The present disclosure relates to medical devices and methods. In particular, the present disclosure relates to accommodating intraocular lenses (hereinafter “AIOLs” or “AIOL” for singular).
Cataracts can affect a large percentage of the worldwide adult population with clouding of the native crystalline lens and resulting loss of vision. Patients with cataracts can be treated by native lens removal and surgical implantation of a synthetic intraocular lens (IOL).
Worldwide, there are millions of IOL implantation procedures performed annually. In the US, there are 3.5 million cataract procedures performed, while worldwide there are over 20 million annual procedures performed.
Although IOL implantation procedures can be effective at restoring vision, conventional IOLs have several drawbacks. For example, many prior IOLs are not able to change focus as a natural lens would (known as accommodation). Other drawbacks of conventional IOLs include refractive errors that occur after implantation and require glasses for correcting distance vision, or in other cases the IOLs can be effective in providing good far vision but patients need glasses for intermediate and near vision.
Several multi-focal IOLs have been developed to address these drawbacks, but they too can have drawbacks. For example, although multi-focal IOLs generally perform well for reading and distance vision, in at least some instances such multi-focal IOLs may cause significant glare, halos, and visual artifacts.
AIOLs have been proposed to provide accommodative optical power in response to the distance at which a patient views an object. However, such AIOLs are generally still in development and have different drawbacks. For example, prior AIOLs can provide insufficient accommodation after implantation or produce suboptimal refractive correction of the eye. The amount of accommodation of the prior AIOLs can also decrease after implantation in at least some instances. The prior AIOLs can also be too large to be inserted through a small incision of the eye and may require the incision to be somewhat larger than would be ideal. Also, at least some of the prior AIOLs can be unstable when placed in the eye, which can lead to incorrect accommodation and other errors.
Improved implantable intraocular lenses that accommodate with the natural mechanisms of controlling focusing of the eye that overcome at least some of the above deficiencies would be desirable. Ideally, such improved AIOLs would provide increased amounts of accommodation when implanted, provide refractive stability, introduce few if any perceptible visual artifacts, and allow the optical power of the eye to change from far vision to near vision in response to the distance of the object viewed by the patient.
Embodiments of the present disclosure provide improved AIOLs and methods for making and using AIOLs. In many embodiments, the AIOLs include an accommodating structure comprising an inner fluid chamber and an outer fluid reservoir disposed continuously circumferentially about the inner fluid chamber. The accommodating structure of the AIOLs can have an inner region, which is defined at least in part by the inner fluid chamber, that defines an optical structure having first and second optical components which provide optical power. The outer fluid reservoir may comprise a bellows fluidically coupled to the inner fluid chamber. The AIOLs provide optical power accommodation in one or more ways. For example, the bellows can have a compliant fold region that deflects when the eye accommodates for near vision and thereby transfers fluid between the outer fluid reservoir and the inner fluid chamber to change the profile of the inner region and cause optical power changes. At the periphery of the inner fluid chamber, a plurality of protrusions, such as posts or bumps, may (1) provide a predetermined amount of separation between the first and second optical components and (2) define one or more fluid channels between the inner fluid chamber and the outer fluid reservoir. Although the bellows can be configured in many ways, in many embodiments the bellows extend continuously and circumferentially around an optical axis of the AIOL, and one or more folds of opposing sides of the bellows can extend toward each other in a direction similar to the optical axis. The folds of the bellows may extend continuously and circumferentially substantially around the optical axis, such as three hundred and sixty (360) degrees around the optical axis.
Aspects of the present disclosure provide an AIOL for placement within a lens capsule of a subject. The AIOL may comprise a first component having the first optical component and a first bellows region, and a second component having the second optical component and a second bellows region. The second component is coupled to the first component. The inner fluid chamber can be formed between the first and second optical components. The outer fluid reservoir can be formed between the first bellows region and the second bellows region, and the outer fluid reservoir is in fluid communication with the inner fluid chamber. In operation, fluid transfers between the inner fluid chamber and the outer fluid reservoir in response to shape changes of the lens capsule thereby changing the shape of one or both of the first and second optical components for providing optical power changes to the AIOL.
Several embodiments of AIOLs also include a fixed lens coupled to the accommodating structure. The fixed lens can provide a base power to the AIOL, and in several embodiments the accommodating structure may not have a base power when in a relaxed condition (i.e., when no pressure is applied to the outer fluid reservoir). However, in some embodiments both the fixed lens and the accommodating structure may have the same or different base powers. The fixed lens may be coupled to the posterior side or the anterior side of the accommodating structure. In operation, the fixed lens can be selected to provide a desired base power of the AIOL, and the accommodating structure can then provide an adjustable power to the AIOL in response to the natural mechanisms of controlling focusing of the eye.
In several embodiments of the AIOLs, the fixed lens is coupled to the accommodating structure to be positioned anteriorly with respect to the first and second optical components that provide the accommodative optical power. In such embodiments, the fixed lens is spaced anteriorly apart from the first optical component to allow the first optical component to move anteriorly as fluid is driven from the outer fluid reservoir into the inner fluid chamber. Moreover, since the fixed lens is anterior of the first and second optical components, the fixed lens can be coupled to the accommodating structure after the accommodating structure has been implanted in the native eye capsule. The fixed lens can accordingly be selected to provide the desired refractive requirements for a specific patient after the accommodating structure has been implanted. This feature is useful because the optical properties of the accommodating structure may change after implantation, and it is the anterior orientation of the fixed lens that allows the appropriate fixed lens to be selected post-implantation based on the actual implanted optical properties of the accommodating structure.
Several embodiment of fixed lenses include additional features. For example, the fixed lens can include passages (e.g., holes or cutouts) that allow aqueous fluid to pass through the fixed lens, indexing features for accurately positioning toric or other asymmetrical lenses, engagement features and/or skirts. The engagement features are configured to provide secure attachment of the fixed lens to the accommodating structure, while also being detachable (e.g., a snap-fit or other type of interference fit). In several embodiments, the fixed lens has an optical portion that provides the optical properties to the fixed lens and a skirt extending posteriorly with respect to the optical portion. The skirt spaces the fixed lens apart from the first optical component by a desired distance. The skirt can also enhance to optical performance of the accommodating structure. For example, the skirt constrains the perimeter of the first optical component to prevent distortion that would otherwise occur as fluid moves to/from the inner fluid chamber. The skirt also defines the radius of the deformable area of the first optical component such that a given amount fluid causes greater accommodation than without the skirt. Additionally, the skirt provides an inner wall that buttresses the outer fluid reservoir such that more fluid is pumped from the outer fluid reservoir into the inner fluid chamber in response to the natural focusing mechanism of the eye than without the skirt.
Several embodiments of the present technology are directed to a kit having an accommodating structure and a first fixed lens that has no optical base power. The accommodating structure can be implanted into the native eye capsule, and then the first fixed lens can be coupled to the accommodating structure. The optical properties of the implanted accommodating structure can then be assessed in situ with the first fixed lens in place to determine the desired optical properties of the fixed lens. If the optical properties of the assembled accommodating structure and first fixed lens without a base power are appropriate, then the system can remain implanted without additional changes. However, if a different base power or some other optical property are desired (e.g., toric or other asymmetrical optics), then the first fixed lens without a base power can be replaced with a second fixed lens having the desired optical properties based on the optical properties of the implanted accommodating portion with a fixed lens attached. The kit can accordingly further include one or more second fixed lenses having various based powers or other optical properties.
In many embodiments, the first component is glued to the second component at a joint. Additionally, bumps or other spacers can be located on an inner surface of one or more of the first component or the second component to provide a gap between the first optical component and the second optical component. The first component can be glued to the second component at a joint extending circumferentially around the first component and the second component.
The first bellows region can extend continuously circumferentially around the first optical structure, and the second bellows region can extend continuously circumferentially around the second optical structure.
The first bellows region may comprise one or more folds extending continuously circumferentially around an optical axis of the first optical component, and the second bellows region may comprise one or more folds extending continuously circumferentially around an optical axis of the second optical component.
The first bellows region may comprise one or more first folds extending inwardly and continuously circumferentially around the first optical component, and the second bellows region may comprise one or more second folds extending inwardly and continuously circumferentially around the second optical component. Each of the first folds may extend toward a corresponding one of the second folds.
The first component may comprise a first annularly-shaped stiff coupling structure extending circumferentially between the first optical component and the first bellows region to inhibit radial movement of the first optical component with radial movement of the first bellows region. The second component may comprise a second annularly-shaped stiff coupling structure extending circumferentially between the second optical component and the second bellows region to inhibit radial movement of the second optical component with radial movement of the second bellows region. The first annularly-shaped structure may comprise a first radial thickness greater than a first thickness of the first bellows region, and the second annularly-shaped structure may comprise a second radial thickness greater than a second thickness of the second bellows region.
The first component may comprise an anterior component, and the second component may comprise a posterior component. The first component may comprise a first planar member, and the second component may comprise a second planar member. One or more of the first and second components may comprise a shell, such as a non-planar shell. One of the first or second components may comprise a planar member, and the other of the first or second components may comprise a plano-convex member shaped to provide an optical power.
The fluid within the inner fluid chamber may shape the inner fluid chamber so as to provide an optical power. For example, the shape of the volume of fluid in the inner fluid chamber may provide the optical power of the accommodating structure. Optical power changes to the AIOL may comprise a change to the optical power provided by the shape of the fluid within the inner fluid chamber. The change to the optical power provided by the shape of the fluid within the inner fluid chamber may comprise a change to a shape of the inner fluid chamber. Optical power changes to the AIOL may comprise a change to a separation distance between the first optical component and the second optical component. For example, the separation distance can be the distance between the centers of the first and second optical components measured along the optical axis.
Protrusions peripheral to edges of the first and second optical components and radially inward from the bellows regions may overlap and may be bonded with one another.
The outer fluid reservoir may comprise a bellows having a compliant fold region between inner and outer bellows regions. For example, the outer fluid reservoir can have a fold that defines the fold region, which in turn separates the inner bellows region from the outer bellows region. The compliant fold region may be thinner than the inner and outer bellows regions. The inner fluid chamber may be deflectable in response to deflection of the compliant fold region of the outer fluid reservoir. The compliant fold region may be thinner than the inner and outer bellows regions, which are located radially inward and radially outward with respect to the compliant fold region, respectively.
The AIOL may further comprise a plurality of protrusions, such as one or more of bumps and posts, coupled to one or more of the first and second components. The protrusions can separate portions of the first and second components from one another. For example, the plurality of protrusions may be disposed along outer edges of the inner portions of the first and second optical components to separate the first and second optical components from each other. The plurality of protrusions may define a plurality of fluid channels between the inner fluid chamber and the outer fluid reservoir, wherein each fluid channel is defined between two adjacent protrusions.
The protrusions can be located between the bellows and the optical components to connect the first component to the second component. The protrusions can be located on one or more stiff coupling structures of one or more of the first component and the second component to (a) provide the gap between the first optical component and the second optical component and (b) define a plurality of channels between the chamber and the reservoir to fluidically couple the reservoir to the chamber.
In many embodiments, the outer fluid reservoir comprises a compliant fold region between inner and outer bellows regions. The compliant fold region can be thinner than the inner and outer bellows regions.
In many embodiments, protrusions are coupled to the first or second components, and the protrusions separate the first and second optical components from one another. The protrusions can be disposed between the bellows and the inner region, and the space between protrusions can define fluid channels between the inner fluid chamber and the outer fluid reservoir. For example, each fluid channel is defined between two adjacent posts.
One or more of the first or second components may comprise a polymeric material such as a PMMA copolymer. The polymeric material may be water permeable. The polymeric material may be hydrophilic and/or a combination of both hydrophilic and hydrophobic materials. For example, when the polymeric material is both hydrophilic and hydrophobic components, the resulting polymeric material is predominantly hydrophilic. Water within the lens capsule of the subject may transfer into or out of one or more of the inner fluid chamber or the outer fluid reservoir through the polymeric material to achieve an osmotic equilibrium when the AIOL is placed within the lens capsule. The polymeric material may be non-permeable to compounds having a molecular weight of greater than 40 kDa, for example. AIOLs in accordance with the present technology may further comprise the fluid within the inner fluid chamber. The fluid may comprise one or more of a solution, an oil, a silicone oil, a solution of dextran, a solution of high molecular weight dextran, or a solution of another high molecular weight compound.
In many embodiments, the first and second components are sufficiently flexible to be folded into a reduced cross-section delivery configuration. The reduced cross-section delivery configuration may comprise one or more of folds or rolls of the intraocular lens around a delivery axis transverse to an optical axis of the accommodating intraocular lens. AIOL systems and/or kits in accordance with the present technology may comprise a delivery tube or aperture, and the reduced cross-section delivery configuration may comprise the intraocular lens advanced into the delivery tube or aperture.
In many embodiments, the outer fluid reservoir comprises a haptic structure to engage the lens capsule.
In many embodiments, the fluid within the inner fluid chamber has an index of refraction greater than an index of refraction of an aqueous humor of the eye of about 1.336.
In many embodiments, the first or second optical components provide no optical power without a fluid in the inner fluid chamber. In many embodiments, the fluid within the inner fluid chamber provides optical power.
In many embodiments, the first and second components are bonded to one another.
In many embodiments, both of the first and second components comprise the same polymer material, and the first and second components are bonded with a prepolymer of the polymer material.
In many embodiments one or more of the first component or the second component is directly fabricated, such as by three-dimensional (3D) printing.
In many embodiments, the first component and the second component are directly fabricated together and comprise a single piece.
In many embodiments, the first component and the second component are molded separately and bonded together.
In many embodiments, the first component and the second component are lathed separately and bonded together.
In many embodiments, the first component and the second component are bonded together at protrusions extending between the first component and the second component.
In many embodiments, the first component comprises a first fabricated part and the second component comprises a second fabricated part.
Aspects of the present disclosure provide a method of providing accommodation to an eye of a subject. A varying compressive force from the lens capsule may be received by the outer fluid reservoir of the accommodating intraocular lens placed within a lens capsule of the eye. A fluid may be urged between the outer fluid reservoir and the inner fluid chamber of the AIOL in response to received varying compressive force. The outer fluid reservoir can be a bellows comprising a fold extending continuously circumferentially around an optical axis of the intraocular lens. One or more of a size or shape of the inner fluid chamber may be changed in response to the fluid urged into or out of the inner fluid chamber to change an optical power of the accommodating intraocular lens.
In many embodiments, inner and outer bellows regions are in fluid communication with one another and the inner fluid chamber. One or more of the bellows regions can be annular, elliptical, and/or rotationally symmetric in shape.
In many embodiments, the outer fluid reservoir comprises a haptic structure to engage the lens capsule.
In many embodiments, changing one or more of the size or shape of the inner fluid chamber comprises changing a separation distance between portions of first and second optical components.
In many embodiments, changing one or more of the size or shape of the inner fluid chamber comprises changing a radius of curvature of one or more of the first or second optical components which define the inner fluid chamber.
In many embodiments, AIOLs comprise first and second optical components which define the inner fluid chamber, and one or more of the first or second optical components comprises a plano-convex member shaped to provide a minimum optical power to the accommodating intraocular lens. In other embodiments, at least one of the first and second optical components is a lens having an optical power comprising any suitable lens shape that produces an optical power.
In many embodiments, the inner fluid chamber contains a fluid therein such that the pressure of the fluid shapes the inner fluid chamber. The resulting shape of the fluid provides the optical power to the accommodating intraocular lens.
