurality of processing paths and a controller. The plurality of processing paths may include a first processing path having a first analog gain and configured to generate a first digital signal based on an analog input signal, a second processing path having a second analog gain and configured to generate a second digital signal based on the analog input signal, and a third processing path having a third analog gain, configured to consume a smaller amount of power than the first processing path and the second processing path, and configured to generate a third digital signal based on the analog input signal, wherein the third processing path has a noise floor based on fidelity characteristics of the analog input signal or subsequent processing requirements of a digital output signal generated from at least one of the first digital signal, the second digital signal, and the third digital signal. The controller may be configured to select one of the first digital signal, the second digital signal, and the third digital signal as the digital output signal of the processing system based on a magnitude of the analog input signal.


In accordance with these and other embodiments of the present disclosure, a method may include processing an analog input signal with a first processing path having a first analog gain to generate a first digital signal based on the analog input signal, processing the analog input signal with one or more other processing paths each having a respective second analog gain, each configured to consume a smaller amount of power than the first processing path, and each configured to generate a respective digital signal based on the analog input signal, wherein one of the one or more other processing paths has a noise floor based on fidelity characteristics of the analog input signal or subsequent processing requirements of a digital output signal generated from at least one of the first digital signal and the respective digital signals, and selecting one of the first digital signal and the respective digital signals as the digital output signal of the processing system based on a magnitude of the analog input signal.


In accordance with these and other embodiments of the present disclosure, a method may include processing an analog input signal with a first processing path having a first analog gain to generate a first digital signal based on the analog input signal, processing the analog input signal with a second processing path having a second analog gain to generate a second digital signal based on the analog input signal, processing the analog input signal with a third processing path having a third analog gain, configured to consume a smaller amount of power than the first processing path and the second processing path, and configured to generate a third digital signal based on the analog input signal, wherein the third processing path has a noise floor based on fidelity characteristics of the analog input signal or subsequent processing requirements of a digital output signal generated from at least one of the first digital signal, the second digital signal, and the third digital signal, and selecting one of the first digital signal, the second digital signal, and the third digital signal as the digital output signal of the processing system based on a magnitude of the analog input signal.


Technical advantages of the present disclosure may be readily apparent to one having ordinary skill in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.


It is to be understood that both the foregoing general description and the following detailed description are explanatory examples and are not restrictive of the claims set forth in this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1 illustrates a block diagram of selected components of an example signal processing system, in accordance with embodiments of the present disclosure;



FIG. 2 illustrates a block diagram of selected components of an integrated circuit for processing an analog signal to generate a digital signal, in accordance with embodiments of the present disclosure;



FIG. 3 illustrates a block diagram of selected components of the integrated circuit of FIG. 2 depicting selected components of example embodiments of analog front ends and analog-to-digital converters, in accordance with embodiments of the present disclosure; and



FIG. 4 illustrates a block diagram of selected components of another integrated circuit for processing an analog signal to generate a digital signal, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION


FIG. 1 illustrates a block diagram of selected components of an example signal processing system 100, in accordance with embodiments of the present disclosure. As shown in FIG. 1, signal processing system 100 may include an analog signal source 101, an integrated circuit (IC) 105, and a digital processor 109. Analog signal source 101 may comprise any system, device, or apparatus configured to generate an analog electrical signal, for example an analog input signal ANALOG_IN. For example, in embodiments in which signal processing system 100 is a processing system, analog signal source 101 may comprise a microphone transducer.


Integrated circuit 105 may comprise any suitable system, device, or apparatus configured to process analog input signal ANALOG_IN to generate a digital output signal DIGITAL_OUT and condition digital output signal DIGITAL_OUT for transmission over a bus to digital processor 109. Once converted to digital output signal DIGITAL_OUT, the signal may be transmitted over significantly longer distances without being susceptible to noise as compared to an analog transmission over the same distance. In some embodiments, integrated circuit 105 may be disposed in close proximity with analog signal source 101 to ensure that the length of the analog line between analog signal source 101 and integrated circuit 105 is relatively short to minimize the amount of noise that can be picked up on an analog output line carrying analog input signal ANALOG_IN. For example, in some embodiments, analog signal source 101 and integrated circuit 105 may be formed on the same substrate. In other embodiments, analog signal source 101 and integrated circuit 105 may be formed on different substrates packaged within the same integrated circuit package.


Digital processor 109 may comprise any suitable system, device, or apparatus configured to process digital output signal DIGITAL_OUT for use in a digital system. For example, digital processor 109 may comprise a microprocessor, microcontroller, digital signal processor (DSP), application specific integrated circuit (ASIC), or any other device configured to interpret and/or execute program instructions and/or process data, such as digital output signal DIGITAL_OUT.


Signal processing system 100 may be used in any application in which it is desired to process an analog signal to generate a digital signal. Thus, in some embodiments, signal processing system 100 may be integral to an audio device that converts analog signals (e.g., from a microphone) to digital signals representing the sound incident on a microphone. As another example, signal processing system 100 may be integral to a radio-frequency device (e.g., a mobile telephone) to convert radio-frequency analog signals into digital signals.



FIG. 2 illustrates a block diagram of selected components of integrated circuit 105, in accordance with embodiments of the present disclosure. As shown in FIG. 2, integrated circuit 105 may include two or more processing paths 201a and 201b (which may be referred to herein individually as a processing path 201 and collectively as processing paths 201), each processing path 201 including a respective AFE 203 (e.g., AFE 203a, AFE 203b) and a respective ADC (e.g., ADC 215a, ADC 215b). An AFE 203 may receive analog input signal ANALOG_IN via one or more input lines which may allow for receipt of a single-ended signal, differential signal, or any other suitable analog signal format and may comprise any suitable system, device, or apparatus configured to condition analog input signal ANALOG_IN for processing by ADC 215. Selected components for example embodiments of AFEs 203a and 203b are discussed in greater detail below with respect to FIG. 3. The output of each AFE 203 may be communicated to a respective ADC 215 on one or more output lines.


An ADC 215 may comprise any suitable system, device, or apparatus configured to convert an analog signal received at its input, to a digital signal representative of analog input signal ANALOG_IN. ADC 215 may itself include one or more components (e.g., delta-sigma modulator, decimator, etc.) for carrying out the functionality of ADC 215. Selected components for the example embodiments of ADCs 215a and 215b are discussed in greater detail below with respect to FIG. 3.


