The invention described herein was made in the performance of work under a NASA contract, and is subject to the provisions of Public Law 96-517 (35 USC 202) in which the Contractor has elected to retain title.
The invention relates to systems and methods for control of fluid flow in general and particularly to systems and methods for controlling the flow of fluids in oil production.
Choke valves for use in the downhole environment of oil wells are well known. However it is difficult to design and construct choke valves that fit within the restricted available space, that operate using limited power and that have long operational lifetimes. These choke valves must control the flow rate from high pressure oil reservoirs in the presence of fluids that contain abrasive particulate material such as sand, possibly in significant concentrations.
Also known in the prior art is Jackson, U.S. Pat. No. 6,860,330, issued Mar. 1, 2005, which is said to disclose a choke valve assembly for controlling the flow of fluid through a production tubing. The valve assembly includes a housing having a plurality of axially aligned apertures and a ported sleeve disposed in the housing. The ported sleeve has a plurality of rows of fluid ports. Each row of ports has at least one port in selective fluid communication with a respective aperture. In the full open position, each aperture is in fluid communication with a port from each row. To choke the flow, the ported sleeve is rotated relative to the housing to reduce the number of ports in fluid communication with the housing. To close the valve, axial force is applied to move the ported sleeve axially relative to the housing.
There is a need for improved valves for control of flow in oil production.
According to one aspect, the invention features a flow control valve. The flow control valve comprises a plurality M of flow paths connected in parallel, where M is an integer greater than one, each of the plurality M of flow paths connected in parallel having a fluid connection at one end to an inlet and having a fluid connection at a second end to an outlet; each of the plurality M of flow paths connected in parallel each having at least one poppet valve; each of the plurality M of flow paths connected in parallel having a respective plurality NI of stages, each stage comprising an orifice and a chamber, where NI is an integer that is greater than zero that describes the number of stages in a selected path I of the M paths; and at least one actuator operatively connected to at least one of the poppet valves, the at least one actuator operable to place the at least one of the poppet valves in one of a fully open state and a fully closed state; the flow control valve operable to permit a controlled flow of a fluid therethrough.
In one embodiment, the chamber of a last stage is the outlet.
In one embodiment, the plurality M of flow paths connected in parallel fit within an annular cylinder between an inner pipe and a casing pipe of an oil well.
In another embodiment, the flow control valve is operable to provide a flow having a flow rate determined according to a progression of the fully open and the fully closed states of the poppet valves of the plurality M of flow paths connected in parallel.
In yet another embodiment, the at least one actuator is an annular cam.
In still another embodiment, the at least one actuator comprises a plurality of annular cams.
In still another embodiment, the at least one actuator is a motor.
In a further embodiment, a first of the respective poppets has a mechanical interference with a second of the respective poppets, the mechanical interference when engaged communicating a drive force from the at least one actuator to the second of the respective poppets by way of the first of the respective poppets.
In yet a further embodiment, a sealing area between the cap and the orifice is located on the outside surface of the orifice or on the base of the orifice.
In a further embodiment, the controlled flow is determined by a state in which only one of the plurality M of flow paths connected in parallel is open.
In yet a further embodiment, the controlled flow is determined by a state in which at least two of the plurality M of flow paths connected in parallel are open.
In another embodiment, the at least one poppet valve is sized in proportion to a respective flow capacity of the path.