In many embodiments, increasing the varying compressive force urges fluid into the inner fluid chamber from the outer fluid reservoir.
Embodiments of the present disclosure provide improved AIOLs and methods for making and using AIOLs. Many embodiments of AIOLs in accordance with the present technology comprise an optical structure comprising a stiff member and a deflectable member (e.g., a deformable member) coupled to a haptic structure. The stiff member and the deflectable member can substantially define an inner fluid chamber of the AIOL. The inner fluid chamber of the AIOL can be filled with a fluid having an index of refraction greater than the aqueous humor of the eye such that the deflectable member defines a convexly curved surface of the volume of the fluid in order to provide a fluid lens having adjustable optical power. The deflectable member and stiff member may be coupled to the haptic structure in order to deflect the profile of the deflectable member to a convexly curved profile when the eye accommodates for near vision.
In many embodiments, the stiff member comprises a lens such as a plano-convex lens having an optical power configured to treat far vision of the patient. When the eye accommodates, the deflectable portion provides additional optical power for near vision. In many embodiments, the diameter of the lens of the stiff member corresponds to the diameter of the inner portion of the deflectable member, such that the diameter of the lens of the stiff member is sized smaller than the outer portion of the deflectable member, in order to decrease the thickness profile of the AIOL when inserted into the eye.
In many embodiments, an accommodating IOL comprises a first component and a second component each composed of a polymer, and an adhesive comprising the polymer. Alternatively, or in combination, the first component can be affixed to the second component with mechanical coupling such as interlocking joints, threads, mounts or fasteners. In many embodiments, the polymer can be hydrated and swells with hydration, such that the first component, the second component, and the adhesive swell together (e.g., at the same or substantially similar rate). By swelling together, stresses among the first component, the second component, and the adhesive can be inhibited substantially. Also, the hydratable adhesive allows the first and second components to be machined when they are less than fully hydrated and stiff (i.e., a stiff configuration) prior to adhering of the components together. The stiff configuration may comprise a less than fully hydrated polymer, such as a substantially dry polymer. The components can be bonded together in the substantially stiff configuration to facilitate handling during manufacturing, and subsequently hydrated such that the components bonded by the adhesive comprise a soft hydrated configuration for insertion into the eye. The adhesive comprising the polymer can bond the first and second lens components together with chemical bonds similar to the polymer material itself in order to provide increased strength. For example, the “chemical bonds” can be the same cross links as those of the polymer material.
In another aspect of the disclosure, an intraocular lens is provided. The intraocular lens may comprise an optical structure having an optical power and comprising a deflectable member, a stiff member, and a fluid chamber defined at least partially between the deflectable member and the stiff member. The intraocular lens may comprise a haptic structure coupled to a peripheral region of the stiff member and comprising an anterior element, a posterior element, and a fluid reservoir defined at least partially between the anterior element and the posterior element. The fluid reservoir may be in fluid communication with the fluid chamber with one or more channels. In many embodiments, a volume of the fluid chamber may increase in response to the decrease in the volume of the fluid reservoir to change the optical power. A shape of the fluid-filled chamber may change in response to the increase in the volume of the lens fluid chamber to change the optical power.
In another aspect of the disclosure, an intraocular lens comprises an optical structure comprising a posterior member, an anterior member, and a fluid-filled chamber between the posterior and anterior members. The intraocular lens may include a haptic structure interlocking peripheral regions of the posterior and anterior members to inhibit leakage of a fluid into and out of the fluid-filled haptic chamber. In many embodiments, the interlocking regions may comprise a fluid tight seal to inhibit leakage of the fluid. The haptic structure may have a first side having one or more male members and a second side having one or more female members. The one or more male members may pass through the peripheral regions of the posterior and anterior members to be received by the one or more female members to interlock the peripheral regions. The peripheral regions of the posterior and anterior members may have one or more apertures through which the one or more members pass through. The peripheral regions of one or more of the posterior or anterior members may have one or more male members to be received by one or more female members of the haptic structure to interlock the peripheral regions. The interlocking of the peripheral regions of the posterior and anterior members by the haptic structure may be maintained as the intraocular lens is deformed to change an optical power of the optical structure and/or folded or rolled into a delivery configuration.
In yet another aspect of the disclosure, an AIOL comprises an optical structure comprising a posterior member, an anterior member, and a fluid-filled chamber between the posterior and anterior members providing an optical power. The intraocular lens may comprise a haptic structure coupled to the optical structure. One or more of a shape or volume of the fluid-filled chamber may be configured to change in response to a radial force exerted on the haptic structure. The change of one or more of the shape or volume of the fluid-filled chamber may change the optical power of the fluid-filled chamber while leaving optical powers provided by the posterior and anterior members substantially unchanged.
In another aspect of the disclosure, a method of providing accommodation to an eye of the patient is provided. The method may comprise placing an AIOL within a lens capsule of the eye. One or more of a shape or volume of a fluid-filled chamber of the intraocular lens may be changed to change an optical power of the fluid-filled chamber while leaving optical powers provided by the posterior and anterior members substantially unchanged.
In many embodiments, the deflectable optical members as described herein have the advantage of deflecting while substantially maintaining a thickness of the optical member in order to inhibit optical aberrations when the member deflects.
An aspect of the disclosure provides an intraocular lens for implantation within a lens capsule of a patient's eye. The intraocular lens may comprise an optical structure and a haptic structure. The optical structure may have a peripheral portion and may comprise a planar member, a plano-convex member coupled to the planar member at the peripheral portion, and a fluid optical element defined between the planar member and the plano-convex member. The fluid optical element may comprise a fluid having a refractive index similar to either or both the materials comprising the planar member and the plano-convex member. For example, the refractive index of the fluid can be greater than the native aqueous fluid of the eye. The haptic structure may couple the planar member and the plano-convex member at the peripheral portion of the optical structure. The haptic structure may comprise a fluid reservoir in fluid communication with the fluid optical element and a peripheral structure for interfacing to the lens capsule. Shape changes of the lens capsule may cause one or more of volume or shape changes to the fluid optical element in correspondence to deformations of the planar member to modify the optical power of the fluid optical element. For example, shape changes of the lens capsule may cause the haptic structure to exert a mechanical force on the planar member to deform the member and correspondingly modify the optical power of the fluid optical element. Such deformations of the planar member may in some cases cause no change to the optical power of the planar member, the plano-convex member, or both (i.e., the change in optical power may solely be provided by one or more of the shape or volume changes to the fluid optical element and optionally changes to the anterior-posterior position of the intraocular lens within the lens capsule.)
A force imposed on the haptic fluid reservoir may deform the haptic fluid reservoir to modify the optical power of the fluid optical element. The force imposed on the haptic fluid reservoir may transfer fluid into or out of the fluid optical element from the haptic fluid reservoir to reversibly deform the haptic fluid reservoir.
In many embodiments, volume changes to the fluid optical element are provided by a fluid contained in the haptic fluid reservoir. In many embodiments, fluid transfer into or out of the fluid optical element leaves the plano-convex member un-deformed. The plano-convex member may comprise a stiff member and the planar member may comprise a deflectable member. In these embodiments, the fluid optical element may provide a majority of the optical power of the intraocular lens. Fluid within the fluid optical element and within the fluid reservoir of the haptic structure may have a refractive index of greater than or equal to 1.33.
The fluid within the fluid optical element and the fluid reservoir of the haptic structure may comprise oil such as a silicone oil or a solution such as a high molecular weight dextran. The fluid can be provided with a suitable index of refraction. For example, the high molecular weight dextran configured with a suitable index of refraction greater than 1.33 and an osmolality similar to the aqueous humor of the eye. The high molecular weight dextran may also have a mean molecular weight of at least 40 kDa, and the mean molecular weight can be within a range from about 40 kDa to about 2000 kDa, with intermediate ranges having upper and lower values defined with any of 40 kDa, 70 kDa, 100 kDa, 1000 kDa, or 2000 kDa. The high molecular weight dextran may comprise a distribution of molecular weights, and the distribution of molecular weights can be narrow or broad. As the index of refraction can be determined based on the weight of dextran per volume and the osmolality by the number of solute particles per volume, the mean molecular weight and amount of dextran can be used to configure the dextran solution with the appropriate index of refraction and osmolality.
In many embodiments, the haptic structure is configured to orient the intraocular lens in place within the lens capsule of the patient's eye. In many embodiments, the haptic structure comprises an anterior haptic structure and a posterior haptic structure that are coupled together to define the outer fluid reservoir therebetween. In many embodiments, the haptic structure comprises an annular structure coupled to the peripheral region of the optical structure. The haptic structure may comprise a plurality of tab structures coupled to and distributed over the peripheral portion of the optical structure.
The peripheral portion may comprise a plurality of apertures and the haptic structure may be coupled to the peripheral portion through the plurality of apertures. The plurality of apertures may be oriented substantially parallel to the optical axis of the intraocular lens. Alternatively, or in combination, the plurality of apertures may be oriented transverse to the optical axis of the intraocular lens. The haptic structure may comprise one or more posts or other structures for placement through the plurality of apertures of the peripheral portion of the optical structure to couple the haptic structure to the peripheral portion. Alternatively, or in combination, the optical structure may comprise posts for mating with structures such as apertures in the haptic structures.
The AIOLs may be sufficiently flexible to be folded into a reduced cross-section delivery configuration. The reduced cross-section delivery configuration of the AIOLs may be attained by folding or rolling the AIOLs around a delivery axis normal to an optical axis AIOLs. Alternatively, or in combination, the reduced cross-section delivery configuration of the AIOLs may be attained by advancing the intraocular lens through a delivery tube or aperture.
In many embodiments, the planar member is posterior of the plano-convex member when the AIOL is placed in the lens capsule.
Another aspect of the disclosure provides a method of providing accommodation in an eye of a patient. First, an AIOL is provided. The provided AIOL may comprise an optical structure and a haptic structure, and the optical structure can have a peripheral portion. The optical structure may comprise a first optical element (e.g., a planar member), a second optical element (e.g., a plano-convex member) coupled to the first optical element at the peripheral portion, and a fluid optical element defined between the first and second optical elements. The fluid optical element may comprise a fluid having a refractive index similar to either or both the materials of the first and second optical elements. The fluid optical element may have an optical power. The haptic structure may couple the first and second optical elements together at the peripheral portion of the optical structure. The haptic structure may comprise a fluid reservoir in fluid communication with the fluid optical element and a peripheral structure for interfacing to the lens capsule. Second, the AIOL may be folded into a reduced profile configuration. Third, the folded AIOL may be implanted into a lens capsule of the patient's eye. The folded AIOL reverts into a working configuration from the reduced profile configuration when implanted into the lens capsule. Fourth, one or more of the optical structure or the haptic structure may be actuated to cause one or more of volume or shape changes to the fluid optical element in correspondence to deformations in the planar member to modify the optical power of the fluid optical element.
One or more of the optical or haptic structure may be actuated by radially directing a force on the haptic structure to deform the planar member to modify the optical power of the fluid optical element. The haptic peripheral structure may be stiffly coupled to the substantially planar member of the optical structure. The change in optical power of the fluid optical element may be accompanied by a transfer of fluid into or out of the fluid optical element from the fluid reservoir of the haptic structure. Transfer of fluid into or out of the fluid optical element from the haptic fluid chamber may deflect the planar member while leaving the plano-convex member un-deflected. In alternative embodiments, transfer of fluid into or out of the fluid optical element from the haptic fluid chamber may deflect the planar member and optionally also the plano-convex member.
One or more of the optical structure and the haptic structure may be actuated by imposing a force on the haptic fluid reservoir to reversibly deform the haptic fluid reservoir to modify the optical power of the fluid optical element.
In many embodiments, the peripheral portion of the optical structure comprises a plurality of apertures and the haptic structure couples the posterior and anterior members together at the peripheral portion of the optical structure through the plurality of apertures. The haptic structure coupled to the plurality of apertures of the peripheral portion may maintain the substantially planar and plano-convex members coupled together as the intraocular lens is folded and during function or operation of the intraocular lens. The plurality of apertures may be oriented substantially parallel to the optical axis of the intraocular lens. The plurality of apertures may be oriented transverse to the optical axis of the intraocular lens. The haptic structure may comprise one or more posts for placement through the plurality of apertures to couple the haptic structure to the peripheral region. Alternatively, or in combination, the peripheral portion of the optical structure may have one or more apertures through which one or more posts of the haptic structure can pass through to couple the optical and haptic structures together.
The AIOLs may have reduced profile configuration by folding or rolling the AIOLs around a delivery axis normal to an optical axis of the lens. Alternatively, or in combination, the AIOLs may be folded into the reduced profile configuration by advancing the intraocular lens through a delivery tube or aperture.
The folded AIOLs may be implanted into the lens capsule by allowing the fluid within the lens fluid chamber to reach an osmotic equilibrium with fluid present in the lens capsule. One or more of the planar or plano-convex members may be water permeable to allow the osmotic equilibrium to be reached. In many embodiments, the porous posterior or anterior member is non-permeable to compounds having a molecular weight of greater than 40 kDa.
In many embodiments, one or more of the planar or plano-convex members has substantially no optical power.
In many embodiments, the planar member is posterior of the plano-convex member when the intraocular lens is placed in the lens capsule.
In another aspect, embodiments provide a method of manufacturing AIOLs by providing a first component comprising a polymer, and a second component comprising the same polymer. The first component is bonded to the second component with an adhesive. The adhesive may comprise a prepolymer of the polymer of the first and second components. For example, the prepolymer can be any individual species of the polymers comprising the first and second components, or any combination thereof, as monomers, short chain multimers, and/or partially polymerized.
In many embodiments, the prepolymer is cured to bond the first component to the second component with the polymer extending between the first component and the second component.
In many embodiments, the first component and the second component each comprise a stiff configuration when the first component is bonded to the second component with the polymer extending between the first component and the second component.
In many embodiments, the first component, the second component and the cured adhesive are hydrated to provide a hydrated, soft accommodating intraocular lens.
In many embodiments, hydrating the first component, the second component and the adhesive comprises fully hydrating the polymer of each of the first and second components and the adhesive to an amount of hydration corresponding to an amount of hydration of the polymer when implanted. In several embodiments, the adhesive is indistinguishable from the base polymer upon being cured.
In many embodiments, each of the first component, the second component and the cured adhesive each comprise a first configuration prior to hydration (e.g., stiff configuration) and second configuration when hydrated (e.g., soft configuration), and wherein each of the first component, the second component, and the cured adhesive expand a substantially similar amount from the first configuration to the second configuration in order to inhibit stress at interfaces between the adhesive and the first and second components.
Many embodiments further comprise providing the polymer material and shaping the first component and the second component from the polymer material.
In many embodiments, the first component and the second component are each turned on a lathe when stiff in order to shape the first component and the second component.
In many embodiments, the first component and the second component are molded.
In many embodiments, the prepolymer comprises one or more of a monomer, an oligomer, a partially cured monomer, particles, or nano-particles of the polymer.
In many embodiments, the first component comprises a disc shaped structure and the second component comprises a disc shaped structure and wherein the first component and the second component define a chamber with the disc shaped structures on opposite sides of the chamber when bonded together.
In many embodiments, one of the first component or the second component comprises a groove sized and shaped to receive the other of the first or second component and wherein the adhesive is placed on the groove.
In many embodiments, one or more of the first component or the second component comprises an annular structure extending between a first disc structure and a second disc structure in order to separate the first disc structure from the second disc structure and define a side wall of the chamber.