A multiplexer 227 may receive a respective digital signal from each of processing paths 201 and may select one of the digital signals as digital output signal DIGITAL_OUT based on a control signal generated by and communicated from a controller 220.


Driver 219 may receive the digital signal DIGITAL_OUT output by ADC 215 and may comprise any suitable system, device, or apparatus configured to condition such digital signal (e.g., encoding into Audio Engineering Society/European Broadcasting Union (AES/EBU), Sony/Philips Digital Interface Format (S/PDIF)), in the process generating digital output signal DIGITAL_OUT for transmission over a bus to digital audio processor 109. In FIG. 2, the bus receiving digital output signal DIGITAL_OUT is shown as single-ended. In some embodiments, driver 219 may generate a differential digital output signal 107.


Controller 220 may comprise any suitable system, device, or apparatus for selecting one of the digital signals output by the various processing paths 201 as digital output signal DIGITAL_OUT. In some embodiments, controller 220 may make such selection based on a magnitude of analog input signal ANALOG_IN or a signal derivative thereof, fidelity characteristics of analog input signal ANALOG_IN, and/or subsequent processing requirements of a digital output signal DIGITAL_OUT For example, controller 220 may include an overload detector 221 that may determine whether or not a signal derivative of analog input signal ANALOG_IN (e.g., an output of a modulator 316a of delta-sigma modulator 308a, as shown in greater detail in FIG. 3) is likely to cause clipping or other distortion of digital output signal DIGITAL_OUT if a particular processing path (e.g., processing path 201a) is selected. If clipping or other distortion of digital output signal DIGITAL_OUT is likely if the particular processing path (e.g., processing path 201a) is selected, state machine 225 of controller 220 may generate a control signal so that another processing path (e.g., processing path 201b) is selected. To further illustrate, in some embodiments, processing path 201a may be a path adapted for low amplitudes of analog input signal ANALOG_IN and may thus have a high signal gain, while processing path 201b may be a path adapted for higher amplitudes of analog input signal ANALOG_IN and may thus have a lower signal gain. Thus, if analog input signal ANALOG_IN or a derivative thereof is greater than a threshold value indicative of a condition whereby digital output signal DIGITAL_OUT may experience clipping or other distortion if processing path 201a is selected, overload detector 221 may detect such condition, and cause state machine 225 to generate a control signal to select the digital signal generated by processing path 201b as digital output signal DIGITAL_OUT.


As another example, controller 220 may include a level detector 223 that may detect an amplitude of analog input signal ANALOG_IN or a signal derivative thereof (e.g., a signal generated within ADC 215b) and communicate a signal indicative of such amplitude to state machine 225. Responsive to the signal received from level detector 223, state machine 225 may generate the control signal communicated to multiplexer 227. To illustrate, as analog input signal ANALOG_IN decreases from a relatively high amplitude to a lower amplitude, it may cross a threshold amplitude level whereby controller 220 may change the selection of digital output signal DIGITAL_OUT from the digital signal generated by processing path 201b (which may be adapted for higher amplitudes of analog input signal ANALOG_IN) to the digital signal generated by processing path 201a (which may be adapted for lower amplitudes of analog input signal ANALOG_IN). In some embodiments, a threshold amplitude level whereby controller 220 may change the selection of digital output signal DIGITAL_OUT from the digital signal generated by processing path 201b to the digital signal generated by processing path 201a may be lower than another threshold amplitude level whereby controller 220 may change the selection of digital output signal DIGITAL_OUT from the digital signal generated by processing path 201a to the digital signal generated by processing path 201b, in order to provide for hysteresis so that multiplexer 227 does not repeatedly switch between the paths.


As a further example, controller 220 may include an input signal analysis block 228 which may analyze or otherwise process a digital signal derived from analog input signal ANALOG_IN to determine fidelity characteristics of analog input signal ANALOG_IN and/or may include a downstream processing requirements block 230 which may receive or otherwise determine subsequent processing requirements of digital output signal DIGITAL_OUT. Examples of such fidelity characteristics may include one or more of an acoustic noise floor of analog input signal ANALOG_IN, acoustic distortion of analog input signal ANALOG_IN, a bandwidth of analog input signal ANALOG_IN, and an intrinsic noise floor of at least one of the processing paths 201. Examples of such subsequent processing requirements comprise one or more of a bandwidth of a downstream process that receives digital output signal DIGITAL_OUT, a bit width of a downstream process that receives digital output signal DIGITAL_OUT, and a signal-to-noise ratio requirement of a downstream process that receives digital output signal DIGITAL_OUT. Based on such fidelity characteristics and/or downstream processing requirements, controller 220 may determine that processing analog input signal ANALOG_IN with higher performance/higher power in processing paths 201 may not result in significant benefit over lower-power processing. Accordingly, in such cases, state machine 225 may select the digital signal generated by processing path 201b as digital output signal DIGITAL_OUT and output one or more power control signals to components of processing path 201b in order to reduce power consumption of processing path 201b. Any suitable approach may be used to reduce power consumption of processing path 201b, including without limitation reduction of bias voltages or currents, modification of signal input impedances, modification of component bandwidths, selective powering of portions of amplifiers, and/or any other suitable analog power saving technique. By controlling power consumption of processing path 201b, processing path 201b may have a noise floor based on the fidelity characteristics of analog input signal ANALOG_IN or subsequent processing requirements of digital output signal DIGITAL_OUT. In some embodiments, such one or more power control signals may power down processing path 201a to further reduce power, and processing path 201a may be powered up in response to controller 220 selecting the digital signal generated by processing path 201a as digital output signal DIGITAL_OUT.



FIG. 3 illustrates a block diagram of selected components of integrated circuit 105 depicting selected components of example embodiments of AFEs 203 and ADCs 215, in accordance with embodiments of the present disclosure. As shown in FIG. 3, analog front end 203a of processing path 201a may include a high-pass filter 302 configured to high-pass filter analog input signal ANALOG_IN to remove direct current offsets or biases, which are often particularly troublesome for high-gain amplifiers, and output such filtered signal to a non-inverting amplifier 304. Non-inverting amplifier 304 may amplify analog input signal ANALOG_IN by a non-inverting gain and communicate such amplified analog signal to ADC 215a. In some embodiments, high-pass filter 302 may be formed on the same integrated circuit as one or more of AFE 203a, AFE 203b, ADC 215a, and ADC 215b. Because of the presence of high-pass filter 302 in processing path 201a, but not processing path 201b, processing paths 201 may each have a different frequency response to analog input signal ANALOG_IN.