According to another aspect, the invention relates to a method of controlling a flow rate of a fluid. The method comprises the steps of: providing an flow control valve comprising an inlet for receiving a fluid and an outlet for delivering the fluid; and a plurality M of flow paths connected in parallel, where M is an integer greater than one, each of the plurality M of flow paths connected in parallel having a fluid connection at one end to the inlet and having a fluid connection at a second end to the outlet; one of the plurality M of flow paths connected in parallel having a flow capacity when open of substantially the total flow that the valve can provide, and each of the remaining M−1 flow paths connected in parallel having a respective flow capacity when open of a fractional part of the total flow that the valve can provide; each of the plurality M of flow paths connected in parallel each having a poppet valve sized in proportion to the respective flow capacity of the path; M−1 of the plurality M of flow paths connected in parallel each having a respective plurality of stages, each stage comprising an orifice and a chamber, the stages constructed to reduce a pressure of a fluid lowing through the respective one of the plurality M of flow paths connected in parallel; and at least one actuator operatively connected to at least one of the poppet valves, the at least one actuator operable to place the at least one of the poppet valves in one of a fully open state and a fully closed state; connecting the inlet of the flow control valve to a reservoir of fluid at a pressure P+ΔP; connecting the outlet of the flow control valve to a reservoir to receive fluid passing through the flow control valve; and operating the at least one actuator to open one or more of the poppet valves of the plurality M of flow paths connected in parallel so as to cause a flow of the fluid at a predetermined flow rate.
In one embodiment, the reservoir of fluid at the pressure P+ΔP is a production zone of an oil well.
In another embodiment, the flow of the fluid at the predetermined flow rate results in a pressure P at the outlet.
In yet another embodiment, the flow of the fluid in one path of the plurality M of flow paths connected in parallel has a the maximum flow velocity V given by V=(2ΔP/NIρ)0.5 where ΔP is the pressure drop between the inlet and the outlet, NI is an integer that is greater than zero that describes the number of stages in a selected open path I of the M paths, and ρ is the density of the fluid of the flow.
The foregoing and other objects, aspects, features, and advantages of the invention will become more apparent from the following description and from the claims.
The objects and features of the invention can be better understood with reference to the drawings described below, and the claims. The drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the drawings, like numerals are used to indicate like parts throughout the various views.
We describe a novel design of a downhole choke valve for high pressure, high flow rate control of oil wells. The valve comprises multipath, multistage pressure reduction structures and high erosion tolerance cap valves that are expected to provide long lifetime even with particulate-laden flow, for example oil mixed with sand or other particulate material. The valve controls the flow rate in a way that minimizes the actuation force. The valve operates using binary states (each valve is either open or closed) so that the flow rate can be controlled in what is a form of digital control. The valve can be activated by a single actuator or multiple actuators, under low power and is able to be fabricated to fit within the small space available in a downhole oil well.
The disclosed multipath multistage valve is designed to control flow from an individual production zone located downhole in an oil well. In general, it can be used in applications where high pressure flow control is needed.
The novel features of the valve system and method presented in this disclosure are believed to be:
As previously alluded to, oil produced from wells involves the control of fluids at high pressures, which fluids often contain abrasive particulate matter. The interaction of the particulate matter with the components of valves can cause erosion of the surfaces of the valve components, which leads to poor flow control and ultimately, failure of the valves. In particular as the flow rate of the fluid increases, the more destructive will be the action of the abrasive particulates on the valves.
Additional difficulties that can be encountered include the small space in which the valve must be operable, the need to deal with high pressures when opening valves, the issues related to exerting sufficient control on the fluid flow rate, and the need for the valve to be operated using limited amounts of power.
The novel design concept of digitalized flow control valve with multipath and multistage pressure reduction structures was developed to address these challenges.
The design presented in various embodiments comprises a digital flow control valve having multipath and multistage pressure reduction structures. The valve includes a set of flow paths connected in parallel from the inlet to the outlet. The choke valve controls the total flow rate by opening different individual paths or different combinations of the paths in a binary (on or off) manner. The various paths are designed to have different individual flow rates, as will be explained, so that a progression of sequential path operations can control a flow in a manner analogous to digital control.
By way of example, it is known in digital systems that one can uniquely represent any integer value from 0 to 15 using a 4 bit byte in which each successive bit represents a doubling of the value of the previous bit, e.g., bit 0 has value 1, bit 1 has value 2, bit 3 has value 4 and bit 4 has value 8. One can then represent any value by turning on or off each successive bit. For example the value 3 is represented by bits 0 and 1 on, and bits 2 and 3 off (1+2+0+0=3). The value 11 is represented by bits 0, 1 and 3 on, and bit 2 off (1+2+0+8=11). In the alternative system known as Gray coding, one can uniquely define a sequence in which the transition from one integer value to the next higher or the next lower integer involves a change of only one bit.