In another aspect, AIOLs comprise a first component, a second component, and an adhesive. The first component comprises a polymer material. The second component comprises the same polymer material. A cured adhesive comprises the polymer between at least a portion of the first component and the second component in order to bond the first component to the second component and define a chamber.
In many embodiments, the inner fluid chamber comprises an optical element. Many embodiments further comprise a fluid within the inner fluid chamber having an index of refraction greater than an index of refraction of an aqueous humor of an eye of about 1.336, and wherein one or more of the first component or the second component is configured to deform to increase an optical power of the accommodating intraocular lens.
Many embodiments further comprise one or more haptics to engage a wall of a capsular bag of the eye and increase curvature of one or more of the first component or the second component in response to the wall and/or the perimeter at the zonule attachment of the capsular bag contracting in order to increase optical power of the accommodating intraocular lens.
Many embodiments further comprise a fluid, the fluid comprising one or more of a solution, an oil, a silicone, oil, a solution of high molecular weight molecules, or high molecular weight dextran.
Many embodiments further comprise a seam comprising the adhesive, the seam extending circumferentially along at least a portion of the first component and the second component.
In many embodiments, the first component comprises a first disc shaped structure and the second component comprises a second disc shaped structure. An annular structure can extend between the first disc shaped structure and the second disc shaped structure to separate the first disc shaped structure from the second disc shaped structure and define the inner fluid chamber.
In many embodiments, the intraocular lens comprises a stiff configuration prior to implantation and a soft configuration when implanted.
In many embodiments, the first component comprises a first disc shaped optical structure comprising one or more of a lens, a meniscus, a meniscus lens, or a flat plate, and wherein the second component comprises a second disc shaped optical structure comprising one or more of a lens, a meniscus, a meniscus lens, or a flat plate.
Yet another aspect of the disclosure provides AIOLs for implantation within a lens capsule of a patient's eye. The AIOLs may comprise an optical structure and a haptic structure. The optical structure may have a peripheral portion and may comprise a posterior member, an anterior member coupled to the posterior member at the peripheral portion, and a fluid optical element defined between the posterior and anterior members. The fluid optical element may comprise a fluid having a refractive index similar to either or both the materials comprising the posterior member and the anterior member. The fluid optical element may have an optical power. The haptic structure may couple the posterior and anterior members at the peripheral portion of the optical structure. The haptic structure may comprise a fluid reservoir in fluid communication with the fluid optical element and a peripheral structure for interfacing to the lens capsule. Shape changes of the lens capsule may change the volume or shape of the fluid optical element in correspondence to deformations in one or more of the posterior or anterior members to modify the optical power of the fluid optical element. One or more of the posterior member or the anterior member of the optical structure may be permeable to water such that water present in the lens capsule of the patient's eye may be capable of transferring into or out of the fluid lens chamber there through to achieve an osmotic equilibrium with fluid present in the lens capsule when the AIOL is placed therein. The various features of the AIOLs may further be configured in many ways in accordance with the many embodiments disclosed herein.
In another aspect of the disclosure, an AIOL may comprise an optical structure having a fluid chamber and a material within the fluid chamber. The material may comprise a less than fully hydrated state. A portion of the optical structure may be configured to provide water to the fluid chamber and inhibit leakage of the material from the fluid chamber in order to fully hydrate the material and expand the fluid chamber when placed in the eye.
In yet another aspect of the disclosure, a method of implanting AIOLs within a lens capsule of a patient's eye is provided. The method may comprise advancing an AIOL comprising a less than fully hydrated configuration through an incision of the eye. Water from the lens capsule may pass through at least a portion of the optical structure to fully hydrate the AIOL. In many embodiments, material within a fluid chamber of an optical structure of intraocular lens may be inhibited from leakage from at least a portion of the optical structure while water from the lens capsule passes through to fully hydrate the material.
In several embodiments, the outer fluid reservoir and the inner fluid chamber are filled with a hydrophobic oil which inhibits or fully precludes the transfer of water into the inner fluid chamber. For example, the hydrophobic oils can be selected from any of the following: HYDROCARBON (HYDROBRITE 550), POLYDIMETHYLSILOXANE, POLYOCTYLMETHYLSILOXANE′ POLY(2-PHENYLPROPYL)METHYLSILOXANE, PHENYLMETHYLSILOXANE OLIGOMER, PHENYLMETHYLSILOXANE-DIMETHYLSILOXANE COPOLYMER, DIPHENYLSILOXANE-DIMETHYLSILOXANE COPOLYMERS, PHENYLMETHYLSILOXANE-DIMETHYLSILOXANE COPOLYMERS, 1,1,3,5,5-PENTAPHENYL-1,3,5. This fluid is applicable to any AIOL described herein.
All publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
Features of the present technology are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present technology will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
Accommodating intraocular lenses (AIOLs) as described herein can be used to provide improved vision, and can be combined with one or more of many known surgical procedures and apparatus, such as cataract surgery and intra-ocular lens inserters. The optical structures of the AIOLs are well suited for use with commercially available IOL power calculations based on biometry of the eye, and can be used to provide improved vision. In many embodiments, a physician can insert an AIOL as described herein in a manner similar to prior non-accommodating IOLs such that the AIOLs as described herein can be readily used.
The present disclosure relates to devices, methods, and systems associated with AIOLs. Some embodiments will comprise a central optical structure comprised of at least one deformable optical component (e.g., an optical element) spaced apart along an optical axis, such as by a support structure concentric with the optical axis of the lenses. Several embodiments include a first optical component and a second optical component, and at least one of the first and second optical components can be deformable while the other of the first and second optical components can be deformable or rigid. The volume bounded by the first and second optical components, and optionally the lens support structure, may define a fluid chamber that can be filled with an ionic solution, such as saline, or non-ionic solutions such as dextran or silicone oil. The first and second optical components may instead be bounded by one or more haptic structures, and the haptic structures may define an outer fluid reservoir filled with a fluid and arranged in a plane normal to the optical axis of the first and second optical components. The fluid in the outer fluid reservoir of the haptic structures can be in fluid communication with the fluid in the inner fluid chamber bounded by the optical structure. The transfer of fluid between the haptic structures and the inner fluid chamber of the optical structure can change the accommodating power of the fluid within the inner fluid chamber by deforming one or both of the first and second optical components. The improved AIOL system may additionally comprise any combination of the features described herein.
The optical components and some of the support structures described herein will typically be fabricated from a hydrophilic material that is optically clear when hydrated, swells on hydration by more than 10%, and accommodates strain levels of greater than 100% when hydrated. The material can be purchased as small disks and rods. For example, the hydrophilic material may comprise a copolymer of hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA) such as CI18, CI21, or CI26 produced by Contamac Ltd. of the UK. The material may alternately be comprised of a co-polymer of HEMA and EOEMA such as a poly(2-ethyloxyethyl methacrylate, which can be purchased as a BENZ IOL 25 or a BENZ IOL 25 UVX from Benz Research & Development, 6447 Parkland Dr., Sarasota, FL 34243 United States. These materials are also denoted as PMMA herein, and as used herein PMMA refers to a polymer comprising PMMA or a copolymer comprising PMMA, such as one or more of PMMA polymer (also referred to herein as “poly(methyl methacrylate)”), or a copolymer of HEMA and PMMA such as p(HEMA-co-MMA), for example. As used herein p(HEMA-co-MMA) refers to a copolymer of HEMA and PMMA and can also be referred to as p(HEMA-MMA
The copolymer may comprise one or more of a block copolymer (PPPP-HHHH), alternating copolymer (PHPHPHPH), statistical or random copolymer (PHPPHPHH), a star copolymer, a brush copolymer, or a graft copolymer, for example, where “P” identifies “MMA” and “H” identifies “HEMA”, for example.
In some embodiments, components of a hydrogel AIOL may be fabricated by 3D printing, including but not limited to any of the following common 3D printing processes: Stereolithography (SLA), Inkjet material jetting (IMJ), Digital Light Processing (DLP), Selective Laser Sintering (SLS), Fused Deposition Modeling, or Fused Filament Fabrication (FDM/FFF). Methods such as SLA, IMJ, and DLP may be particularly suited to the fabrication of AIOL elements comprised of hydrogels such as PMMAs and copolymers such as HEMA. In such embodiments, the starting material may be monomer or oligomer precursors, or combinations thereof, of the hydrogel polymer. One such polymer useful in the fabrication of AIOLs herein described may comprise pHEMA, in which the polymerization reaction can be photo initiated by a UV source of appropriate wavelength and duration. In some such embodiments, photo initiation may be further enhanced by the addition of a photoinitiator compound mixed with the monomers used for printing. Such photoinitiators can release additional free radicals on illumination thereby increasing the rate of the polymerization reactions. A selection of photoinitiators is listed below.
In some embodiments, a complete AIOL may be fabricated by a 3D printing process and the un-polymerized materials on the inside of the optical structure can be removed after completion of the build. Alternatively, or in combination, the un-polymerized materials within the optical structure may be treated such that reactive end groups are rendered nonreactive to prevent further polymerization. In other embodiments, the AIOL structures may be fabricated as subcomponents for later assembly as described elsewhere herein for machined parts.
As used herein, a positive curvature of an outer surface encompasses a convex curvature and a negative curvature of an outer surface encompasses a concave curvature.
As used herein, like reference numerals refer to like structures. In many embodiments as described herein, the reference numerals comprise three or four digits in which the first one or two digits refer to the number of the drawing and the last two digits refer to like structures among figures having different numbers. For example, the reference numerals 105 and 1205 refer to similar deflectable members of
In some embodiments, the intraocular lens, lens system and/or other components defining the fluid chamber of the optical structure are filled with a water-based clear fluid with a refractive index higher than water to increase the optical power of the system. The high refractive index of such fluids may be caused by the presence of solutes, such as large molecules incapable of crossing the chamber defining components. Examples of suitable large molecules include dextran, with exemplary molecular weights of <40 kD, <70 kD, <500 kD, and <1000 kD. Further examples of suitable solutes include sugar molecules. The solutes and water may compose a diluted solution having an osmolality that, for example, causes water to move into or out of the chamber to achieve an osmotic equilibrium volume. The osmotic equilibrium volume can be adequate to produce the appropriate optical power in the system to the desired power for the patient.
The soft material of the optical structures of the AIOL can be shaped in one or more of many ways, and may comprise machined components, molded components, or combinations thereof, for example.
AIOLs in accordance with the present technology can have a reduced delivery cross-section. The reduced delivery cross-section can be facilitated by an optical structure capable of translating from a delivery configuration to an operational configuration. The optical structure may have a small dimension along the optical axis in the delivery configuration and larger dimension along the optical axis in operational configuration. Also, a lens support structure can be configured to maintain the distance between the peripheries of the two optical components in the operational configuration and to allow fluid to pass between the haptic structures and the fluid volume bounded by the optical structure in either configuration.
The delivery cross-section may be attained by folding or rolling an AIOL around a delivery axis normal to the optical axis. The delivery cross-section may be measured as the largest dimension in the delivery configuration measured in a plane normal to the delivery axis. Delivery cross-sections attainable for several embodiments of the AIOLs disclosed herein may be less than 4.5 mm, and preferably less than 2.5 mm. In alternate embodiments, the delivery cross-section can be attained by forcing the AIOL through a tube or delivery aperture. Such a tube may be conical in cross-section such that the AIOL may be compressed as it progresses down the tube. The distal end may be sized to interface with an incision in the eye. Delivery may be facilitated by syringes or plungers.
The intraocular lens system may be comprised of at least two PMMA optical components where PMMA denotes a compound comprising one or more of poly(methyl methacrylate) (PMMA), poly(hydroxyethyl methacrylate) (PHEMA), (Hydroxyethyl)methacrylate (HEMA), or Methyl methacrylate (MMA), for example. The lens system may include other elements comprised of any or any combination of the following materials: NiTi, polyurethane, hydrophilic PMMA, photo-activated polymers, precursors to PMMA, Ethylene glycol dimethacrylate (EGDMA), silicones, silicone copolymers, among others.
One or more of the optical components, such as a substantially planar member or a plano-convex member, may comprise a polymeric material. The polymeric material may comprise a material, for example available from Contamac Ltd. of the UK or Vista Optics Ltd. of the UK. For example, the PMMA copolymer may be selected from the list comprising a Definitive 50 material, a Definitive 65 material, a Definitive 74 material, a Filcon V3 material, a Filcon V4 material, a Filcon V5 material, an Optimum Classic material, an Optimum Comfort material, an Optimum Extra material, an Optimum Extra 16 material, an Optimum Extra 18.25 mm material, an Optimum Extra 19 mm material, an Optimum Extra 21 mm material, an Optimum Extreme material, an F2 material, an F2 Low material, an F2 Mid material, an F2 High material, a Focon III 2 material, a Focon III 3 material, a Focon III 4 material, a Hybrid FS material, a Contaflex GM Advance material, a Contaflex GM Advance 49% material, a Contaflex GM Advance 58% material, a Filcon I 2 material, a Filcon II 2 material, a Contaflex GM3 49% material, a Contaflex GM3 58% material, a Contaflex material, a Contaflex 58% material, a Contaflex 67% material, a Contaflex 75% material, a Polymacon 38% material, a Hefilcon 45% material, a Methafilcon 55% material, a Filcon II material, a Filcon IV 2 material, an HI56 material, a PMMA material, a CI26 material, a CI26Y material, a CI18 material, and other variants available from Contamac Ltd. of the UK and a Vistaflex GL 59 material, a HEMA/GMA material, an Advantage+ 49 material, an Advantage+ 59 material, a Filcon I 1 material, a Filcon 12 material, a VSO nVP material, a nVP/MMA material, a VSO 60 material, a VSO 68 material, a VSO 75 material, a Filcon II 1 material, a Filcon II 2 material, a VSO pHEMA material, a pHEMA material, a HEMA material, a VSO 38 material, a VSO 42 material, a VSO 50 material, a Vistaflex 67 Clear UV material, a polysiloxy-acrylate material, an AddVALUE Silicone Acrylate material, an AddVALUE 18 material, an AddVALUE 35 material, a poly-fluoro-silicon-acrylate material, an AddVALUE Fluor Silicone Acrylate material, an AddVALUE 25 material, an AddVALUE 50 material, an AddVALUE 75 material, an AddVALUE 100 material, a Scleral Rigid Gas Permeable material, a hydrophobic intraocular lens material, a VOPhobic Clear Tg 16 material, a VOPhobic Yellow Tg 16 material, a hydrophilic intraocular lens material, a HEMA-MMA copolymer material, an IOSoft material, an IOSoft clear material, an IOSoft yellow material, a PMMA material, a Vistacryl CQ UV material, a Vistacryl XL blue material, a Vistacryl CQ material, and other variants available from Vista Optics Ltd. of the UK. Often, the polymeric material may be water permeable and/or hydrophilic. Water present in the lens capsule of the patient's eye may transfer into or out of the fluid optical element through the polymeric material to achieve an osmotic equilibrium with fluid present in the lens capsule when the intraocular lens is placed therein. The polymeric material may be non-permeable to silicone oil. The polymeric material may be non-permeable to compounds having molecular weights of greater than 40 kDa.
In some embodiments, an AIOL in accordance with the present technology is inserted into and interfaced with the natural capsule such that the interface zones create a seal which forms a semi toroidal region of capsule. In operation, fluid transfer between the semi toroidal region and the interior of the AIOL causes an accommodation change in the AIOL. In such embodiments, fluid such as saline may be injected into the semi toroidal region.