Also as shown in FIG. 3, analog front end 203b of processing path 201b may include an inverting amplifier 306 which may amplify analog input signal ANALOG_IN by an inverting gain and communicate such amplified analog signal to ADC 215b. In some embodiments, inverting amplifier 306 may be configured to apply a multiplicative gain of less than unity to analog input signal ANALOG_IN. By attenuating higher-amplitude signals, a greater dynamic range for analog input signal ANALOG_IN may be achieved, in spite of conventional wisdom that would generally dictate that signal loss should be avoided in a low-noise system. In these and other embodiments, although not depicted in FIG. 3, inverting amplifier 306 may receive the output of high-pass filter 302 instead of the unfiltered analog input signal ANALOG_IN.


Although AFEs 203a and 203b are described above having a non-inverting gain and an inverting gain, respectively, each of processing paths 201 may have approximately the same cumulative gain. Those of skill in the art may appreciate that simply applying a digital gain with a negative sign in either of ADC 215a or ADC 215b will negate the opposite polarities of the gains of AFEs 203.


As depicted in FIG. 3, each ADC 215 may include a respective delta-sigma modulator 308 (e.g., delta-sigma modulators 308a and 308b), a respective digital gain element 310 (e.g., digital gain elements 310a and 310b), and respective high-pass filters 312 (e.g., high-pass filters 312a and 312b). Each delta-sigma modulator 308 may be configured to modulate an analog signal into a corresponding digital signal. As known in the art, each delta-sigma modulator 308 may include a respective modulator 316 (e.g., modulators 316a, 316b) and a decimator 318 (e.g., decimators 318a, 318b). Each digital gain element 310 may apply a gain to a digital signal generated by its associated delta-sigma modulator 308. Each high-pass filter 312 may high-pass filter a digital signal generated by its associated digital gain element, to filter out any direct-current offsets present in the digital signal. High-pass filter 312b may also compensate for high-pass filter 302 present in AFE 203a.


In addition, ADC 215a may comprise a latency matching element 314 to match any signal latencies between processing path 201a and processing path 201b, while ADC 215b may comprise a phase matching element 317 to account for any phase offset between processing path 201a and processing path 201b. For example, phase matching element 317 may dynamically compensate for any phase mismatch between processing paths 201a and 201b by varying a delay of at least one of processing path 201a and processing path 201b. In some embodiments, phase matching element 317 may comprise a high-pass filter.


In some embodiments, a magnitude of a gain of non-inverting amplifier 304 may be substantially larger than (e.g., significantly more than manufacturing tolerances, one or more orders of magnitude) a magnitude of a gain of inverting amplifier 306. In addition, in these and other embodiments, a magnitude of digital gain element 310b may be substantially larger than (e.g., significantly more than manufacturing tolerances, one or more orders of magnitude) a magnitude of a gain of digital gain element 310a. Consequently, in such embodiments, a first path gain equal to the product of the magnitude of the gain of inverting amplifier 306 and the magnitude of a gain of digital gain element 310b may be substantially equal (e.g., within manufacturing tolerances) to a second path gain equal to the product of the magnitude of gain of non-inverting amplifier 304 and the gain of digital gain element 310a. As a specific example, in some embodiments, the inverting gain of inverting amplifier 306 may be approximately −6 decibels, the non-inverting gain of non-inverting amplifier 304 may be approximately 20 decibels, the gain of digital gain element 310a may be approximately −26 decibels, and the gain of digital gain element 310b may be approximately 0 decibels.


Accordingly, each processing path 201 may be adapted to process a particular amplitude of analog input signal ANALOG_IN. For example, AFE 203a may be suited to process lower signal amplitudes, as non-inverting amplifier 304 may have a practically infinite input resistance, may have a relatively low level of input-referred noise as compared to inverting amplifier 306, and its larger gain may permit effective processing of smaller signals, but characteristics of AFE 203a may not be amenable to higher amplitudes. The high input resistance of non-inverting amplifier 304 may facilitate the use of a smaller capacitor area for high-pass filter 302 (as compared to traditional approaches for implementing high-pass filters) and thus may permit integration of circuitry of high-pass filter 302 into the same integrated circuit as non-inverting amplifier 304, inverting amplifier 306, ADC 215a, and/or ADC 215b. In addition, the ability to integrate circuitry into a single integrated circuit may allow for centralized control of the stimuli for switching between processing paths 201 by controller 220, and may allow for more direct timing control of the actual switching and transitioning between processing paths 201. For example, because circuitry is integrated into a single integrated circuitry, level detector 223 may receive an output of delta-sigma modulator 308b as an input signal, rather than receiving an output of ADC 215b.


On the other hand, AFE 203b may be suited to process higher signal amplitudes, as its lower gain will reduce the likelihood of signal clipping, and may provide for greater dynamic range for analog input signal ANALOG_IN as compared to traditional approaches.


Despite a designer's best efforts to match the first path gain and the second path gain, process variations, temperature variations, manufacturing tolerances, and/or other variations may lead to the first path gain and the second path gain being unequal. If switching between paths occurs when such path gains are unequal, signal artifacts may occur due to an instantaneous, discontinuous change in magnitude of the digital output signal between two gain levels. For example, in audio signals, such artifacts may include human-perceptible “pops” or “clicks” in acoustic sounds generated from audio signals.