By analogy, if the flow rates of a succession of paths are constructed to be in a binary sequence (e.g., 1, 2, 4, 8, 16 . . . ) one can “dial in” any flow rate represented by an integer amount of flow, where the integer is selected from the set of integers that the binary system covers (e.g., zero to 2N−1 for a system with N binary bits). In alternative embodiments, the values represented by the bits can be selected to be multiples of a fractional value (for example ⅔ rather than 1, so the maximum value become 10 rather than 15), or can be selected so that the progression is not by equal steps, but rather by steps having a predetermined relationship with each other. In the present system, the value represented by the digital system is a magnitude of a flow of a fluid, which is controlled by opening in succession a sequence of flow valvee paths in a predetermined order (or by closing the paths ion a predetermined order to shut off the flow). Using the flow control valves as described herein, one can control a flow rate of a fluid through the flow control valve such that the flow rate is determined according to a progression of open and closed states of valves in the plurality flow paths connected in parallel.
Each path is controlled by a poppet cap valve operated in on-off (e.g., fully open and fully closed) states. The poppet cap valves are not deliberately operated in states that represent being partially open (e.g., proportional operation of a valve) although it is recognized that such states can occur in cases of partial malfunction. To avoid erosion from sand in the oil and high speed flow, the seal area of the poppet cap valve is located at a distance from the flow inlet away from the high speed flow. The path is a multistage structure composed of jet orifice and settling chamber pairs. The pressure drop of each stage and, therefore, the flow speed at the orifice for a set flow rate is controlled by the number of stages. The paths have relatively small diameter or cross section (e.g., centimeters or fractions of centimeters) and are relatively long (e.g., meters) for large number of stages and still fit in the strict annular space limit between an inner pipe and a casing pipe in the typical downhole region of oil well.
The valve comprises a parallel set of flow paths 105, 110, 115, 120 from inlet to outlet. Each path is controlled by a separate poppet cap valve that is operated in binary on-off states (i.e., digitally). The paths may have different flow resistances. The choke valve controls the total flow rate by opening a specific path or a combination of different paths. Of the M paths, M−1 paths have a structure that includes a plurality of stages, and one of the M paths has an orifice with no stages thereafter. The M−1 paths are each designed to provide when open a fractional part of the total flow that the valve can handle, while the path with no stages thereafter is designed to provide when open substantially the total flow that the valve can handle. In one embodiment the flow control valve has a path wherein the chamber of the last stage is the outlet.
The structure of a representative path 105 having multiple stages 130 is shown in
As is shown in
A simple poppet cap valve with no stages thereafter (e.g., the right-most poppet cap valve shown in
For a path having N identical stages of the same orifice and settling chamber structure, the total pressure difference ΔP between the valve inlet and outlet is equally distributed at each stage. When the cross-section of the chamber 134 is much greater than the diameter of the orifice 132, and the outlet of the chamber is far enough away, the flow velocity V through the orifices (which is the maximum flow velocity) in the path is given by
V=(2ΔP/Nρ)0.5
where ρ is the density of the fluid of the flow. The flow rate q through the path is given by
q=AorificeV
where Aorifice is the cross-section of the orifice.
The use of a large enough number of the stages can limit the maximum flow velocity to reduce the erosion rate for a long lifetime design.
The maximum force F required to open the cap is the pressure difference times the cap sealed area, given by F=ΔP×Acap. The total pressure difference ΔP has a maximum value when all paths are closed and decreases when some paths are opened. This multiple path configuration allows opening the paths in sequence (e.g., the smallest cap first) to reduce the required actuation force to operate the valve. The valve can be designed such that the smallest valve serves as a bleed valve to reduce the total pressure difference ΔP when the value of the total pressure difference ΔP exceeds some maximum value, thereby limiting the force needed to open the valve.