In some embodiments, the lens support structure and one optical component of an accommodating optical structure are machined or molded as a single structure and a fixed-power lens is affixed to the support structure by a bonding means. In many other embodiments, the accommodating optical structure and a fluid-based haptic structure of an AIOL are comprised of two halves that each incorporate an optical component of the accommodating optical structure and a portion of the haptic structure. The two halves are bonded together to form the optical structure and the haptic structure. In yet other embodiments, a second machining operation can be performed on the bonded structure. Alternate bonding means may include mechanical interfaces such as threading where the outer periphery of the lens is threaded and the inner surface of the support structure is threaded. In alternate embodiments, the interface can be a simple interference fit. In some embodiments, affixing comprises bonding the materials by treating the one or both of the separate bonding surfaces with a precursor monomer(s), short chain multimer(s) or partially prepolymerized base polymer(s), then assembling the structure, applying a load across the bonding surfaces, and heating the assembly for a period of time. Such a process may facilitate cross-linking between the material comprising both parts. In some instances, the precursor monomer may be mixed with small particles of the polymer. Other bonding agents may additionally include urethanes, silicones, epoxies, and acrylics among others.
In the devices of the present disclosure, the lenses may be compromised of a water and ion permeable material. In some embodiments, the AIOL can be allowed to self-fill after implantation, thereby minimizing the delivery cross-section.
In alternate embodiments, the AIOL is filled after implantation.
Several embodiments of the AIOL 100 may have a base power associated with the power of the fixed lens 130 but no base power associated with the accommodating structure 140 when the accommodating structure 140 is in a relaxed condition (i.e., when no pressure is applied to the outer fluid reservoir 103). The first component 140a and the second component 140b may be affixed to one another at a seam or joint 101 using, for example, a bonding agent as described elsewhere herein. The first and second components 140a-b may optionally be affixed at the interface between protrusions 102 (also referred to herein as posts).
The protrusions 102 may be located on the inner surface of one or more of the first component 140a and the second component 140b. The protrusions 102 may for example separate the first and second components 140a, 140b as described elsewhere herein. The joint 101 may extend circumferentially around the outer perimeter of the first component 140a and the second component 140b.
The outer fluid reservoir 103 may have a bellows 108, and the inner optical structure 142 has an inner fluid chamber 105 in fluid communications with the outer fluid reservoir 103. The bellows 108 may be formed from an outer region of the first component 140a and an outer region of the second component 140b. The bellows 108 may comprise one or more compliant folds 109 (identified individually as 109a and 109b) extending continuously circumferentially around an optical axis of one or more of the first and second components 140a, 140b. The one or more folds 109a, 109b of the first and second components 140a, 140b, respectively, may for example extend towards each other to define an inner bellows region and an outer bellows region. As a result, the outer fluid reservoir 103 can have one or more folds 109a-b that defines a fold region, which in turn separates an inner bellows region from an outer bellows region. The bellows 108 may comprise a plurality of folds or pleats.
The inner fluid chamber 105 may be defined between an inner surface of an inner region of the first component 140a and an inner surface of an inner region of the second component 140b. More specifically, the first component 140a may have a first optical component 110 at its inner region, and the second component 140b may have a second optical component 150 at its inner region. The fluid chamber 105 shown in
The protrusions 102 are disposed radially outward from the first and second optical components 110 and 150 (e.g., between the inner and the outer regions of the first and second components 140a, 140b). The spaces between the protrusions 102 can be fluid channels 149 or conduits between the outer fluid reservoir 103 and the inner fluid chamber 105. The outer fluid reservoir 103 and the inner fluid chamber 105 are accordingly in fluid communication with each other to provide optical power changes in response to shape changes of the lens capsule as previously described herein.
The first optical component 110 and/or the second optical component 150 may comprise a planar member. The first optical component 110 and/or the second optical component 150 may be membranes that have no optical power in an unbiased state and/or a biased state. The first optical component 110 may comprise a deflectable planar member configured to deflect in response to fluid transfer between the inner fluid chamber 105 and the outer fluid reservoir 103. For example, when the bellows 108 are compressed and fluid is forced into the inner fluid chamber 105, the first optical component 110 of the first component 140a may deflect along the optical path to impart an optical power to the inner optical structure 142. Deflection of the first optical component 110 may comprise changes in one or more of a dimension and shape of the inner fluid chamber 105 such as a change in the distance separating inner surfaces of the first and second optical components 110 and 150. The optical power of the inner optical structure 142 (shown in
One or more of the inner regions of the first and second components 140a and 140b may comprise a shell, such as a non-planar shell (not shown). The first component 140a may comprise an anterior component, and the second component 140b may comprise a posterior component. Though shown in the current embodiment as planar members, one or both of the optical components 110 and 150 may comprise a plano-convex member or another standard optical configuration that provides optical power. In any of the foregoing examples, at least one of the optical components is configured to deform as optical fluid is transferred into the optical portion of the fluid chamber 105. The first component 140a and the second component 140b may additionally comprise annularly-shaped stiff coupling regions 107a and 107b, respectively, to inhibit radial movement of the first and second optical components 110 and 150. The coupling regions 107a-b in combination with the fixation between the first and second components 104a-b at the protrusions 102 effectively isolate the first and second optical components 110 and 150 from being distorted (e.g., deformed) asymmetrically with respect to the optical axis of the accommodating structure 140.
The second component 140b may further comprise an interfacing feature 131 which can secure the fixed lens 130 to the second component 140b as illustrated. The fixed lens 130 may be configured to snap-fit onto the first or second component 140a, 140b. The fixed lens 130 may be snap-fit onto or otherwise coupled to the first or second component 140a, 140b in situ within an eye of a patient, such as within a lens capsule of the eye, for example. The fixed lens 130 may for example have an inner surface facing and adjacent to an outer surface of the first or second component 140a, 140b to which the fixed lens 130 is coupled. The fixed lens 130 may also have a peripheral relief 133. The interfacing feature 131 and the fixed lens 130 may be additionally configured such that interfacing channels exist between the fixed lens 130 and the second component 140b to allow body fluids to freely flow into any out of relief spaces 134 and 133. The fixed lens 130 may for example comprise a third component of the AIOL 100. The fixed lens 130 may have an optical power.
One or more of the first and second components 140a, 140b may comprise a polymeric material as previously described herein. The first and second components 140a, 140b may be sufficiently flexible to be folded into a reduced cross-section delivery configuration for delivery to the eye as previously described herein. The first and second components 140a, 140b may be bonded to each other as previously described herein. The first and second components 140a, 140b may be fabricated as previously described herein. The third component or fixed lens 130 may be sufficiently flexible to be folded into a reduced cross-section delivery configuration for delivery to the eye as well, and as described above the fixed lens 130 may be fixedly coupled to the first or second components 140a, 140b in situ.
The AIOL 100 may be filled with a fluid such as any of the fluids previously described herein. The fluid in the inner fluid chamber 105 may provide optical power to the accommodating structure 140.
The bellows 108 may comprise a continuous baffle structure disposed about a periphery of the inner fluid chamber 105. The continuous structure of the bellows 108 may be an annular, elliptical, and rotationally symmetric shape as previously elsewhere herein.
The dimensions and geometry of the accommodating lens systems described herein may be varied. For example,
The AIOL 200 comprises structures similar to AIOL 100, and the last two digits of the reference numerals identify similar structures. The AIOL 200 can have a second component 240b with a second optical component 250 that is thinner than the second optical component 150. The second optical component 250 may therefore deform in a fashion which increases the accommodative optical power of the AIOL 200 compared to the AIOL 100. The additional deformation of the thin second optical component 250 may occur within a deformation relief 234 in the second optical component 250 instead of the fixed lens 130 in the AIOL 100. In another embodiment (not shown), the AIOL 200 can have the deformation relief 234 in the second optical component 150 and the deformation relief 134 of the fixed lens 130 of the AIOL 100 in the same device. The AIOL 200 can also include an outer fluid reservoir 203 comprising two folds in only the first component 140a of the AIOL 200. For example, the outer region of the first component 240a may define a bellows 208 having two folds 209, while the outer region of the second component 240b has none (e.g., a flat portion).
In other examples, the geometry of the fluid chamber or the bellows or other fluid reservoir structure may be varied. For example,
The various peripheral fluid-filled bellows 108, 208, 308 of AIOLs 100, 200, and 300, respectively, provide control of the stiffness of the outer fluid reservoir. This allows the AIOLs to provide the desired accommodation based on the forces applied by the eye on the structure and the resulting accommodation.
The AIOL 400 may have four primary parts including: a first component 440a; a second component 440b; a fixed lens 430 defining a third component; and an outer ring element 440c defining a fourth element (e.g., a thin-walled ring). The outer ring element 440c may be affixed to the first component 440a and the second component 440b at seams or joints 401 to couple the first and second components 440a, 440b to one another at their peripheries. The outer ring element 440c, the first component 440a, and the second component 440b may together define the outer fluid reservoir 403, which is in fluid communication with a fluid chamber 405 of an accommodating structure 440. The outer ring element 440c may be fabricated of a material with different material properties than the rest of the components of the structure. In some embodiments, the outer ring element 440c may be fabricated with a version of the polymer used to fabricate the first component 440a and second component 440b with a reduced modulus of elasticity. The outer ring element 440c may therefore be more easily fabricated and it may have a thinner cross-section than might otherwise be possible. Alternatively, or in combination, the outer ring element 440c can be spin cast or centripetally cast, thus allowing for structures even thinner than might be obtainable by machining.
The AIOL 400 may have a fixed lens 430 comprising a convex concave configuration. The fixed lens 430 may be attached to the second component 440b by a latching mechanism 435 that interlocks with an interface feature 431. The AIOL 400 may have a relief 434 created by offsetting the latching mechanism 435 and the convex surface of the fixed lens 430.
The AIOL 500 has first interface zones between the first component 540a and the outer ring 540c, and second interface zones between the second component 540b (not visible) and the outer ring 540c. The first and second interface zones may have slots 570 to increase the flexibility of the outer peripheral portion of the AIOL 500. The slots 570 may be fabricated in the structural components comprising AIOL 500 before or after the components have been assembled. Slots 570, when added after the structure has been assembled, may be created by one or more of mechanical cutting, laser cutting, and any other suitable means. The slots 570 may be created such that they extend partially down a seam so that a portion of the seam remains uncut and the seal between components of AIOL remains intact.
The AIOL 600 comprises three primary structures (
The first component 640a has a fixed lens receiver 631 (
The fixed lens 630 can also be selected to accommodate the refractive requirements of the patient after the accommodating structure 640 has been implanted. For example, the accommodating structure 640 can change the refractive requirements of the patient, and thus selecting the fixed lens 630 after implanting the accommodating structure 640 allows practitioners to meet the refractive requirements of the patients using the fixed lens 630.
Another feature of the AIOL 600 is the manner in which first component 640a is attached to second component 640b (
An additional feature of the AIOL 600 is the distance between the fixed lens 630 and the first optical component 610 that defines the depth of the aqueous chamber 641 (
The first and second optical components 610 and 650 may be planar members, such as optical membranes, and they may be situated upon mating first and second components 640a and 640b, as shown in
An additional feature of the AIOL 600 is the distance between the fixed lens 630 and the first optical component 610 that defines the depth of the aqueous chamber 641 (
The AIOL 800 includes multiple square-shaped annular regions 851. For example, the AIOL 800 can have 4 circular, square-edged regions 851 incorporated in the posterior (P) and anterior (A) regions of the outer fluid reservoir 803. The square-shaped regions 855 can further inhibit cell migration associated with posterior capsule opacification. The embodiment of the AIOL 800 shown in
The embodiments of the AIOLs 900 and 1000 comprise capsular rotation constraint features 966 and 1066, respectively, which enhance performance when the AIOLs 900 and 1000 have a toric lens. The toric lens may be in either the accommodating portion or the fixed portion of the AIOL. The capsular rotation constraint features 966 and 1066 inhibit relative rotation between the optical components themselves and/or with respect to the capsule into which they have been implanted. As illustrated here, the fixed lenses 930 and 1030 are toric lenses. The capsular rotation constraints 966 (
In addition to the capsular rotation constraints 966 and 1066, the AIOLs 900 and 1000 can also include features that maintain the rotational orientation of the fixed lens 930/1030 relative to the accommodating structures 940/1040 of the AIOLs 900/1000. The capsular rotation constraints 966/1066 can define toric indexing features of the AIOLs 900 and 1000 that reference the rotational orientation of the fixed lens 930/1030 relative to the accommodating structures 940/1040. The fixed lens 930 of the AIOL 900 can also have a plurality of passages 920 defined by cutouts or holes along the perimeter of the fixed lens 930, and one of the passages 920 defines a receiver 967 at a location to guide the proper orientation of the fixed lens 930 with respect to the first component 940a. The first component 940a comprises a key 968 at a corresponding radial location to align the toric fixed lens 930. The receiver 967 and the key 968 together define a toric indexing feature 970. The fixed lens 930 can further include a toric indexing mark 969 on, or in, the fixed lens 930 that identifies which passage 920 defines the receiver 967 that is to be aligned with the key 968. Alternatively, instead of having the toric indexing mark 969, the key/receiver associated with the correct alignment can have a different shape (e.g., triangular) than the other passages 920 in the lens (e.g., curved).
The thickened regions of the capsular rotation constraints 966 and 1066 of the AIOLs 900 and 1000 further provide a more robust leading edge for use when delivering the AIOLs 900 and 1000 through a narrow bore constriction or tube of an AIOL delivery device as described with respect to
The AIOL 900 is shown properly oriented relative to the capsular rotation constraints 966 and entering the injector tip 1175 for delivery. The AIOL 900 conforms to the delivery tool constrictions while being pushed through an insertion funnel 1176 by a flexible distal end 1178 of a plunger 1177. It will be appreciated that the internal pressure of the fluid in the AIOL 900 increases as it is compressed in the insertion funnel 1176, and the thickened rotation constraint 966 at the leading edge provides more material to withstand the increase in pressure and protect the front end from rupturing during delivery.
The AIOL 1200 is similar to the embodiment of the AIOL 1000 described herein. For example, the illustrated embodiment of the AIOL 1200 comprises first and second components 1240a and 1240b, respectively, that are bonded together at a seam 1201 to define an outer fluid reservoir 1203. The AIOL 1200 further comprises a fixed lens 1230, a first optical component 1210, a second optical component 1250, and a fluid chamber 1205 between the first and second optical components 1210 and 1250. At least one of the first and second optical components 1210 and 1250 is deformable (e.g., able to flex anteriorly and/or posteriorly), and in several embodiments the first optical component 1210 is more deformable than the second optical component 1250. For example, the first optical component 1210 can be a thin flexible member, while the second optical component 1250 is at least substantially rigid (e.g., does not flex in a manner that changes the optical power). The first optical component 1210 and/or the second optical component 1250 in combination with an optical fluid in the fluid chamber 1205 define a fluid accommodating lens 1212. The AIOL 1200 also includes (a) thickened features 1260 that facilitate fluid delivery during the filling procedure as described herein with respect to features 760, and (b) a square-shaped annular edge 1251 that provides a barrier to inhibit cell migration from the periphery of the patient's capsule to portions of the AIOL 1200 within the optical path.