In some embodiments, in order to reduce or eliminate the occurrence of such artifacts when switching selection between the digital output signal of ADC 215a and the digital output signal of ADC 215b, and vice versa, controller 220 may program an additional gain into one or both of processing paths 201 to compensate for differences in the first path gain and second path gain. This additional gain factor may equalize the first path gain and the second path gain. To illustrate, controller 220 may determine a scale factor indicative of the magnitude of difference (e.g., whether an intentional difference or unintentional mismatch) between the first path gain of processing path 201a and the second path gain of processing path 201b. The controller may determine the first path gain and the second path gain by comparing the digital output signals of each processing path to analog input signal ANALOG_IN or a derivative thereof. If such digital output signals have been filtered by a high-pass filter (e.g., high-pass filters 312), a direct-current offset between the signals may be effectively filtered out, which may be necessary to accurately compute the relative path gains. Controller 220 may determine the scale factor by calculating one of a root mean square average of the first path gain and the second path gain and a least mean squares estimate of the difference between the first path gain and the second path gain. Prior to switching selection between the first digital signal generated by ADC 215a and the second digital signal generated by ADC 215b (or vice versa), controller 220 may program an additional gain into one of processing paths 201 to compensate for the gain difference indicated by the scale factor. For example, controller 220 may calibrate one or both of the first path gain and the second path gain by applying a gain equal to the scale factor or the reciprocal of the gain factor (e.g., 1/gain factor), as appropriate. Such scaling may be performed by modifying one or both of digital gains 310. In some embodiments, controller 220 may apply the additional gain to the processing path 201 of the digital signal not selected as digital output signal DIGITAL_OUT. For example, controller 220 may apply the additional gain to processing path 201a when the digital signal of ADC 215b is selected as digital output signal DIGITAL_OUT and apply the additional gain to processing path 201b when the digital signal of ADC 215a is selected as digital output signal DIGITAL_OUT.


In some embodiments, the additional gain, once applied to a path gain of a processing path 201, may be allowed over a period of time to approach or “leak” to a factor of 1, in order to constrain the additional gain and compensate for any cumulative (e.g., over multiple switching events between digital signals of ADCs 215) bias in the calculation of the additional gain. Without undertaking this step to allow the additional gain to leak to unity, multiple switching events between paths may cause the gain factor to increase or decrease in an unconstrained manner as such additional gain, if different than unity, affects the outputs of the multiple paths and thus affects the calculation of the scaling factor.


In some embodiments, switching selection of digital output signal DIGITAL_OUT from the digital signal of ADC 215a to the digital signal of ADC 215b (or vice versa), may occur substantially immediately. However, in some embodiments, to reduce or eliminate artifacts from occurring when switching selection of digital output signal DIGITAL_OUT from the digital signal of ADC 215a to the digital signal of ADC 215b (or vice versa), controller 220 and multiplexer 227 may be configured to transition, continuously or in steps, digital output signal DIGITAL_OUT from a first digital signal to a second digital signal such that during such transition, digital output signal DIGITAL_OUT is a weighted average of the first digital signal and the second digital signal wherein a weight of the second digital signal relative to a weight of the first digital signal increases during the transition. For example, if a transition is desired between digital signal of ADC 215a and digital signal of ADC 215b as digital output signal DIGITAL_OUT, such transition may be in steps, wherein in each step, controller 220 and/or multiplexer 227 weighs digital signals output by ADCs 215 as follows:


1) 100% digital signal of ADC 215a and 0% digital signal of ADC 215b;


2) 80% digital signal of ADC 215a and 20% digital signal of ADC 215b;


3) 60% digital signal of ADC 215a and 40% digital signal of ADC 215b;


4) 30% digital signal of ADC 215a and 70% digital signal of ADC 215b;


5) 10% digital signal of ADC 215a and 90% digital signal of ADC 215b; and


6) 0% digital signal of ADC 215a and 100% digital signal of ADC 215b.


As another example, if a transition is desired between digital signal of ADC 215b and digital signal of ADC 215a as digital output signal DIGITAL_OUT, such transition may be in steps, wherein in each step, controller 220 and/or multiplexer 227 weighs digital signals output by ADCs 215 as follows:


1) 100% digital signal of ADC 215b and 0% digital signal of ADC 215a;


2) 70% digital signal of ADC 215b and 30% digital signal of ADC 215a;


3) 60% digital signal of ADC 215b and 40% digital signal of ADC 215a;


4) 20% digital signal of ADC 215b and 80% digital signal of ADC 215a;


5) 5% digital signal of ADC 215b and 95% digital signal of ADC 215a; and


6) 0% digital signal of ADC 215b and 100% digital signal of ADC 215a.


In some embodiments, a transition in digital output signal DIGITAL_OUT (either continuously or in steps) from the digital signal of ADC 215a to the digital signal of ADC 215b (or vice versa) may occur over a defined maximum duration of time. In these and other embodiments, when transitioning (either continuously or in steps) digital output signal DIGITAL_OUT from the digital signal of ADC 215b to the digital signal of ADC 215a, a rate of transition may be based on a magnitude of analog input signal ANALOG_IN (e.g., the rate of transition may be faster at lower amplitudes and slower at higher amplitudes). In such embodiments, the minimum rate of such transition may be limited such that the transition occurs over a defined maximum duration of time, wherein the maximum duration of time is independent of the magnitude of the analog input signal.



FIG. 4 illustrates a block diagram of selected components of another integrated circuit 105A for processing an analog signal to generate a digital signal, in accordance with embodiments of the present disclosure. In some embodiments, integrated circuit 105 depicted in FIG. 1 may be implemented using integrated circuit 105A. Integrated circuit 105A may be similar in many respects to integrated circuit 105 depicted in FIG. 2. Accordingly, only the major differences between integrated circuit 105A and integrated circuit 105 are discussed below. As shown in FIG. 4, integrated circuit 105A may include a third processing path 201c in addition to processing paths 201a and 201b. As depicted in FIG. 4, processing path 201c may have an AFE 203c which may be similar to either of AFE 203a or AFE 203b, and an ADC 215c which may be similar to either of ADC 215a or ADC 215b. In processing path 201c, AFC 203c may have an analog gain which is smaller than one or both of the respective analog gains of AFE 203a and AFE 203b. In addition, processing path 201c and its various components may be configured to consume a smaller amount of power than that of processing paths 201a and 201b.