An example of design parameter selection and performance estimation is presented in Table 1. We assume the reservoir pressure is 7000 psi (48.3 Mpa) more than the pressure in the inner pipe P_inner, the maximum flow rate (Qmax) is 4000 barrels of fluid per day (BFPD) (or 636 m3/day), the oil density is 900 kg/m3, and the pressure drop in the formation is proportional to the flow rate.
In this embodiment, the valve is designed to be able to control the flow rate from 0% (closed valve) to 90% of the Qmax in steps of 10% where 99% denotes a fully open valve. The valve comprises 10 paths corresponding to 10%-90% and 99% of Qmax respectively when one of the paths is open. The paths have multiple stages of the orifice and chamber structure previously described and the chamber is a pipe having a 1″ (25.4 mm) ID. In this embodiment, one opens paths beginning with the lowest flow path, and successively opens the next higher flow path while closing the path having the next lower flow until the intended flow rate is reached. This may take a number of steps of opening and closing paths, depending on how large a flow is desired.
The erosion rate at an orifice is generally proportional to Vn where V is flow speed and the power n is greater than 2. See Haugen K., O. Kvemvold, A. Ronold, R. Sandberg (1995), “Sand erosion of wear-resistant materials: Erosion in choke valves”, Wear 186-187, pp. 179-188. The reservoir pressure of 7000 psi (48.3 Mpa) is able to create an oil flow speed up to 350 m/s and results in serious erosion in flow control valve. In the present embodiment, we set the allowed maximum velocity as 50 m/s to reduce the possible erosion. The stages of each path are identical except the first orifice has a projected tube structure as shown in
According to the turbulence jet theory (as presented in Cushman-Roisin B., Environmental Fluid Mechanics, Chapter 9, Turbulent Jets, John Wiley & Sons, Inc., New York, 2012), a circular cross section jet from an orifice into an open space will entrain surrounding fluid and expand its cross section along the downstream distance. The maximum speed is at its central axis and decays with the distance. The maximum speed (U_max) is calculated at the distance of the chamber length (L_cham). In the pipe having a limited diameter the flow will converge to a turbulent flow with a uniform velocity profile at long enough distance. That velocity is calculated as Uaver. The maximum of U_max and Uaver is considered the maximum velocity of the flow into the end of the chamber. The possible maximum velocities are controlled to be ˜13 m/s or less by choosing the appropriate length of the chamber. Taking into account this non-zero velocity from the previous stage the flow velocity in the orifice is updated as V_updated. The velocities have very small increase in this embodiment.
The force needed to pull the poppet cap against the pressure is calculated as F_pull. The sealed area is assumed to have a diameter of d_orifice+6 mm. In addition, it is assumed that when opening the path for a set flow (say 0.6 Qmax) the path for previous set flow (0.5 Qmax) is opened and all other paths were closed. L_total is the total length of the multi stage path. The length of each stage is the chamber length plus the orifice length, L_cham+(Orifice L). The orifice length is set to 15 mm to provide an inlet orifice that will tolerate long-term erosion.
The actuators in the preferred embodiment are rotary motors that rotate a cam which linearly move the poppet arm however each poppet could be controlled by a single actuator configured to open and close the poppet. In addition the actuator may be a tool that is sent downhole which can be designed to drive a mechanism which can open or close each individual poppet valve.
The analytical results show that the maximum velocity can be limited at the orifices to approximately 50 m/s, and approximately 13 m/s inside the chambers. These speeds are manageable. The maximum number of stages is 39, where the chamber's inner diameter is 1″ (25.4 mm) and maximum path length is less than 4.5 meters. These dimensions can fit in typical oil well downhole annular spaces even the paths are arranged as straight lines. The paths may be folded by using U shape chambers. The maximum required force to open the path poppet cap valves is less than 6000 N and this could be operated by linear actuators comprising reasonably small motors with gearing mechanisms, as shown in
The actuators compartment can be separated from the cam and poppets compartment to prevent the harmful fluids to reach the actuators and the control electronics. This compartment can be fully flooded with a dielectric fluid and a membrane in the housing can be provided to allow pressure transfer between the actuators compartment and the surrounding environment to reduce the requirements of the actuators housing.