The AIOL 1200 includes mid-bellows attachment features 1271 that each comprise first and second mating elements 1271a and 1271b integrated into the first and second components 1240a and 1240b, respectively. The first and second mating elements 1271a and 1271b are joined together at a mating region 1272. The mid-bellows attachment features 1271 may be distributed circumferentially around the midsection of the outer fluid reservoir 1203 at a plurality of discrete locations that are spaced apart from each other. For example, in the embodiment of the AIOL 1200 shown in
The mid-bellows attachment features 1271 provide a more efficient transfer of fluid from the outer fluid reservoir 1203 to the fluid chamber 1205 of the AIOL 1200. More specifically, without the mid-bellows attachment features 1271, the apexes of the periphery of the first and second components 1204a and 1204b can separate from each other as pressure increases in the outer fluid reservoir 1203 during accommodation. The mid-bellows attachment features 1271 may limit such undesirable or excessive expansion in the midsection of the outer fluid reservoir 1203 during accommodation by inhibiting separation of the apexes of the periphery of the first and second components 1204a and 1204b. Conversely, the mid-bellows attachment features 1271 can support the midsection of the outer fluid reservoir 1203 to inhibit it from collapsing and trapping fluid in the outer fluid reservoir 1203. The mid-bellows attachment features 1271 accordingly stabilize the volume of the midsection of the outer fluid reservoir 1203 as pressure increases in the outer fluid reservoir 1203 such that more of the fluid flows from the outer fluid reservoir 1203 and into the fluid chamber 1205 than without the mid-bellows attachment features 1271. This provides for a more efficient transfer of the accommodating fluid from the outer fluid reservoir 1203 to the fluid chamber 1205 of the fluid accommodating lens 1212.
The mid-bellows attachment features 1271 are not limited to use in the embodiments of the AIOL 1200 described above with reference to
Additional embodiments of AIOLs 1300, 1400, 1500, and 1600, are illustrated in
The AIOL 1300 illustrated in
The outer flow-through feature 1381 can be detents, such as a recess, at regions around the perimeter of the device. The inner flow-through feature 1382 can be a mid-bellows through hole that passes through portions of two of the mid-bellows attachment features 1371 between mid-bellows channels. As illustrated, the inner flow-throughs 1382 comprise circular holes, but in alternate embodiments the inner flow-throughs 1382 may be slots. Although only two inner flow-throughs 1382 are illustrated, the AIOL 1300 may comprise more than two. In general, there can be as many inner flow-throughs 1382 as there are mid-bellows attachment features 1371. In some embodiments, the inner flow-throughs 1382 may be added after fabricating the AIOL 1300 by laser cutting or drilling, or in other embodiments the inner flow-throughs 1382 can be formed in the parts prior to assembly (e.g., molded or cut into the parts before assembly). Although two outer flow-throughs 1381 are illustrated, other embodiments of the AIOL 1300 may comprise fewer or more than two flow-throughs. The outer flow-throughs 1381 additionally provide rotational constraint as described above with regard to the embodiment of the AIOL 1000.
The embodiments of AIOLs 1400 and 1500 have fixed lens assemblies 1430 and 1530, respectively, that (a) allow fluid to flow through the fixed lens assemblies, (b) center the fixed lens assemblies 1430 and 1530 in the device, and (c) enhance the structural stiffness at the inner area of the outer fluid reservoir 1403. The fixed lens assembly 1430 illustrated in
Referring to
Referring to
During implantation, when the folded fixed lens is delivered into the eye after the accommodating portion has been delivered, the skirt centers the fixed lens as it unfolds and securely holds the fixed lens within the accommodating portion when fully expanded. More specifically, either skirt 1432 or 1532 will automatically position the optical portion 1436 and 1536, respectively, at the desired position relative to the optical axes of the devices as the skirts 1432 and 1532 engage the first components 1440a and 1540a. Additionally, the height/depth of the skirts 1432 and 1532 will also space the optical portion 1436 and 1536, respectively, at a desired distance from the first optical components 1410 and 1510 of the accommodating lenses. This will allow a practitioner to press the fixed lens assemblies 1430 and 1530 into place without risking pushing the optical portions 1436 and 1536 too far into the first structural elements 1440a and 1540a.
The interface between the thickened portions 1668 and the respective passage 1620 securely fixes the fixed lens 1630 in place and provides for proper alignment of the fixed lens 1630 when the fixed lens 1630 comprises a toric configuration. In such an embodiment, the fixed lens 1630 may comprise any of the orientation markings described elsewhere herein.
The embodiment of the AIOL 1700 additionally comprises an alternate design for a fixed lens assembly 1730. The fixed lens assembly 1730 illustrated in
Referring to
The AIOL 1700 has a fluid accommodating lens 1712 defined by a fluid chamber 1705 (
The AIOL 1700 can further include a square-shaped annular region 1751 that inhibits cell migration from the periphery of the patient's capsule to the optical part of AIOL 1700 (shown in
The peripheral portions of the first component 1740a and the second component 1740b define the outer fluid reservoir 1703, and the inner portions of the first and second components 1740a and 1740b define the accommodating structural element 1740. The first and second components 1740a and 1740b can be bonded together at a seam 1701 by means as described elsewhere herein. The first and second components 1740a and 1740b can also be bonded at other areas, such as at the standoffs 1755. The standoffs 1755 are separated by spaces that define fluid channels 1749 between the outer fluid reservoir 1703 and the inner fluid chamber 1705. The outer fluid reservoir 1703 can be a bellows 1708 having an outer bellows region 1703a and an inner bellows region 1703b.
The outer fluid reservoir 1703 has less volume that the outer fluid reservoirs of other AIOLs described herein, and in particular the volume of the inner bellows region 1703b is less than the outer bellows region 1703a. By reducing the volume of the inner bellows region 1703b, additional space surrounding the optical region of the AIOL allows the optical aperture of the fixed lens 1730 to be larger compared to embodiments with larger inner bellows regions. Additionally, the passages 1720 of the fixed lens 1730, which allow aqueous fluid to freely flow in and out of the chamber 1741, are configured to pass through only the outer skirt 1732 and not the top optical portion 1736. This is expected to reduce unwanted scattered light from internal reflections which may pass through the optical system and reach the retina.
The first component 1740a may also comprise one or more thickened regions 1760 for use as described above with respect to, for instance, the thickened region 1760 of the AIOL 700 for use in filling the AIOL with an optical fluid. The thickened region 1760 allows for a longer path for a needle used to fill the accommodating structure with optical fluid while a second needle in a different region is used to remove the gases the fluid is replacing. As illustrated, the fluid fill thickened region 1760 is located adjacent one or more of the outer fluid flow-throughs 1781.
Referring to
Although not shown, in some embodiments, a portion of the outer structure of the accommodating structure 1740, between two of the outer flow-through features 1781, may comprise a thickened section providing for the improved delivery function described above with respect to the thickened feature 1668.
In some embodiments, the standoffs 1755 may be bonded to the second component 1740b, in alternate embodiments the standoffs 1755 may not be bonded to another component. In either case, the interaction of the skirt 1732 with the perimeter of the second optical component 1750 will minimize non-uniform deformations in one or both of the first and second optical components 1710 and 1750 originating at their outer periphery and thereby reduce optical aberrations.
In some embodiments not shown the inner surfaces of the bellows region 1708 of 1740a and or 1740b may comprise standoffs which constrain portions of the bellows from collapsing and forming a seal on compression.
The interface between the standoffs 1855 and the wall 1858 of the accommodating structure 1840 are different than the interface between the standoffs 1755 and the second optical component 1750 described above with reference to the AIOL 1700. More specifically, the standoffs 1855 project radially outward to engage the wall 1858, whereas the standoffs 1755 are within the optical region of the device and project posteriorly. The standoffs 1855 of the AIOL 1800 accordingly do not extend into the optical region of the AIOL, which increases the field of view of the AIOL 1800 compared to the AIOL 1700.
As with the AIOL 1700 described above, the AIOL 1800 includes flow-through features 1881 that enhance the rate and ease with which Ophthalmic Viscosurgical Devices (OVDs) used during the implantation of AIOLs can be removed from the natural lens capsule. The embodiment of the AIOL 1800 illustrated in
The embodiment of the AIOL 1800 additionally comprises a fixed lens assembly 1830. The fixed lens assembly 1830 illustrated in
Referring to
The AIOL 1800 has a fluid accommodating lens 1812 defined by a fluid chamber 1805 (
The AIOL 1800 can further include a square-shaped annular region 1851 that inhibits cell migration from the periphery of the patient's capsule to the optical part of AIOL 1800 (shown in
The peripheral portions of the first component 1840a and the second component 1840b define the outer fluid reservoir 1803, and the inner portions of the first and second components 1840a and 1840b define the accommodating structural element 1840. The first and second components 1840a and 1840b can be bonded together at a seam 1801 by means as described elsewhere herein. The first and second components 1840a and 1840b can also be bonded at other areas, such as at the standoffs 1855. The standoffs 1855 are separated by spaces that define fluid channels between the outer fluid reservoir 1803 and the inner fluid chamber 1805. The outer fluid reservoir 1803 can be a bellows 1808 having an outer bellows region 1803a and an inner bellows region 1803b, and the inner bellows region 1803b can be defined by the channels between the standoffs 1855.
The outer fluid reservoir 1803 has less volume than the outer fluid reservoirs of other AIOLs described herein, and in particular the volume of the inner bellows region 1803b is less than the outer bellows region 1803a. By reducing the volume of the inner bellows region 1803b, additional space surrounding the optical region of the AIOL allows the optical aperture of the fixed lens 1830 to be larger compared to embodiments with larger inner bellows regions. Additionally, the passages 1820 of the fixed lens 1830, which allow aqueous fluid to freely flow in and out of the chamber 1841, are configured to pass through only the outer skirt 1832 and not the top optical portion 1836. This is expected to reduce unwanted scattered light from internal reflections which may pass through the optical system and reach the retina.
The first component 1840a may also comprise one or more thickened regions 1860 for use as described above with respect to, for instance, the thickened region 1860 of the AIOL 700 for use in filling the AIOL with an optical fluid. The thickened region 1860 allows for a longer path for a needle used to fill the accommodating structure with optical fluid while a second needle in a different region is used to remove the gases the fluid is replacing. As illustrated, the fluid fill thickened region 1860 is located adjacent one or more of the outer fluid flow-throughs 1881.
Referring to
The fixed lens described in any of the embodiments described herein may be of spheric, aspheric, toric, or any other known lens configuration. Alternatively, or in combination, the fixed solid lens may be plano-convex, convex-concave, or convex-convex. The fixed lens may be configured to have positive or have negative fixed power.
The fluid lenses described herein may be configured such as to have one or more accommodating surfaces, for example two accommodating surfaces.
In some embodiments, the optical fluid may be comprised of a high refractive index poly vinyl alcohol.
In some embodiments, instead of membranes without a power, the accommodating structure can include one or more deformable lenses that deflect based upon fluid pressure within the inner fluid chamber. The deformable lenses can each or both have a fixed power that can be positive or negative.
The multipart AIOL devices described herein may be implanted by preparing the eye and removing the native lens from the capsule in any appropriate manner. The fluid-filled structure may then be placed in the capsule of the eye. The patient may then be evaluated for a base optical power and/or astigmatic correction, and a fixed lens is selected to provide the desired based power or astigmatic correction for the fluid-filled structure in the implanted state in the capsule of the eye. The specific fixed lens to provide the post-implant base power or astigmatic correction is then inserted into the previously implanted fluid-filled structure of the AIOL. The chosen fixed lens may then be coupled to the fluid-filled structure within the eye capsule. This is possible in the AIOLs of the present technology because the fixed lenses are attached to the anterior first component of the AIOLs. As described above, one or more of the fluid-filled accommodating structure or fixed lens may each be flexible such that they may be reconfigured (e.g., folded) to a reduced-profile delivery configuration for delivery into the lens capsule. In some instances, it may be required to make a further correction to the fixed portion after the time of the surgery. Such instance may occur anywhere from days to years after the surgery. At such times, the patient may return to the physician and the fixed lens may be replaced with a new fixed lens having a different optical power or other prescription. In such instances, the new prescription may be characterized prior to or after removal of the original fixed lens. In some instances, the new fixed lens may be fabricated and implanted at the time of the examination, in others the patient may return for implantation of the fixed lens sometime after the examination.
Several embodiments of the present technology are directed to a kit having an accommodating structure and a first fixed lens that has no optical base power. The kit can further include one or more second fixed lenses having various based powers or other optical properties. In practice, the accommodating structure can be implanted into the native eye capsule, and then the first fixed lens can be coupled to the accommodating structure. The optical properties of the implanted accommodating structure can then be assessed in situ with the first fixed lens in place to determine the desired optical properties of the fixed lens. If the optical properties of the assembled accommodating structure and first fixed lens without a base power are appropriate, then the system can remain implanted without additional changes. However, if a different base power or some other optical property is desired (e.g., toric or other asymmetrical optics), then the first fixed lens without a base power can be replaced with a second fixed lens having the desired optical properties based on the optical properties of the implanted accommodating portion with a fixed lens attached.
In some embodiments, the fixed portion of the AIOL may be fabricated from materials different from the accommodating portion. Such materials include hydrophilic or hydrophobic methacrylate or silicones and any other materials traditionally used in non-accommodating IOLs. The fixed lens may be fabricated from materials harder than those used for the accommodating portion.
Any of the features of the intraocular lens systems described herein may be combined with any of the features of the other intraocular lenses described herein and vice versa. Additionally, several specific examples of embodiments in accordance with the present technology are set forth below in the following examples.
1. An accommodating intraocular lens system, comprising:
2. The accommodating intraocular lens system of example 1 wherein the fixed lens comprises an optical portion and skirt projecting from the optical portion.
3. The accommodating intraocular lens system of example 2 wherein the skirt comprises an annular wall projecting posteriorly from the optical portion.
4. The accommodating intraocular lens system of example 3 wherein the skirt flares radially outward posteriorly from the optical portion.
5. The accommodating intraocular lens system of any of examples 3-4 wherein the fixed lens further comprises a passage through the skirt.
6. The accommodating intraocular lens system of any of examples 3-5 wherein the fixed lens further comprises a passage extending laterally through the skirt, and wherein the passage does not extend through the optical portion.
7. The accommodating intraocular lens system of any of examples 3-6 wherein the fixed lens comprises a passage.
8. The accommodating intraocular lens system of any of examples 1-7 wherein the fixed lens has a positive optical power.
9. The accommodating intraocular lens system of any of examples 1-7, wherein the fixed lens has a negative optical power.
10. The accommodating intraocular lens system of any of examples 1-7 wherein the optical power of the fixed lens is zero.
11. The accommodating intraocular lens system of any of examples 1-10 wherein the fixed lens comprises an asymmetric lens.
12. The accommodating intraocular lens system of any of examples 1-11 wherein the optical structure has an anterior component and a posterior component, the anterior component including the first optical component and a first peripheral region around the first optical component, the posterior component including the second optical component and a second peripheral region around the second optical component, and wherein the first peripheral region is attached to the second peripheral region along a seam such that the first and second peripheral regions define the outer fluid reservoir.
13. The accommodating intraocular lens system of example 12 wherein the outer fluid reservoir comprises a first bellows structure, a second bellows structure radially inward of the first bellows structure, and a mid-bellows channel structure between the first and second bellows structures, and wherein the mid-bellows channel structure includes a transverse portion and the first bellows structure has an anterior portion projecting anteriorly from the transverse portion and a posterior portion projecting posteriorly from the transverse portion.