In operation, input signal analysis block 228 may analyze or otherwise process a digital signal derived from analog input signal ANALOG_IN to determine fidelity characteristics of analog input signal ANALOG_IN and/or downstream processing requirements block 230 may receive or otherwise determine subsequent processing requirements of digital output signal DIGITAL_OUT. Examples of such fidelity characteristics may include one or more of an acoustic noise floor of analog input signal ANALOG_IN, acoustic distortion of analog input signal ANALOG_IN, a bandwidth of analog input signal ANALOG_IN, and an intrinsic noise floor of at least one of processing path 201a and processing path 201b. Examples of such subsequent processing requirements comprise one or more of a bandwidth of a downstream process that receives digital output signal DIGITAL_OUT, a bit width of a downstream process that receives digital output signal DIGITAL_OUT, and a signal-to-noise ratio requirement of a downstream process that receives digital output signal DIGITAL_OUT. Based on such fidelity characteristics and/or downstream processing requirements, controller 220 may determine that processing analog input signal ANALOG_IN with higher performance/higher power processing paths 201a or 201b may not result in significant benefit over the lower-power processing of processing path 201c. Accordingly, in such cases, state machine 225 may select the digital signal generated by processing path 201c as digital output signal DIGITAL_OUT. In addition, state machine 225 may in such cases output one or more power control signals to components of processing path 201c in order to control power consumption of processing path 201c. Any suitable approach may be used to control power consumption of processing path 201c, including without limitation control of bias voltages or currents, control of signal input impedances, control of component bandwidths, selective powering of portions of amplifiers, and/or any other suitable analog power control technique. By controlling power consumption of processing path 201c, processing path 201c may have a noise floor based on the fidelity characteristics of analog input signal ANALOG_IN or subsequent processing requirements of digital output signal DIGITAL_OUT. In some embodiments, such one or more power control signals may power down processing path 201a and/or processing path 201b to further reduce power, and processing path 201a may be powered up in response to controller 220 selecting digital signal generated by processing path 201a as digital output signal DIGITAL_OUT while processing path 201b may be powered up in response to controller 220 selecting digital signal generated by processing path 201b as digital output signal DIGITAL_OUT.


Using the systems and methods described herein, power consumption in a signal processing system may be dynamically optimized by optimizing performance of the processing system based on fidelity characteristics of the signal to be processed and/or subsequent processing requirements for the processed signal. For example, a lower power, lower performance processing path may have a higher noise floor by virtue of the lower power consumption. However, in certain cases, such poorer noise floor (or signal-to-noise ratio) may be adequate given fidelity characteristics of the signal to be processed and/or subsequent processing requirements for the processed signal when higher performance processing and the lower intrinsic noise floor of the higher performance processing path might be of little advantage in processing the signal.


This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.


All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the disclosure and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present disclosure have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.