The arm connecting the poppet and the roller shown in
A first embodiment is shown in
As may be seen from consideration of Table 2, Gray code is simply a reordering of (or reassignment of values to) the same 8 different patterns (e.g., all of the possible patterns that one can generate with 3 bits). Gray code has the property that only one bit of a representation changes at each step of advancing through the code.
The cam 710 of
The groove 712 correspond to the ones bit of a four bit sequence. It takes on the value 0 at position 0 (P0), the value 1 at P1, the value 0 at P2, the value 1 at P3 and the value 0 at P4. The groove 714 corresponds to the twos bit of the four bit sequence. It takes on the value 0 at position 0 (P0), the value 0 at P1, the value 1 at P2, the value 1 at P3 and the value 0 at P4. The groove 716 corresponds to the fours bit of the four bit sequence. It takes on the value 0 at position 0 (P0), the value 0 at P1, the value 0 at P2, the value 0 at P3 and the value 1 at P4. The groove 718 corresponds to the eights bit of the four bit sequence. It takes on the value 0 at position 0 (P0), the value 0 at P1, the value 0 at P2, the value 0 at P3 and the value 0 at P4. The corresponding poppet valves are closed when the groove their control arm follows has the value 0, and are opened when the groove has the value 1.
In an alternative embodiment, the cam 710 can be divided into individual cam annuli (for example by cutting the cam 710 normal to its rotation axis at the dotted lines A-A, B-B and C-C), one for each poppet valve, and each annulus having a groove with only two states (corresponding to pen and closed poppet valve states), but requiring a drive motor for each annulus so that each annulus (and each poppet valve) can be operated independently of any other annular and its associated poppet valve. In such an embodiment, the timing and the sequence of motions applied to the individual cam annuli define the binary states of the poppet valves.
Theoretical Discussion
Although the theoretical description given herein is thought to be correct, the operation of the devices described and claimed herein does not depend upon the accuracy or validity of the theoretical description. That is, later theoretical developments that may explain the observed results on a basis different from the theory presented herein will not detract from the inventions described herein.
Any patent, patent application, patent application publication, journal article, book, published paper, or other publicly available material identified in the specification is hereby incorporated by reference herein in its entirety. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material explicitly set forth herein is only incorporated to the extent that no conflict arises between that incorporated material and the present disclosure material. In the event of a conflict, the conflict is to be resolved in favor of the present disclosure as the preferred disclosure.
While the present invention has been particularly shown and described with reference to the preferred mode as illustrated in the drawing, it will be understood by one skilled in the art that various changes in detail may be affected therein without departing from the spirit and scope of the invention as defined by the claims.
This application claims priority to and the benefit of U.S. provisional patent application Ser. No. 61/763,357, filed Feb. 11, 2013, which application is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4343151 | Lorimor | Aug 1982 | A |
5176164 | Boyle | Jan 1993 | A |
5927326 | Hiejima | Jul 1999 | A |
6860330 | Jackson | Mar 2005 | B2 |
7942206 | Huang | May 2011 | B2 |
20100090149 | Thompson | Apr 2010 | A1 |
Entry |
---|
Accessed the meaning of plurality with the free dictionary on Apr. 29, 2016 via http://www.thefreedictionary.com/. |
Accessed the Bernoulli Equatin on Apr. 30, 2016 with University of Chicago via http://geosci.uchicago.edu/˜moyer/GEOS24705/Notes/Bernoulli.pdf. |
Darcy's Law definition. Accessed on Sep. 15, 2016 via https://bae.okstate.edu/faculty-sites/Darcy/LaLoi/Basics.htm. |
Haugen K., O. Kvemvold, A. Ronold, R. Sandberg (1995), “Sand erosion of wear-resistant materials: Erosion in choke valves”, Wear 186-187, pp. 179-188. |
Number | Date | Country | |
---|---|---|---|
20140224342 A1 | Aug 2014 | US |
Number | Date | Country | |
---|---|---|---|
61763357 | Feb 2013 | US |