14. The accommodating intraocular lens system of example 13 wherein the anterior and posterior portions of the first bellows structure are configured to flex radially inwardly with respect to an outer-most section of the transverse portion in operation.
15. The accommodating structure of any of examples 12-14 wherein at least one of the anterior portion or the posterior portion comprises standoffs between the inner fluid chamber and the outer fluid reservoir, the standoffs defining channels therebetween for fluid to flow between the inner fluid chamber and the outer fluid reservoir.
16. The accommodating structure of example 15 wherein at least a portion of the standoffs are bonded to the other of the anterior portion or the posterior portion.
17. The accommodating intraocular lens system of any of examples 1-16, further comprising a cell dam posterior of a posterior-most portion of the outer fluid reservoir.
18. The accommodating intraocular lens system of any of examples 1-11 wherein the outer fluid reservoir comprises a first bellows structure having an anterior portion and a posterior portion, a second bellows structure radially inward of the first bellows structure, and a mid-bellows channel structure defined by a horizontal passageway between the first and second bellows structures, and wherein a mid-portion of the first bellows structure is constrained by the mid-bellows channel structure such that the anterior and posterior portions of the first bellows structure move radially inward with respect to the mid-bellows channel in operation.
19. The accommodating intraocular lens system of any of examples 1-18 wherein the outer fluid reservoir has radial inward recesses that define outer flow through features.
20. The accommodating intraocular lens system of any of examples 1-19, further comprising at least one thickened portion defining a path for a needle used to fill the accommodating structure with optical fluid.
21. An accommodating intraocular lens system, comprising:
22. The accommodating intraocular lens system of example 21 wherein the fixed lens comprises an optical portion and skirt projecting from the optical portion.
23. The accommodating intraocular lens system of example 22 wherein the skirt comprises an annular wall projecting posteriorly from the optical portion.
24. The accommodating intraocular lens system of example 23 wherein the skirt flares radially outward posteriorly from the optical portion.
25. The accommodating intraocular lens system of any of examples 22-24 wherein the fixed lens further comprises a passage through the skirt.
26. The accommodating intraocular lens system of any of examples 22-24 wherein the fixed lens further comprises a passage extending laterally through the skirt, and wherein the passage does not extend through the optical portion.
27. The accommodating intraocular lens system of any of examples 22-24 wherein the fixed lens comprises a passage.
28. The accommodating intraocular lens system of any of examples 21-27 wherein the fixed lens has a positive optical power.
29. The accommodating intraocular lens system of any of examples 21-27, wherein the fixed lens has a negative optical power.
30. The accommodating intraocular lens system of any of examples 21-27 wherein the optical power of the fixed lens is zero.
31. The accommodating intraocular lens system of any of examples 21-30 wherein the fixed lens comprises an asymmetric lens.
32. The accommodating intraocular lens system of any of examples 21-31 wherein:
33. The accommodating intraocular lens system of example 32 wherein the outer fluid reservoir comprises a first bellows structure, a second bellows structure radially inward of the first bellows structure, and a mid-bellows channel structure between the first and second bellows structures, and wherein the mid-bellows channel structure includes a transverse portion and the first bellows structure has (a) an anterior portion projecting anteriorly from the transverse portion and (b) a posterior portion projecting posteriorly from the transverse portion.
34. The accommodating intraocular lens system of example 33 wherein the anterior and posterior portions of the first bellows structure are configured to flex radially inwardly with respect to an outer-most section of the transverse portion in operation.
35. The accommodating structure of example 32 wherein at least one of the anterior portion or the posterior portion of the accommodating structure comprises standoffs between the inner fluid chamber and the outer fluid reservoir, the standoffs defining channels therebetween for fluid to flow between the inner fluid chamber and the outer fluid reservoir.
36. The accommodating structure of example 35 wherein at least a portion of the standoffs are bonded to the other of the anterior portion or the posterior portion of the accommodating structure.
37. The accommodating intraocular lens system of any of examples 21-36, further comprising a cell dam posterior of a posterior-most portion of the outer fluid reservoir.
38. The accommodating intraocular lens system of any of examples 21-31 wherein the outer fluid reservoir comprises a first bellows structure having an anterior portion and a posterior portion, a second bellows structure radially inward of the first bellows structure, and a mid-bellows channel structure defined by a horizontal passageway between the first and second bellows structures, and wherein a mid-portion of the first bellows structure is constrained by the mid-bellows channel structure such that the anterior and posterior portions of the first bellows structure move radially inward with respect to the mid-bellows channel in operation.
39. The accommodating intraocular lens system of any of examples 21-38 wherein the outer fluid reservoir has radial inward recesses that define outer flow through features.
40. The accommodating intraocular lens system of any of examples 21-39, further comprising at least one thickened portion defining a path for a needle used to fill the accommodating structure with optical fluid.
41. An accommodating intraocular lens system, comprising:
42. The system of example 41 wherein the each of the first fixed lens and the second fixed lens comprises an optical portion and skirt projecting from the optical portion.
43. The system of example 42 wherein the skirt comprises an annular wall projecting posteriorly from the optical portion.
44. The system of example 43 wherein the skirt flares radially outward posteriorly from the optical portion.
45. The system of any of examples 42-44 wherein each of the first fixed lens and the second fixed lens further comprises a passage extending laterally through the skirt, and wherein the passage does not extend through the optical portion.
46. The system of any of examples 41-45 wherein at least one of the first fixed lens or the second fixed lens comprises an asymmetric lens.
47. The system of any of examples 41-46 wherein the optical structure has an anterior component and a posterior component, the anterior component including the first optical component and a first peripheral region around the first optical component, the posterior component including the second optical component and a second peripheral region around the second optical component, and wherein the first peripheral region is attached to the second peripheral region along a seam such that the first and second peripheral regions define the outer fluid reservoir.
48. The system of example 47 wherein the outer fluid reservoir comprises a first bellows structure, a second bellows structure radially inward of the first bellows structure, and a mid-bellows channel structure between the first and second bellows structures, and wherein the mid-bellows channel structure includes a transverse portion and the first bellows structure has an anterior portion projecting anteriorly from the transverse portion and a posterior portion projecting posteriorly from the transverse portion.
49. The system of example 48 wherein the anterior and posterior portions of the first bellows structure are configured to flex radially inwardly with respect to an outer-most section of the transverse portion in operation.
50. The system of example 47 wherein at least one of the anterior portion or the posterior portion comprises standoffs between the inner fluid chamber and the outer fluid reservoir, the standoffs defining channels therebetween for fluid to flow between the inner fluid chamber and the outer fluid reservoir.
51. The system of example 50 wherein at least a portion of the standoffs are bonded to the other of the anterior portion or the posterior portion.
52. The accommodating intraocular lens system of any of examples 41-51, further comprising a cell dam posterior of a posterior-most portion of the outer fluid reservoir.
53. The system of any of examples 41-46 wherein the outer fluid reservoir comprises a first bellows structure having an anterior portion and a posterior portion, a second bellows structure radially inward of the first bellows structure, and a mid-bellows channel structure defined by a horizontal passageway between the first and second bellows structures, and wherein a mid-portion of the first bellows structure is constrained by the mid-bellows channel structure such that the anterior and posterior portions of the first bellows structure move radially inward with respect to the mid-bellows channel in operation.
54. The system of any of examples 41-53 wherein the outer fluid reservoir has radial inward recesses that define outer flow through features.
55. The system of any of examples 41-54, further comprising at least one thickened portion defining a path for a needle used to fill the accommodating structure with optical fluid.
56. A method of implementing an accommodating intraocular lens system, comprising:
57. The method of example 56 wherein the fixed lens comprises a first fixed lens, and the method further comprises (a) detaching the first fixed lens from the accommodating structure and (b) attaching a second fixed lens to the accommodating structure, and wherein the second fixed lens has a different optical power than the first fixed lens.
58. The method of any of examples 56-57 wherein the fixed lens comprises an optical portion and a skirt projecting posteriorly from the optical portion such that an aqueous chamber is formed between the optical portion of the fixed lens and the first optical component of the accommodating structure when the fixed lens is coupled to the accommodating structure.
59. The method of any of examples 56-58 wherein the first optical component is part of an anterior component and the second optical component is part of a posterior component, and the method comprises coupling and fluidically sealing the anterior and posterior components together before implanting the accommodating structure.
60. The method of example 59 wherein the anterior and posterior components are coupled and fluidically sealed together in a dry state, and further comprising hydrating the coupled and fluidically sealed anterior and posterior components before implanting the accommodating structure.
61. The method of any of examples 56-60 wherein the accommodating structure has an index mark and the method further comprises rotating the fixed lens based on the index mark on the accommodating structure.
62. The method of example 61 wherein the fixed lens has physical feature and the process of rotating the fixed lens comprises registering the physical feature of the fixed lens with respect to the index mark on the accommodating structure.
63. The method of example 56 wherein the fixed lens comprises a first fixed lens, and wherein the method further comprises:
While preferred embodiments of the present disclosure have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the disclosure described herein may be employed in practicing the disclosure.