Claims
  • 1. A processing system comprising: a plurality of processing paths comprising: a first processing path having a first analog gain and configured to generate a first digital signal based on an analog input signal; andone or more other processing paths each having a respective second analog gain, each configured to consume a smaller amount of power than the first processing path, and each configured to generate a respective digital signal based on the analog input signal, wherein one of the one or more other processing paths has a noise floor based on fidelity characteristics of the analog input signal or subsequent processing requirements of a digital output signal generated from at least one of the first digital signal and the respective digital signals; anda controller configured to: select one of the first processing path and the one or more other processing paths as a selected processing path for generating the digital output signal of the processing system based on a magnitude of the analog input signal; andcontrol an amount of power consumed by the selected processing path based on the fidelity characteristics or the subsequent processing requirements in order to control the noise floor.
  • 2. The processing system of claim 1, wherein the controller is further configured to: power down the first processing path when one of the respective digital signals of the one or more other processing paths is selected as the digital output signal; andpower up the first processing path in response to selecting the first digital signal as the digital output signal.
  • 3. The processing system of claim 1, wherein the one or more other processing paths comprise: a second processing path; anda third processing path configured to consume a smaller amount of power than the second processing path.
  • 4. The processing system of claim 1, wherein the fidelity characteristics comprise at least one of an acoustic noise floor of the analog input signal, acoustic distortion of the analog input signal, a bandwidth of the analog input signal, and an intrinsic noise floor of at least one of the processing paths.
  • 5. The processing system of claim 1, wherein the subsequent processing requirements comprise at least one of a bandwidth of a downstream process that receives the digital output signal, a bit width of a downstream process that receives the digital output signal, and a signal-to-noise ratio requirement of a downstream process that receives the digital output signal.
  • 6. The processing system of claim 1, wherein the respective second analog gains are smaller than that of the first analog gain.
  • 7. A processing system comprising: a plurality of processing paths comprising: a first processing path having a first analog gain and configured to generate a first digital signal based on an analog input signal;a second processing path having a second analog gain and configured to generate a second digital signal based on the analog input signal; anda third processing path having a third analog gain, configured to consume a smaller amount of power than the first processing path and the second processing path, and configured to generate a third digital signal based on the analog input signal, wherein the third processing path has a noise floor based on fidelity characteristics of the analog input signal or subsequent processing requirements of a digital output signal generated from at least one of the first digital signal, the second digital signal, and the third digital signal; anda controller configured to: select one of the first processing path, the second processing path, and the third processing path as a selected processing path for generating the digital output signal of the processing system based on a magnitude of the analog input signal; andcontrol an amount of power consumed by the selected processing path based on the fidelity characteristics or the subsequent processing requirements in order to control the noise floor.
  • 8. The processing system of claim 7, wherein the controller is further configured to: power down at least the first processing path when the third digital signal is selected as the digital output signal; andpower up at least the first processing path in response to selecting the first digital signal as the digital output signal.
  • 9. The processing system of claim 7, wherein the fidelity characteristics comprise at least one of an acoustic noise floor of the analog input signal, acoustic distortion of the analog input signal, a bandwidth of the analog input signal, and an intrinsic noise floor of at least one of the processing paths.
  • 10. The processing system of claim 7, wherein the subsequent processing requirements comprise at least one of a bandwidth of a downstream process that receives the digital output signal, a bit width of a downstream process that receives the digital output signal, and a signal-to-noise ratio requirement of a downstream process that receives the digital output signal.
  • 11. The processing system of claim 7, wherein the third analog gain is smaller than that of at least one of the first analog gain and the second analog gain.
  • 12. A method comprising: processing an analog input signal with a first processing path having a first analog gain to generate a first digital signal based on the analog input signal;processing the analog input signal with one or more other processing paths each having a respective second analog gain, each configured to consume a smaller amount of power than the first processing path, and each configured to generate a respective digital signal based on the analog input signal, wherein one of the one or more other processing paths has a noise floor based on fidelity characteristics of the analog input signal or subsequent processing requirements of a digital output signal generated from at least one of the first digital signal and the respective digital signals;selecting one of the first processing path and the one or more other processing paths as a selected processing path for generating the digital output signal of the processing system based on a magnitude of the analog input signal; andcontrolling an amount of power consumed by the selected processing path based on the fidelity characteristics or the subsequent processing requirements in order to control the noise floor.
  • 13. The method of claim 12, controller is further comprising: powering down the first processing path when one of the respective digital signals of the one or more other processing paths is selected as the digital output signal; andpowering up the first processing path in response to selecting the first digital signal as the digital output signal.
  • 14. The method of claim 12, wherein the one or more other processing paths comprise: a second processing path; anda third processing path configured to consume a smaller amount of power than the second processing path.
  • 15. The method of claim 12, wherein the fidelity characteristics comprise at least one of an acoustic noise floor of the analog input signal, acoustic distortion of the analog input signal, a bandwidth of the analog input signal, and an intrinsic noise floor of at least one of the processing paths.
  • 16. The method of claim 12, wherein the subsequent processing requirements comprise at least one of a bandwidth of a downstream process that receives the digital output signal, a bit width of a downstream process that receives the digital output signal, and a signal-to-noise ratio requirement of a downstream process that receives the digital output signal.
