This application claims the benefit of priority to Taiwan Patent Application No. 111139735, filed on Oct. 20, 2022. The entire content of the above identified application is incorporated herein by reference.
Some references, which may include patents, patent applications and various publications, may be cited and discussed in the description of this disclosure. The citation and/or discussion of such references is provided merely to clarify the description of the present disclosure and is not an admission that any such reference is “prior art” to the disclosure described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference was individually incorporated by reference.
The present disclosure relates to an inductor, and more particularly to a multi-phase coupled inductor.
In a buck-boost circuit for power supply on a circuit board inside an electronic product, multiple inductors are usually used to meet required characteristics and functions. In the related art, when the multiple inductors are soldered on the circuit board, the inductors take up a lot of space on the circuit board and reduce an available area for arranging other electronic components on the circuit board. In addition, multiple independent inductors working together can cause a significant rise in temperature, which reduces the efficiency of the inductors.
Therefore, how to design a single multi-phase coupled inductor having structural improvements which can overcome the above-mentioned inadequacies has become an important issue to be addressed in the relevant art.
In response to the above-referenced technical inadequacy, the present disclosure provides a multi-phase coupled inductor, which includes a first iron core, a second iron core, and a plurality of coil windings. The first iron core includes a first body and a plurality of first core posts, and the plurality of first core posts are connected to the first body. The second iron core is opposite to the first iron core, and the second iron core and the first body are spaced apart from each other by a gap. The plurality of coil windings respectively wrap around the plurality of first core posts, respectively. Each of the coil windings has at least two coils.
Therefore, in the multi-phase coupled inductor provided by the present disclosure, by virtue of “the multi-phase coupled inductor including a plurality of coil windings,” and “the plurality of coil windings respectively wrapping around the plurality of first core posts, and each of the coil windings having at least two coils,” the multiple coil windings can be integrated into a single inductor to save space on the circuit board and increase the inductance.
These and other aspects of the present disclosure will become apparent from the following description of the embodiment taken in conjunction with the following drawings and their captions, although variations and modifications therein may be affected without departing from the spirit and scope of the novel concepts of the disclosure.
The described embodiments may be better understood by reference to the following description and the accompanying drawings, in which:
The present disclosure is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Like numbers in the drawings indicate like components throughout the views. As used in the description herein and throughout the claims that follow, unless the context clearly dictates otherwise, the meaning of “a,” “an” and “the” includes plural reference, and the meaning of “in” includes “in” and “on.” Titles or subtitles can be used herein for the convenience of a reader, which shall have no influence on the scope of the present disclosure.
The terms used herein generally have their ordinary meanings in the art. In the case of conflict, the present document, including any definitions given herein, will prevail. The same thing can be expressed in more than one way. Alternative language and synonyms can be used for any term(s) discussed herein, and no special significance is to be placed upon whether a term is elaborated or discussed herein. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms is illustrative only, and in no way limits the scope and meaning of the present disclosure or of any exemplified term. Likewise, the present disclosure is not limited to various embodiments given herein. Numbering terms such as “first,” “second” or “third” can be used to describe various components, signals or the like, which are for distinguishing one component/signal from another one only, and are not intended to, nor should be construed to impose any substantive limitations on the components, signals or the like.
Referring to
It is worth mentioning that the second iron core 2 is a sheet structure that is I-shaped, and has a simpler configuration than that of the first iron core 1 (which is L-shaped). It does not need to take time to control in the manufacturing process, and has the benefit of reducing the manufacturing cost during production. Therefore, in the process of manufacturing the inductor, it is only necessary to control the shape of the first body 11 of the first iron core 1 to achieve the purpose of adjusting the size of the gap G.
The first iron core 1 and the second iron core 2 can be made of ferrite, and each of the coil windings is made of a flat wire. As shown in
Furthermore, the coil windings 3 of the multi-phase coupled inductor C provided by the present disclosure are made of flat wires, and the flat wires are easily bent, which enables them to wrap around the first core 12 for forming the coils. The larger the quantity of coils of the coil windings 3 is, the greater the inductance that the inductor can generate. Therefore, by having the coil windings 3 being made of the flat wires, the inductance of the multi-phase coupled inductor C can reach about 100 μH.
As shown in
In continuation of the above, the orthogonal projections of the first contact portion 31 and the second contact portion 32 of each of the coil windings 3 that are projected onto the first bottom surface 112 and the second bottom surface 212 overlap with the surfaces of corresponding ones of the first protruding portions 112A and the second protruding portions 212A. Therefore, the first contact portion 31 is located between the first iron core 1 and a circuit board, and the second contact portion 32 is located between the second iron core 2 and the circuit board. Therefore, when the multi-phase coupled inductor C is fixed on the circuit board (not shown in the figures), the first protruding portion 112A of the first iron core 1 will be soldered on the circuit board together with the first contact portion 31 of each of the coil windings 3. Similarly, the second protruding portions 212A of the second iron core 2 and the second contact portions 32 of the coil windings 3 are soldered on the circuit board. Since each of the coil windings 3 is made of a flat wire (the cross-section is rectangular and the contact area is relatively larger), the contact resistance between the coil windings 3 and the circuit board can be reduced, and a soldering area between the multi-phase coupled inductor C and the circuit board is increased, thereby enhancing the stability of the multi-phase coupled inductor C that is soldered to the circuit board.
The first body 11 further includes a first end surface 113, the gap G is located between the first end surface 113 and the second side surface 211, and a length H1 of each of the first core posts 12 is greater than a distance T1 between the first end surface 113 and the first side surface 111. As shown in
Referring to
As shown in
In addition, the first body 11 further includes a first end surface 113, and the second body 21 includes a second end surface 213. The gap G is located between the first end surface 113 and the second end surface 213. A length H1 of each of the first core posts 12 is greater than a distance T1 between the first end surface 113 and the first side surface 111. A length H2 of each of the second core posts 22 is greater than a distance T2 between the second end surface 213 and the second side surface 211. As shown in
Referring to
The multi-phase coupled inductor provided by the present disclosure is an all-in-one inductor that integrates multiple coil windings 3 into a same element, which can replace a need for multiple independent single-phase inductors to be arranged on the circuit board. Therefore, the multi-phase coupled inductor C of the present disclosure has the advantage of saving space on the circuit board.
Referring to
In the related art, the coil windings of the inductor are made of copper foil that is stamped and bent from sheet metal. If the copper foil is excessively bent, an insulating layer on a surface of the copper foil will be damaged to affect its characteristics. Therefore, the coil windings that are made of copper foil stamped and bent from sheet metal cannot form multiple coils. The inductance of the inductor made through this way is usually too low and cannot exceed 1 μH. In contrast, the coil windings 3 of the multi-phase coupled inductor C provided by the present disclosure are made of flat wires. The flat wires can be easily bent, so as to wrap around the first core posts 12 to form a plurality of coils. The larger the quantity of coils of the coil windings 3 is, the greater the inductance that the inductor can generate. Therefore, the multi-phase coupled inductor C provided by the present disclosure can generate a high inductance of about 100 μH by virtue of the coil windings 3 being made of the flat wires.
The foregoing description of the exemplary embodiments of the disclosure has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to explain the principles of the disclosure and their practical application so as to enable others skilled in the art to utilize the disclosure and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present disclosure pertains without departing from its spirit and scope.
Number | Date | Country | Kind |
---|---|---|---|
111139735 | Oct 2022 | TW | national |
Number | Date | Country | |
---|---|---|---|
20240136117 A1 | Apr 2024 | US |