This application is a continuation of U.S. patent application Ser. No. 16/426,211, filed May 30, 2019, entitled “MULTI-PIECE ACCOMMODATING INTRAOCULAR LENSES AND METHODS FOR MAKING AND USING SAME,” which is a divisional of U.S. patent application Ser. No. 15/890,619, filed Feb. 7, 2018, now issued as U.S. Pat. No. 10,350,056, entitled “MULTI-PIECE ACCOMMODATING INTRAOCULAR LENSES AND METHODS FOR MAKING AND USING SAME,” which is a continuation of International Patent Application No. PCT/US2017/068226, filed Dec. 22, 2017, which claims priority to U.S. Provisional Application No. 62/438,969, filed on Dec. 23, 2016, entitled “MULTI-PIECE ACCOMMODATING IOL,” U.S. Provisional Application No. 62/544,681, filed on Aug. 11, 2017, entitled “MULTI-PIECE ACCOMMODATING IOL,” and U.S. Provisional Application No. 62/549,333, filed on Aug. 23, 2017, entitled “MULTI-PIECE ACCOMMODATING IOL,” the contents of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4440918 | Rice et al. | Apr 1984 | A |
4663409 | Friends et al. | May 1987 | A |
4709996 | Michelson et al. | Dec 1987 | A |
4731078 | Stoy et al. | Mar 1988 | A |
4731080 | Galin | Mar 1988 | A |
4842601 | Smith et al. | Jun 1989 | A |
4892543 | Turley | Jan 1990 | A |
4932966 | McMaster et al. | Jun 1990 | A |
4932971 | Kelman | Jun 1990 | A |
5074942 | Orlosky et al. | Dec 1991 | A |
5211662 | Barrett et al. | May 1993 | A |
5217491 | Vanderbilt | Jun 1993 | A |
5366502 | Patel | Nov 1994 | A |
5405386 | Rheinish et al. | Apr 1995 | A |
5423929 | Grisoni et al. | Jun 1995 | A |
5489302 | Skottun | Feb 1996 | A |
5556929 | Yokoyama et al. | Sep 1996 | A |
5612391 | Chabrecek et al. | Mar 1997 | A |
5620720 | Glick et al. | Apr 1997 | A |
5807944 | Hirt et al. | Sep 1998 | A |
5891931 | Leboeuf et al. | Apr 1999 | A |
5914355 | Kuenzler | Jun 1999 | A |
5944753 | Galin et al. | Aug 1999 | A |
5945465 | Ozark et al. | Aug 1999 | A |
5945498 | Lohmann et al. | Aug 1999 | A |
6140438 | Kawaguchi et al. | Oct 2000 | A |
6197059 | Cumming | Mar 2001 | B1 |
6346594 | Watanabe et al. | Feb 2002 | B1 |
6447920 | Chabrecek et al. | Sep 2002 | B1 |
6465056 | Chabrecek et al. | Oct 2002 | B1 |
6521352 | Lohmann et al. | Feb 2003 | B1 |
6537316 | Chambers | Mar 2003 | B1 |
6558420 | Green et al. | May 2003 | B2 |
6582754 | Pasic et al. | Jun 2003 | B1 |
6586038 | Chabrecek et al. | Jul 2003 | B1 |
6630243 | Ozark et al. | Oct 2003 | B2 |
6660035 | Yaross et al. | Dec 2003 | B1 |
6685741 | Landreville et al. | Feb 2004 | B2 |
6695881 | Peng et al. | Feb 2004 | B2 |
6713583 | Liao et al. | Mar 2004 | B2 |
6730123 | Klopotek et al. | May 2004 | B1 |
6734321 | Chabrecek et al. | May 2004 | B2 |
6747090 | Haitjema et al. | Jun 2004 | B2 |
6761737 | Ting et al. | Jul 2004 | B2 |
6764511 | Ting et al. | Jul 2004 | B2 |
6767363 | Green et al. | Jul 2004 | B1 |
6767979 | Muir et al. | Jul 2004 | B1 |
6786934 | Ting et al. | Sep 2004 | B2 |
6797004 | Brady et al. | Sep 2004 | B1 |
6818017 | Shu et al. | Nov 2004 | B1 |
6818158 | Pham et al. | Nov 2004 | B2 |
6835410 | Chabrecek et al. | Dec 2004 | B2 |
6846326 | Nguyen et al. | Jan 2005 | B2 |
6858040 | Ting et al. | Feb 2005 | B2 |
6884261 | Zadno-Azizi et al. | Apr 2005 | B2 |
6893595 | Muir et al. | May 2005 | B1 |
6893685 | Pasic et al. | May 2005 | B2 |
6899732 | Zadno-Azizi et al. | May 2005 | B2 |
6935743 | Shadduck | Aug 2005 | B2 |
6969403 | Yang et al. | Nov 2005 | B2 |
7041134 | Ting et al. | May 2006 | B2 |
7087080 | Ting et al. | Aug 2006 | B2 |
7097660 | Portney | Aug 2006 | B2 |
7118596 | Ting et al. | Oct 2006 | B2 |
7198640 | Nguyen | Apr 2007 | B2 |
7217288 | Esch et al. | May 2007 | B2 |
7217778 | Flipsen et al. | May 2007 | B2 |
7226478 | Ting et al. | Jun 2007 | B2 |
7300464 | Tran | Nov 2007 | B2 |
7416562 | Gross et al. | Aug 2008 | B2 |
7438723 | Esch | Oct 2008 | B2 |
7452378 | Ting et al. | Nov 2008 | B2 |
7468397 | Schorzman et al. | Dec 2008 | B2 |
7479530 | Chan et al. | Jan 2009 | B2 |
7557231 | Schorzman et al. | Jul 2009 | B2 |
7588334 | Matsushita et al. | Sep 2009 | B2 |
7591849 | Richardson et al. | Sep 2009 | B2 |
7601766 | Schorzman et al. | Oct 2009 | B2 |
7637947 | Scholl et al. | Dec 2009 | B2 |
7714090 | Iwamoto et al. | May 2010 | B2 |
7744603 | Zadno-Azizi et al. | Jun 2010 | B2 |
7744646 | Zadno-Azizi et al. | Jun 2010 | B2 |
7781558 | Schorzman et al. | Aug 2010 | B2 |
7806929 | Brown et al. | Oct 2010 | B2 |
7806930 | Brown et al. | Oct 2010 | B2 |
7842087 | Ben | Nov 2010 | B2 |
7883540 | Niwa et al. | Feb 2011 | B2 |
7906563 | Huang et al. | Mar 2011 | B2 |
7942929 | Linhardt et al. | May 2011 | B2 |
8003710 | Medina et al. | Aug 2011 | B2 |
8025823 | Figueroa et al. | Sep 2011 | B2 |
8034107 | Stenger et al. | Oct 2011 | B2 |
8048155 | Shadduck et al. | Nov 2011 | B2 |
8071703 | Zhou et al. | Dec 2011 | B2 |
8105623 | Schorzman et al. | Jan 2012 | B2 |
8158712 | Your | Apr 2012 | B2 |
8187325 | Zadno-Azizi et al. | May 2012 | B2 |
8211955 | Chang et al. | Jul 2012 | B2 |
8222360 | Liao | Jul 2012 | B2 |
8251509 | Zickler et al. | Aug 2012 | B2 |
8283429 | Zhou et al. | Oct 2012 | B2 |
8328869 | Burns et al. | Dec 2012 | B2 |
8357771 | Medina et al. | Jan 2013 | B2 |
8361145 | Scholl et al. | Jan 2013 | B2 |
8377123 | Zadno et al. | Feb 2013 | B2 |
8414646 | Gifford et al. | Apr 2013 | B2 |
8420711 | Awasthi et al. | Apr 2013 | B2 |
8425595 | Evans et al. | Apr 2013 | B2 |
8425599 | Shadduck et al. | Apr 2013 | B2 |
8425926 | Qiu et al. | Apr 2013 | B2 |
8430928 | Liao | Apr 2013 | B2 |
8454688 | Evans et al. | Jun 2013 | B2 |
8486142 | Bumbalough et al. | Jul 2013 | B2 |
8500806 | Phillips et al. | Aug 2013 | B1 |
8585758 | Woods | Nov 2013 | B2 |
8603166 | Park | Dec 2013 | B2 |
8609745 | Medina et al. | Dec 2013 | B2 |
8663510 | Graney et al. | Mar 2014 | B2 |
8680172 | Liao | Mar 2014 | B2 |
8728158 | Whitsett | May 2014 | B2 |
8759414 | Winter et al. | Jun 2014 | B2 |
8784485 | Evans et al. | Jul 2014 | B2 |
8827447 | Awasthi et al. | Sep 2014 | B2 |
8834566 | Jones | Sep 2014 | B1 |
8835525 | Chang et al. | Sep 2014 | B2 |
8851670 | Zickler et al. | Oct 2014 | B2 |
8863749 | Gooding et al. | Oct 2014 | B2 |
8877227 | Ravi | Nov 2014 | B2 |
8899745 | Domschke | Dec 2014 | B2 |
8900298 | Chazan et al. | Dec 2014 | B2 |
8956409 | Ben Nun | Feb 2015 | B2 |
8968399 | Ghabra | Mar 2015 | B2 |
8992609 | Shadduck | Mar 2015 | B2 |
8993651 | Chang et al. | Mar 2015 | B2 |
9005492 | Chang et al. | Apr 2015 | B2 |
9005700 | Qiu et al. | Apr 2015 | B2 |
9006359 | Schultz et al. | Apr 2015 | B2 |
9011532 | Catlin et al. | Apr 2015 | B2 |
9023915 | Hu et al. | May 2015 | B2 |
9034035 | Assia et al. | May 2015 | B2 |
9039174 | Awasthi et al. | May 2015 | B2 |
9044302 | Gooding et al. | Jun 2015 | B2 |
9052439 | Samuel et al. | Jun 2015 | B2 |
9052440 | Chang et al. | Jun 2015 | B2 |
9095424 | Atkinson et al. | Aug 2015 | B2 |
9097840 | Chang et al. | Aug 2015 | B2 |
9125736 | Atkinson et al. | Sep 2015 | B2 |
9186244 | Rao et al. | Nov 2015 | B2 |
9198572 | Zickler et al. | Dec 2015 | B2 |
9198752 | Woods | Dec 2015 | B2 |
9254189 | Azar et al. | Feb 2016 | B2 |
9265604 | Woods | Feb 2016 | B2 |
9277988 | Chu | Mar 2016 | B1 |
9280000 | Simonov et al. | Mar 2016 | B2 |
9289287 | Atkinson et al. | Mar 2016 | B2 |
9326848 | Woods | May 2016 | B2 |
9364316 | Kahook et al. | Jun 2016 | B1 |
9387069 | Atkinson et al. | Jul 2016 | B2 |
9398949 | Werblin | Jul 2016 | B2 |
9421088 | Schieber et al. | Aug 2016 | B1 |
9427312 | Tai et al. | Aug 2016 | B2 |
9456895 | Shadduck et al. | Oct 2016 | B2 |
9486311 | Vaughan et al. | Nov 2016 | B2 |
9498326 | Tsai et al. | Nov 2016 | B2 |
9603703 | Bumbalough | Mar 2017 | B2 |
9622855 | Portney et al. | Apr 2017 | B2 |
9636213 | Brady | May 2017 | B2 |
9655775 | Boukhny et al. | May 2017 | B2 |
9681946 | Kahook et al. | Jun 2017 | B2 |
9693858 | Hildebrand et al. | Jul 2017 | B2 |
9744027 | Jansen | Aug 2017 | B2 |
9795473 | Smiley et al. | Oct 2017 | B2 |
9814568 | Ben Nun | Nov 2017 | B2 |
9907881 | Terrisse | Mar 2018 | B2 |
10195018 | Salahieh et al. | Feb 2019 | B2 |
10350057 | Argento et al. | Jul 2019 | B2 |
10526353 | Silvestrini | Jan 2020 | B2 |
10548718 | Salahieh et al. | Feb 2020 | B2 |
10709549 | Argento et al. | Jul 2020 | B2 |
10736734 | Salahieh et al. | Aug 2020 | B2 |
11141263 | Argento et al. | Oct 2021 | B2 |
11464625 | Link et al. | Oct 2022 | B2 |
11540916 | Salahieh et al. | Jan 2023 | B2 |
11583390 | Salahieh et al. | Feb 2023 | B2 |
20010037001 | Muller et al. | Nov 2001 | A1 |
20010056165 | Mentak et al. | Dec 2001 | A1 |
20020055776 | Juan, Jr. et al. | May 2002 | A1 |
20020072795 | Green et al. | Jun 2002 | A1 |
20020086160 | Qiu et al. | Jul 2002 | A1 |
20020102415 | Valint, Jr. et al. | Aug 2002 | A1 |
20020103536 | Landreville et al. | Aug 2002 | A1 |
20020107568 | Zadno-Azizi et al. | Aug 2002 | A1 |
20020111678 | Zadno-Azizi et al. | Aug 2002 | A1 |
20020116057 | Ting et al. | Aug 2002 | A1 |
20020116058 | Zadno-Azizi et al. | Aug 2002 | A1 |
20020116059 | Zadno-Azizi et al. | Aug 2002 | A1 |
20020116060 | Nguyen et al. | Aug 2002 | A1 |
20020116061 | Zadno-Azizi et al. | Aug 2002 | A1 |
20020138141 | Zadno-Azizi et al. | Sep 2002 | A1 |
20020173847 | Pham et al. | Nov 2002 | A1 |
20020182316 | Gilliard et al. | Dec 2002 | A1 |
20020197414 | Chabrecek et al. | Dec 2002 | A1 |
20030008063 | Chabrecek et al. | Jan 2003 | A1 |
20030060878 | Shadduck | Mar 2003 | A1 |
20030074060 | Zadno-Azizi et al. | Apr 2003 | A1 |
20030074061 | Pham et al. | Apr 2003 | A1 |
20030078656 | Nguyen | Apr 2003 | A1 |
20030078657 | Zadno-Azizi et al. | Apr 2003 | A1 |
20030078658 | Zadno-Azizi | Apr 2003 | A1 |
20030100666 | DeGroot et al. | May 2003 | A1 |
20030158560 | Portney | Aug 2003 | A1 |
20030162929 | Verbruggen et al. | Aug 2003 | A1 |
20030224185 | Valint, Jr. et al. | Dec 2003 | A1 |
20040082993 | Woods | Apr 2004 | A1 |
20040111152 | Kelman et al. | Jun 2004 | A1 |
20040166232 | Kunzler et al. | Aug 2004 | A1 |
20040169816 | Esch | Sep 2004 | A1 |
20040184158 | Shadduck | Sep 2004 | A1 |
20040230300 | Bandhauer et al. | Nov 2004 | A1 |
20050013842 | Qiu et al. | Jan 2005 | A1 |
20050049700 | Zadno-Azizi et al. | Mar 2005 | A1 |
20050055092 | Nguyen et al. | Mar 2005 | A1 |
20050119740 | Esch et al. | Jun 2005 | A1 |
20050149183 | Shadduck et al. | Jul 2005 | A1 |
20050153055 | Ammon et al. | Jul 2005 | A1 |
20050165410 | Zadno-Azizi et al. | Jul 2005 | A1 |
20050228120 | Hughes et al. | Oct 2005 | A1 |
20050228401 | Zadno-Azizi et al. | Oct 2005 | A1 |
20060069432 | Tran | Mar 2006 | A1 |
20060085013 | Dusek et al. | Apr 2006 | A1 |
20060100701 | Esch | May 2006 | A1 |
20060100703 | Evans et al. | May 2006 | A1 |
20060116765 | Blake et al. | Jun 2006 | A1 |
20060178741 | Zadno-Azizi et al. | Aug 2006 | A1 |
20060241752 | Israel | Oct 2006 | A1 |
20060259139 | Zadno-Azizi et al. | Nov 2006 | A1 |
20060271187 | Zadno-Azizi et al. | Nov 2006 | A1 |
20070005135 | Makker et al. | Jan 2007 | A1 |
20070027540 | Zadno-Azizi et al. | Feb 2007 | A1 |
20070050025 | Nguyen et al. | Mar 2007 | A1 |
20070078515 | Brady | Apr 2007 | A1 |
20070088433 | Esch et al. | Apr 2007 | A1 |
20070092830 | Lai et al. | Apr 2007 | A1 |
20070106377 | Smith et al. | May 2007 | A1 |
20070108643 | Zadno-Azizi et al. | May 2007 | A1 |
20070122540 | Salamone et al. | May 2007 | A1 |
20070201138 | Lo et al. | Aug 2007 | A1 |
20070203317 | Verbruggen et al. | Aug 2007 | A1 |
20070213817 | Esch et al. | Sep 2007 | A1 |
20070232755 | Matsushita et al. | Oct 2007 | A1 |
20070269488 | Ravi et al. | Nov 2007 | A1 |
20080001318 | Schorzman et al. | Jan 2008 | A1 |
20080003259 | Salamone et al. | Jan 2008 | A1 |
20080003261 | Schorzman et al. | Jan 2008 | A1 |
20080015689 | Esch et al. | Jan 2008 | A1 |
20080027461 | Vaquero et al. | Jan 2008 | A1 |
20080046074 | Smith et al. | Feb 2008 | A1 |
20080076897 | Kunzler et al. | Mar 2008 | A1 |
20080139769 | Iwamoto et al. | Jun 2008 | A1 |
20080143958 | Medina et al. | Jun 2008 | A1 |
20080181931 | Qiu et al. | Jul 2008 | A1 |
20080234457 | Zhou et al. | Sep 2008 | A1 |
20080300680 | Joshua et al. | Dec 2008 | A1 |
20080306587 | Your | Dec 2008 | A1 |
20080306588 | Smiley | Dec 2008 | A1 |
20080314767 | Lai et al. | Dec 2008 | A1 |
20090043384 | Niwa et al. | Feb 2009 | A1 |
20090076603 | Avery et al. | Mar 2009 | A1 |
20090118739 | Kappelhof et al. | May 2009 | A1 |
20090143499 | Chang et al. | Jun 2009 | A1 |
20090168012 | Linhardt et al. | Jul 2009 | A1 |
20090170976 | Huang et al. | Jul 2009 | A1 |
20090171459 | Linhardt et al. | Jul 2009 | A1 |
20090204210 | Pynson | Aug 2009 | A1 |
20090232871 | Hitz et al. | Sep 2009 | A1 |
20090247661 | Müller-Lierheim et al. | Oct 2009 | A1 |
20090292355 | Boyd et al. | Nov 2009 | A1 |
20100016964 | Werblin | Jan 2010 | A1 |