  • 17. The method of claim 12, wherein the respective second analog gains are smaller than that of the first analog gain.
  • 18. A method comprising: processing an analog input signal with a first processing path having a first analog gain to generate a first digital signal based on the analog input signal;processing the analog input signal with a second processing path having a second analog gain to generate a second digital signal based on the analog input signal;processing the analog input signal with a third processing path having a third analog gain, configured to consume a smaller amount of power than the first processing path and the second processing path, and configured to generate a third digital signal based on the analog input signal, wherein the third processing path has a noise floor based on fidelity characteristics of the analog input signal or subsequent processing requirements of a digital output signal generated from at least one of the first digital signal, the second digital signal, and the third digital signal;selecting one of the first processing path, the second processing path, and the third processing path as a selected processing path for generating the digital output signal of the processing system based on a magnitude of the analog input signal; andcontrol an amount of power consumed by the selected processing path based on the fidelity characteristics or the subsequent processing requirements in order to control the noise floor.
  • 19. The method of claim 18, wherein the controller is further configured to: power down at least the first processing path when the third digital signal is selected as the digital output signal; andpower up at least the first processing path in response to selecting the first digital signal as the digital output signal.
  • 20. The method of claim 18, wherein the fidelity characteristics comprise at least one of an acoustic noise floor of the analog input signal, acoustic distortion of the analog input signal, a bandwidth of the analog input signal, and an intrinsic noise floor of at least one of the processing paths.
  • 21. The method of claim 18, wherein the subsequent processing requirements comprise at least one of a bandwidth of a downstream process that receives the digital output signal, a bit width of a downstream process that receives the digital output signal, and a signal-to-noise ratio requirement of a downstream process that receives the digital output signal.
  • 22. The method of claim 18, wherein the third analog gain is smaller than that of at least one of the first analog gain and the second analog gain.
US Referenced Citations (219)
Number Name Date Kind
3683164 Minami Aug 1972 A
4346349 Yokoyama Aug 1982 A
4441081 Jenkins Apr 1984 A
4446440 Bell May 1984 A
4493091 Gundry Jan 1985 A
4628526 Germer Dec 1986 A
4890107 Pearce Dec 1989 A
4972436 Halim et al. Nov 1990 A
4999628 Kakaubo et al. Mar 1991 A
4999830 Agazzi Mar 1991 A
5077539 Howatt Dec 1991 A
5148167 Ribner Sep 1992 A
5198814 Ogawara et al. Mar 1993 A
5212551 Conanan May 1993 A
5272449 Izawa Dec 1993 A
5321758 Charpentier et al. Jun 1994 A
5323159 Imamura et al. Jun 1994 A
5343161 Tokumo et al. Aug 1994 A
5434560 King et al. Jul 1995 A
5495505 Kundmann Feb 1996 A
5550923 Hotvet et al. Jul 1996 A
5600317 Knoth et al. Feb 1997 A
5714956 Jahne Feb 1998 A
5719641 Mizoguchi Feb 1998 A
5771301 Fuller et al. Jun 1998 A
5796303 Vinn et al. Aug 1998 A
5808575 Himeno et al. Sep 1998 A
5810477 Abraham et al. Sep 1998 A
6088461 Lin Jul 2000 A
6160455 French et al. Dec 2000 A
6201490 Kawano et al. Mar 2001 B1
6260176 Chen Jul 2001 B1
6271780 Gong et al. Aug 2001 B1
6333707 Oberhammer et al. Dec 2001 B1
6353404 Kuroiwa Mar 2002 B1
6542612 Needham Apr 2003 B1
6614297 Score et al. Sep 2003 B2
6683494 Stanley Jan 2004 B2
6745355 Tamura Jun 2004 B1
6768443 Willis Jul 2004 B2
6810266 Ecklund Oct 2004 B1
6822595 Robinson Nov 2004 B1
6853242 Melanson et al. Feb 2005 B2
6888888 Tu et al. May 2005 B1
6897794 Kuyel et al. May 2005 B2
6989955 Ziemer et al. Jan 2006 B2
7020892 Levesque et al. Mar 2006 B2
7023268 Taylor et al. Apr 2006 B1
7061312 Andersen et al. Jun 2006 B2
7167112 Andersen et al. Jan 2007 B2
7216249 Fujiwara et al. May 2007 B2
7279964 Bolz et al. Oct 2007 B2
7302354 Zhuge Nov 2007 B2
7312734 McNeill et al. Dec 2007 B2
7315204 Seven Jan 2008 B2
7365664 Caduff et al. Apr 2008 B2
7378902 Sorrells et al. May 2008 B2
7385443 Denison Jun 2008 B1
7403010 Hertz Jul 2008 B1
7440891 Shozakai et al. Oct 2008 B1
7522677 Liang Apr 2009 B2
7583215 Yamamoto et al. Sep 2009 B2
7671768 De Ceuninck Mar 2010 B2
7679538 Tsang Mar 2010 B2
7733592 Hutchins et al. Jun 2010 B2
7737776 Cyrusian Jun 2010 B1
7893856 Ek et al. Feb 2011 B2
7924189 Sayers Apr 2011 B2
7937106 Sorrells et al. May 2011 B2
7952502 Kolze et al. May 2011 B2
8060663 Murray et al. Nov 2011 B2
8130126 Breitschaedel et al. Mar 2012 B2
8194889 Seefeldt Jun 2012 B2
8298425 Kanbe Oct 2012 B2
8330631 Kumar et al. Dec 2012 B2
8362936 Ledzius et al. Jan 2013 B2
8462035 Schimper et al. Jun 2013 B2
8483753 Behzad et al. Jul 2013 B2
8508397 Hisch Aug 2013 B2
8717211 Miao et al. May 2014 B2
8786477 Albinet Jul 2014 B1
8836551 Nozaki Sep 2014 B2
8873182 Liao et al. Oct 2014 B2
8878708 Sanders et al. Nov 2014 B1
8952837 Kim et al. Feb 2015 B2
9071201 Jones et al. Jun 2015 B2
9071267 Schneider Jun 2015 B1
9071268 Schneider et al. Jun 2015 B1
9118401 Nieto et al. Aug 2015 B1
9148164 Schneider et al. Sep 2015 B1
9171552 Yang Oct 2015 B1
9178462 Kurosawa et al. Nov 2015 B2
9210506 Nawfal et al. Dec 2015 B1
9306588 Das et al. Apr 2016 B2
9337795 Das et al. May 2016 B2
9391576 Satoskar et al. Jul 2016 B1
9444504 Robinson et al. Sep 2016 B1
9503027 Zanbaghi Nov 2016 B2
9525940 Schneider et al. Dec 2016 B1
9543975 Melanson et al. Jan 2017 B1
9584911 Das et al. Feb 2017 B2
9596537 He et al. Mar 2017 B2
9635310 Chang et al. Apr 2017 B2
9680488 Das et al. Jun 2017 B2
9762255 Satoskar et al. Sep 2017 B1
9774342 Schneider Sep 2017 B1
9780800 Satoskar Oct 2017 B1
9807504 Melanson et al. Oct 2017 B2
9813814 Satoskar Nov 2017 B1
9831843 Das et al. Nov 2017 B1
9917557 Zhu et al. Mar 2018 B1
9929703 Zhao Mar 2018 B1
20010001547 Delano May 2001 A1
20010009565 Singvall Jul 2001 A1
20040078200 Alves Apr 2004 A1
20040184621 Andersen et al. Sep 2004 A1
20050068097 Kim et al. Mar 2005 A1
20050084037 Liang Apr 2005 A1
20050258989 Li et al. Nov 2005 A1
20050276359 Xiong Dec 2005 A1
20060056491 Lim et al. Mar 2006 A1
20060064037 Shalon et al. Mar 2006 A1
20060098827 Paddock et al. May 2006 A1
20060261886 Hansen et al. Nov 2006 A1
20060284675 Krochmal et al. Dec 2006 A1
20070018719 Seven Jan 2007 A1
20070026837 Bagchi Feb 2007 A1
20070057720 Hand et al. Mar 2007 A1
20070092089 Seefeldt et al. Apr 2007 A1
20070103355 Yamada May 2007 A1
20070120721 Caduff May 2007 A1
20070123184 Nesimoglu et al. May 2007 A1
20070142943 Torrini Jun 2007 A1
20070146069 Wu et al. Jun 2007 A1
20080012639 Mels Jan 2008 A1
20080030577 Cleary et al. Feb 2008 A1
20080114239 Randall et al. May 2008 A1
20080143436 Xu Jun 2008 A1
20080159444 Terada Jul 2008 A1
20080198048 Klein et al. Aug 2008 A1
20080278632 Morimoto Nov 2008 A1
20080292107 Bizjak Nov 2008 A1
20090015327 Wu et al. Jan 2009 A1
20090021643 Hsueh et al. Jan 2009 A1
20090051423 Miaille et al. Feb 2009 A1
20090058531 Hwang et al. Mar 2009 A1
20090084586 Nielsen Apr 2009 A1
20090220110 Bazarjani et al. Sep 2009 A1
20100168882 Zhang et al. Jul 2010 A1
20100176980 Breitschadel Jul 2010 A1
20100183163 Matsui et al. Jul 2010 A1
20100195771 Takahashi Aug 2010 A1
20110013733 Martens et al. Jan 2011 A1
20110025540 Katsis Feb 2011 A1
20110029109 Thomsen et al. Feb 2011 A1
20110044414 Li Feb 2011 A1
20110063148 Kolze Mar 2011 A1
20110096370 Okamoto Apr 2011 A1
20110136455 Sundstrom et al. Jun 2011 A1
20110150240 Akiyama et al. Jun 2011 A1
20110170709 Guthrie et al. Jul 2011 A1
20110188671 Anderson et al. Aug 2011 A1
20110228952 Lin Sep 2011 A1
20110242614 Okada Oct 2011 A1
20110268301 Nielsen et al. Nov 2011 A1
20110285463 Walker et al. Nov 2011 A1
20120001786 Hisch Jan 2012 A1
20120007757 Choe et al. Jan 2012 A1
20120047535 Bennett et al. Feb 2012 A1
20120133411 Miao et al. May 2012 A1
20120177201 Ayling et al. Jul 2012 A1
20120177226 Silverstein et al. Jul 2012 A1
20120188111 Ledzius et al. Jul 2012 A1
20120207315 Kimura et al. Aug 2012 A1
20120242521 Kinyua Sep 2012 A1
20120250893 Carroll et al. Oct 2012 A1
20120263090 Porat et al. Oct 2012 A1
20120274490 Kidambi et al. Nov 2012 A1
20120280726 Colombo et al. Nov 2012 A1
20120293348 Snelgrove Nov 2012 A1
20120314750 Mehrabani Dec 2012 A1
20130095870 Phillips et al. Apr 2013 A1
20130106635 Doi May 2013 A1
20130129117 Thomsen et al. May 2013 A1
20130188808 Pereira et al. Jul 2013 A1
20130235484 Liao Sep 2013 A1
20130241753 Nozaki Sep 2013 A1
20130241755 Chen et al. Sep 2013 A1
20140044280 Jiang Feb 2014 A1
20140105256 Hanevich et al. Apr 2014 A1
20140105273 Chen et al. Apr 2014 A1
20140126747 Huang May 2014 A1
20140135077 Leviant et al. May 2014 A1
20140184332 Shi Jul 2014 A1
20140269118 Taylor et al. Sep 2014 A1
20140363023 Li et al. Dec 2014 A1
20140368364 Hsu Dec 2014 A1
20150009079 Bojer Jan 2015 A1
20150170663 Disch et al. Jun 2015 A1
20150214974 Currivan Jul 2015 A1
20150214975 Gomez et al. Jul 2015 A1
20150249466 Elyada Sep 2015 A1
20150295584 Das et al. Oct 2015 A1
20150327174 Rajagopal et al. Nov 2015 A1
20150381130 Das et al. Dec 2015 A1
20160072465 Das et al. Mar 2016 A1
20160080862 He et al. Mar 2016 A1
20160080865 He et al. Mar 2016 A1
20160139230 Petrie May 2016 A1
20160173112 Das et al. Jun 2016 A1
20160181988 Du et al. Jun 2016 A1
20160286310 Das et al. Sep 2016 A1
20160365081 Satoskar et al. Dec 2016 A1
20170047895 Zanbaghi Feb 2017 A1
20170150257 Das et al. May 2017 A1
20170212721 Satoskar Jul 2017 A1
20180046239 Schneider Feb 2018 A1
20180048325 Schneider Feb 2018 A1
20180098149 Das Apr 2018 A1
Foreign Referenced Citations (35)
Number Date Country
0351788 Jul 1989 EP
0966105 Dec 1999 EP
1244218 Sep 2002 EP
1575164 Sep 2005 EP
1689075 Aug 2006 EP
1753130 Feb 2007 EP
1798852 Jun 2009 EP
2207264 Jul 2010 EP
1599401 Sep 1981 GB
2307121 Jun 1997 GB
2507096 Apr 2014 GB
2527637 Dec 2015 GB
2527677 Oct 2016 GB
2537694 Oct 2016 GB
2537697 Oct 2016 GB
2539517 Dec 2016 GB
2552860 Feb 2018 GB
2552867 Feb 2018 GB
2008294803 Dec 2008 JP
WO0054403 Sep 2000 WO
0237686 May 2002 WO
2006018750 Feb 2006 WO
2007005380 Jan 2007 WO
2007136800 Nov 2007 WO
2008067260 Jun 2008 WO
2014113471 Jul 2014 WO
2015160655 Oct 2015 WO
2016040165 Mar 2016 WO
2016040171 Mar 2016 WO
2016040177 Mar 2016 WO
2016160336 Oct 2016 WO
2016202636 Dec 2016 WO
2017116629 Jul 2017 WO
2018031525 Feb 2018 WO
2018031646 Feb 2018 WO
Non-Patent Literature Citations (36)
Entry
Combined Search and Examination Report, GB Application No. GB1602288.1, dated Aug. 9, 2016, 6 pages.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2016/065134, dated Mar. 15, 2017.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2016/040096, dated Mar. 24, 2017.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2017/014240, dated Apr. 24, 2017.
Groeneweg, B.P., et al, A Class-AB/D Audio Power Amplifier for Mobile Applications Integrated Into a 2.5G/3G Baseband Processo1016r, IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 57, No. 5, May 2010, pp. 1003-1016.
Chen, K., et al., A High-PSRR Reconfigurable Class-AB/D Audio. Amplifier Driving a Hands-Free/Receiver. 2-in-1 Loudspeaker, IEEE Journal of Solid-State Circuits, vol. 47, No. 11, Nov. 2012, pp. 2586-2603.
Thaden, Rainer et al., A Loudspeaker Management System with FIR/IRR Filtering; AES 32nd International Conference, Hillerod, Denmark, Sep. 21-23, 2007; pp. 1-12.
Thaden, Rainer et al., A Loudspeaker Management System with FIR/IRR Filtering; Slides from a presentation given at the 32nd AES conference “DSP for Loudspeakers” in Hillerod, Denmark in Sep. 2007; http://www.four-audio.com/data/AES32/AES32FourAudio.pdf; 23 pages.
GB Patent Application No. 1419651.3, Improved Analogue-to-Digital Convertor, filed Nov. 4, 2014, 65 pages.
Combined Search and Examination Report, GB Application No. GB1506258.1, dated Oct. 21, 2015, 6 pages.
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/025329, dated Aug. 11, 2015, 9 pages.
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/048633, dated Dec. 10, 2015, 11 pages.
International Search Report and Written Opinion, International Patent Application No. PCT/US2015/048591, dated Dec. 10, 2015, 11 pages.
Combined Search and Examination Report, GB Application No. GB1510578.6, dated Aug. 3, 2015, 3 pages.
International Search Report and Written Opinion, International Application No. PCT/US2015/056357, dated Jan. 29, 2015, 13 pages.
Combined Search and Examination Report, GB Application No. GB1514512.1, dated Feb. 11, 2016, 7 pages.
International Search Report and Written Opinion, International Application No. PCT/US2015/048609, dated Mar. 23, 2016, 23 pages.
International Search Report and Written Opinion, International Application No. PCT/US2016/022578, dated Jun. 22, 2016, 12 pages.
Combined Search and Examination Report, GB Application No. GB1600528.2, dated Jul. 7, 2016, 8 pages.
Combined Search and Examination Report, GB Application No. GB1603628.7, dated Aug. 24, 2016, 6 pages.
International Search Report and Written Opinion, International Application No. PCT/EP2016/062862, dated Aug. 26, 2016, 14 pages.
Combined Search and Examination Report under Sections 17 and 18(3) of the UKIPO, Application No. GB1620427.3, dated Jun. 1, 2017.
Combined Search and Examination Report under Sections 17 and 18(3) of the UKIPO, Application No. GB1620428.1, dated Jul. 21, 2017.
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB1700371.6, dated Aug. 1, 2017.
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB1702540.4, dated Oct. 2, 2017.
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB1702655.0, dated Oct. 24, 2017.
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB1706693.7, dated Oct. 26, 2017.
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB1706690.3, dated Oct. 30, 2017.
Search Report under Section 17, United Kingdom Intellectual Property Office, Application No. GB1702656.8, dated Oct. 31, 2017.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2017/045861, dated Nov. 14, 2017.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2017/046083, dated Nov. 14, 2017.
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB1708546.5, dated Nov. 22, 2017.
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Intellectual Property Office, Application No. GB1708544.0, dated Nov. 28, 2017.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2017/052439, dated Dec. 14, 2017.
Chen, Kuo-Hsin, et al., A 106dB PSRR Direct Battery Connected Reconfigurable Class-AB/D Speaker Amplifier for Hands-Free/Receiver 2-in-1 Loudspeaker, Solid State Circuits Conference (A-SSCC), 2011 IEEE Asian, Nov. 14, 2011, pp. 221-224.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2018/026410, dated Jul. 6, 2018.
Related Publications (1)
Number Date Country
20180046239 A1 Feb 2018 US