20100119744 | Yokoyama et al. | May 2010 | A1 |
20100120938 | Phelan et al. | May 2010 | A1 |
20100120939 | Phelan et al. | May 2010 | A1 |
20100121444 | Ben Nun et al. | May 2010 | A1 |
20100160482 | Nachbaur et al. | Jun 2010 | A1 |
20100179653 | Argento et al. | Jul 2010 | A1 |
20100211170 | Liao et al. | Aug 2010 | A1 |
20100228346 | Esch et al. | Sep 2010 | A1 |
20100239633 | Strome et al. | Sep 2010 | A1 |
20100256651 | Jani et al. | Oct 2010 | A1 |
20100324674 | Brown et al. | Dec 2010 | A1 |
20110009519 | Awasthi et al. | Jan 2011 | A1 |
20110046332 | Breiner et al. | Feb 2011 | A1 |
20110112636 | Ben Nun | May 2011 | A1 |
20110118379 | Tighe et al. | May 2011 | A1 |
20110118834 | Lo et al. | May 2011 | A1 |
20110133350 | Qiu et al. | Jun 2011 | A1 |
20110140292 | Chang et al. | Jun 2011 | A1 |
20110144228 | Ravi et al. | Jun 2011 | A1 |
20110264209 | Wiechmann et al. | Oct 2011 | A1 |
20110269869 | Medina et al. | Nov 2011 | A1 |
20110282442 | Scholl et al. | Nov 2011 | A1 |
20110295368 | Betser et al. | Dec 2011 | A1 |
20120010321 | Chang et al. | Jan 2012 | A1 |
20120023869 | Samuel et al. | Feb 2012 | A1 |
20120033183 | Dai et al. | Feb 2012 | A1 |
20120041097 | Zhou et al. | Feb 2012 | A1 |
20120046743 | Pinchuk et al. | Feb 2012 | A1 |
20120063000 | Batchko et al. | Mar 2012 | A1 |
20120078363 | Lu | Mar 2012 | A1 |
20120078364 | Stenger | Mar 2012 | A1 |
20120088843 | Chang et al. | Apr 2012 | A1 |
20120088844 | Kuyu et al. | Apr 2012 | A1 |
20120088861 | Huang et al. | Apr 2012 | A1 |
20120115979 | Chang et al. | May 2012 | A1 |
20120147323 | Domschke et al. | Jun 2012 | A1 |
20120238857 | Wong et al. | Sep 2012 | A1 |
20120245684 | Liao et al. | Sep 2012 | A1 |
20120314183 | Nakamura et al. | Dec 2012 | A1 |
20120330415 | Callahan et al. | Dec 2012 | A1 |
20130013060 | Zadno-Azizi et al. | Jan 2013 | A1 |
20130053954 | Rao et al. | Feb 2013 | A1 |
20130095235 | Bothe et al. | Apr 2013 | A1 |
20130106007 | Medina et al. | May 2013 | A1 |
20130110234 | DeVita et al. | May 2013 | A1 |
20130116781 | Ben Nun et al. | May 2013 | A1 |
20130150961 | Evans et al. | Jun 2013 | A1 |
20130176628 | Batchko et al. | Jul 2013 | A1 |
20130197125 | Awasthi et al. | Aug 2013 | A1 |
20130224309 | Qiu et al. | Aug 2013 | A1 |
20130228943 | Qiu et al. | Sep 2013 | A1 |
20130245756 | Liao et al. | Sep 2013 | A1 |
20130289294 | Awasthi et al. | Oct 2013 | A1 |
20130304203 | Beer | Nov 2013 | A1 |
20130317607 | DeBoer et al. | Nov 2013 | A1 |
20140055750 | Dai et al. | Feb 2014 | A1 |
20140171539 | Chang et al. | Jun 2014 | A1 |
20140171542 | Chang | Jun 2014 | A1 |
20140178595 | Bothe et al. | Jun 2014 | A1 |
20140180403 | Silvestrini et al. | Jun 2014 | A1 |
20140180404 | Tran | Jun 2014 | A1 |
20140180406 | Simpson | Jun 2014 | A1 |
20140180407 | Sohn et al. | Jun 2014 | A1 |
20140228949 | Argento et al. | Aug 2014 | A1 |
20140277437 | Currie | Sep 2014 | A1 |
20140277439 | Hu et al. | Sep 2014 | A1 |
20140309735 | Sohn et al. | Oct 2014 | A1 |
20140316521 | McLeod et al. | Oct 2014 | A1 |
20140350124 | Chang et al. | Nov 2014 | A1 |
20140379079 | Ben Nun | Dec 2014 | A1 |
20150088149 | Auld | Mar 2015 | A1 |
20150092155 | Chang et al. | Apr 2015 | A1 |
20150105760 | Silvestrini et al. | Apr 2015 | A1 |
20150152228 | Chang et al. | Jun 2015 | A1 |
20150164321 | Weibel et al. | Jun 2015 | A1 |
20150173892 | Borja et al. | Jun 2015 | A1 |
20150177417 | Goshima et al. | Jun 2015 | A1 |
20150351901 | Chicevic et al. | Dec 2015 | A1 |
20160000558 | Honigsbaum et al. | Jan 2016 | A1 |
20160008126 | Vaughan et al. | Jan 2016 | A1 |
20160030161 | Rao et al. | Feb 2016 | A1 |
20160058553 | Salahieh | Mar 2016 | A1 |
20160074154 | Woods | Mar 2016 | A1 |
20160100938 | Hendrik et al. | Apr 2016 | A1 |
20160128826 | Rao et al. | May 2016 | A1 |
20160151150 | Sato | Jun 2016 | A1 |
20160184091 | Burns et al. | Jun 2016 | A1 |
20160184092 | Flaherty et al. | Jun 2016 | A1 |
20160250020 | Schieber et al. | Sep 2016 | A1 |
20160256265 | Borja et al. | Sep 2016 | A1 |
20160256316 | Van Noy et al. | Sep 2016 | A1 |
20160262875 | Smiley et al. | Sep 2016 | A1 |
20160278914 | Sato et al. | Sep 2016 | A1 |
20160296320 | Humayun et al. | Oct 2016 | A1 |
20160296662 | Miroslav et al. | Oct 2016 | A1 |
20160317286 | Rao et al. | Nov 2016 | A1 |
20160317287 | Rao et al. | Nov 2016 | A1 |
20160331587 | Ueno et al. | Nov 2016 | A1 |
20160361157 | Honigsbaum | Dec 2016 | A1 |
20170000602 | Sohn et al. | Jan 2017 | A1 |
20170020662 | Shadduck | Jan 2017 | A1 |
20170049561 | Smiley et al. | Feb 2017 | A1 |
20170049562 | Argento et al. | Feb 2017 | A1 |
20170119521 | Kahook et al. | May 2017 | A1 |
20170181850 | de Juan, Jr. | Jun 2017 | A1 |
20170258581 | Borja et al. | Sep 2017 | A1 |
20170348094 | Sohn et al. | Dec 2017 | A1 |
20180085213 | Hadba et al. | Mar 2018 | A1 |
20180110613 | Wortz et al. | Apr 2018 | A1 |
20180161152 | Argento et al. | Jun 2018 | A1 |
20180177589 | Argento et al. | Jun 2018 | A1 |
20190159890 | Salahieh et al. | May 2019 | A1 |
20190274823 | Argento et al. | Sep 2019 | A1 |
20190290422 | Ben Nun | Sep 2019 | A1 |
20190374334 | Brady et al. | Dec 2019 | A1 |
20200121447 | Argento et al. | Apr 2020 | A1 |
20200146813 | Argento et al. | May 2020 | A1 |
20200306031 | Salahieh et al. | Oct 2020 | A1 |
20200397566 | Salahieh et al. | Dec 2020 | A1 |
20210030529 | Adams et al. | Feb 2021 | A1 |
20210378815 | Salahieh et al. | Dec 2021 | A9 |
20220192818 | Raquet et al. | Jun 2022 | A1 |
20220273423 | Argento et al. | Sep 2022 | A1 |
20220296362 | Salahieh et al. | Sep 2022 | A1 |
20220338975 | Brady | Oct 2022 | A1 |
20220401213 | Argento et al. | Dec 2022 | A1 |
20230063391 | Scholl et al. | Mar 2023 | A1 |
20230200976 | Salahieh et al. | Jun 2023 | A1 |
20230263620 | Salahieh et al. | Aug 2023 | A1 |
20240050222 | Salahieh et al. | Feb 2024 | A1 |
Number | Date | Country |
---|---|---|
2006200142 | Jul 2006 | AU |
2015361227 | Apr 2017 | AU |
2010203427 | May 2017 | AU |
2012335677 | Jun 2017 | AU |
2015258287 | Dec 2017 | AU |
2615825 | Jan 2007 | CA |
2973684 | Jul 2016 | CA |
2974639 | Aug 2016 | CA |
2987311 | Dec 2016 | CA |
2752046 | Apr 2017 | CA |
2829143 | Apr 2017 | CA |
1285722 | Feb 2001 | CN |
1795090 | Jun 2006 | CN |
101351169 | Jun 2007 | CN |
101031257 | Sep 2007 | CN |
101641060 | Nov 2007 | CN |
101277659 | Oct 2008 | CN |
101360468 | Feb 2009 | CN |
101547663 | Sep 2009 | CN |
101069106 | Feb 2010 | CN |
102271623 | Jul 2010 | CN |
103946251 | Jul 2014 | CN |
104725553 | Jun 2015 | CN |
108472129 | Aug 2018 | CN |
107205815 | Aug 2020 | CN |
0604369 | Jun 1994 | EP |
0734269 | Oct 1996 | EP |
0784652 | Jul 1997 | EP |
0800511 | Oct 1997 | EP |
0820601 | Jan 1998 | EP |
0826158 | Mar 1998 | EP |
0898972 | Mar 1999 | EP |
0907668 | Apr 1999 | EP |
0930357 | Jul 1999 | EP |
0604369 | Aug 1999 | EP |
0826158 | Sep 1999 | EP |
0947856 | Oct 1999 | EP |
0820601 | Dec 1999 | EP |
0800511 | Jan 2000 | EP |
0989138 | Mar 2000 | EP |
1084428 | Mar 2001 | EP |
1088246 | Apr 2001 | EP |
1090313 | Apr 2001 | EP |
1095711 | May 2001 | EP |
1095965 | May 2001 | EP |
1095966 | May 2001 | EP |
1109853 | Jun 2001 | EP |
0907668 | Sep 2001 | EP |
1141054 | Oct 2001 | EP |
1187873 | Mar 2002 | EP |
1200019 | May 2002 | EP |
1227773 | Aug 2002 | EP |
1230041 | Aug 2002 | EP |
1266246 | Dec 2002 | EP |
0898972 | Apr 2003 | EP |
1341485 | Sep 2003 | EP |
1364663 | Nov 2003 | EP |
1095711 | Jan 2004 | EP |
1141054 | Feb 2004 | EP |
1395302 | Mar 2004 | EP |
1410074 | Apr 2004 | EP |
1266246 | Jun 2004 | EP |
1109853 | Sep 2004 | EP |
1187873 | Sep 2004 | EP |
1084428 | Nov 2004 | EP |
1472305 | Nov 2004 | EP |
1230041 | Dec 2004 | EP |
0989138 | Feb 2005 | EP |
1095965 | Feb 2005 | EP |
1395302 | Feb 2005 | EP |
1507811 | Feb 2005 | EP |
1524953 | Apr 2005 | EP |
1200019 | Sep 2005 | EP |
1095966 | Jan 2006 | EP |
1660153 | May 2006 | EP |
1353611 | Sep 2006 | EP |
1696975 | Sep 2006 | EP |
1341485 | Nov 2006 | EP |
1723933 | Nov 2006 | EP |
1723934 | Nov 2006 | EP |
1750157 | Feb 2007 | EP |
1088246 | Nov 2007 | EP |
1857477 | Nov 2007 | EP |
1227773 | Jan 2008 | EP |
1888660 | Feb 2008 | EP |
1890650 | Feb 2008 | EP |
1902737 | Mar 2008 | EP |
1723933 | Nov 2008 | EP |
2035050 | Mar 2009 | EP |
2035480 | Mar 2009 | EP |
2035486 | Mar 2009 | EP |
1723934 | Jun 2009 | EP |
2066732 | Jun 2009 | EP |
2077292 | Jul 2009 | EP |
2092376 | Aug 2009 | EP |
1648534 | Sep 2009 | EP |
2094193 | Sep 2009 | EP |
2109784 | Oct 2009 | EP |
2120789 | Nov 2009 | EP |
2126614 | Dec 2009 | EP |
2035480 | Feb 2010 | EP |
2170708 | Apr 2010 | EP |
2178463 | Apr 2010 | EP |
2185589 | May 2010 | EP |
2231207 | Sep 2010 | EP |
1750157 | Oct 2010 | EP |
2235094 | Oct 2010 | EP |
2276513 | Jan 2011 | EP |
2292672 | Mar 2011 | EP |
2356170 | Aug 2011 | EP |
2356497 | Aug 2011 | EP |
2109784 | Oct 2011 | EP |
2396355 | Dec 2011 | EP |
2035486 | Apr 2012 | EP |
2452212 | May 2012 | EP |
1857477 | Jun 2012 | EP |
1410074 | Oct 2012 | EP |
2092376 | Oct 2012 | EP |
2510051 | Oct 2012 | EP |
2513711 | Oct 2012 | EP |
2514791 | Oct 2012 | EP |
2356170 | Dec 2012 | EP |
2538266 | Dec 2012 | EP |
2563275 | Mar 2013 | EP |
2597113 | May 2013 | EP |
2598936 | Jun 2013 | EP |
2077292 | Aug 2013 | EP |
2625216 | Aug 2013 | EP |
2625217 | Aug 2013 | EP |
2625218 | Aug 2013 | EP |
2652532 | Oct 2013 | EP |
1830898 | Mar 2014 | EP |
2766750 | Aug 2014 | EP |
2452212 | Mar 2015 | EP |
2934383 | Oct 2015 | EP |
2200536 | Jan 2016 | EP |
2976042 | Jan 2016 | EP |
2979662 | Feb 2016 | EP |
3185818 | Mar 2016 | EP |
2129331 | Apr 2016 | EP |
3003217 | Apr 2016 | EP |
3025678 | Jun 2016 | EP |
2259750 | Jul 2016 | EP |
2934383 | Jul 2016 | EP |
3062741 | Sep 2016 | EP |
3072476 | Sep 2016 | EP |
1999188 | Nov 2016 | EP |
2685935 | Nov 2016 | EP |
2094193 | Jan 2017 | EP |
2683287 | Feb 2017 | EP |
3062742 | Feb 2017 | EP |
3157466 | Apr 2017 | EP |
3160404 | May 2017 | EP |
3160683 | May 2017 | EP |
3049023 | Jun 2017 | EP |
3174500 | Jun 2017 | EP |
3181094 | Jun 2017 | EP |
2539351 | Jul 2017 | EP |
2283058 | Oct 2007 | ES |
2653325 | Apr 1991 | FR |
59-501897 | Nov 1984 | JP |
01-223970 | Sep 1989 | JP |
2004502510 | Jan 2004 | JP |
2006506196 | Jun 2004 | JP |
2006518222 | Jul 2004 | JP |
2002372688 | Dec 2006 | JP |
2007-506516 | Jul 2007 | JP |
2007-517616 | Jul 2007 | JP |
2006516002 | Jul 2008 | JP |
2010514507 | Jul 2008 | JP |
2010-517639 | May 2010 | JP |
2012-532685 | Dec 2012 | JP |
2016-534816 | Nov 2016 | JP |
9007545 | Jul 1990 | WO |
9007575 | Jul 1990 | WO |
9516475 | Jun 1995 | WO |
9611235 | Apr 1996 | WO |
9620919 | Jul 1996 | WO |
9631791 | Oct 1996 | WO |
9636890 | Nov 1996 | WO |
9749740 | Dec 1997 | WO |
9917684 | Apr 1999 | WO |
9929818 | Jun 1999 | WO |
9957581 | Nov 1999 | WO |
9960428 | Nov 1999 | WO |
WO1999059668 | Nov 1999 | WO |
9963366 | Dec 1999 | WO |
2000004078 | Jan 2000 | WO |
2000026980 | Jun 2000 | WO |
2000071613 | Nov 2000 | WO |
2001008607 | Feb 2001 | WO |
2001030512 | May 2001 | WO |
2001034067 | May 2001 | WO |
2001071392 | Sep 2001 | WO |
2002047583 | Jun 2002 | WO |
WO2002074202 | Sep 2002 | WO |
2002094331 | Nov 2002 | WO |
2003009014 | Jan 2003 | WO |
2003066707 | Aug 2003 | WO |
2003097711 | Nov 2003 | WO |
2004010905 | Feb 2004 | WO |
2004046768 | Jun 2004 | WO |
2004052242 | Jun 2004 | WO |
2004053536 | Jun 2004 | WO |
2004054471 | Jul 2004 | WO |
2004058318 | Jul 2004 | WO |
2004072689 | Aug 2004 | WO |
2005023331 | Mar 2005 | WO |
2005065734 | Jul 2005 | WO |
2006047383 | May 2006 | WO |
2006103674 | Oct 2006 | WO |
2006126095 | Nov 2006 | WO |
2007005778 | Jan 2007 | WO |
WO2007005692 | Jan 2007 | WO |
2007047529 | Apr 2007 | WO |
2007047530 | Apr 2007 | WO |
2007050394 | May 2007 | WO |
2007064594 | Jun 2007 | WO |
2008005644 | Jan 2008 | WO |
2008005652 | Jan 2008 | WO |
2008005752 | Jan 2008 | WO |
2008024766 | Feb 2008 | WO |
2008039655 | Apr 2008 | WO |
2008076729 | Jun 2008 | WO |
2008077040 | Jun 2008 | WO |
2008082957 | Jul 2008 | WO |
2008094876 | Aug 2008 | WO |
2008103798 | Aug 2008 | WO |
2008107882 | Sep 2008 | WO |
2008116132 | Sep 2008 | WO |
2008151088 | Dec 2008 | WO |
2009002703 | Dec 2008 | WO |
WO2009002789 | Dec 2008 | WO |
2009015161 | Jan 2009 | WO |
2009015226 | Jan 2009 | WO |
2009015234 | Jan 2009 | WO |
2009015240 | Jan 2009 | WO |
2009085755 | Jul 2009 | WO |
2009085756 | Jul 2009 | WO |
2009127844 | Oct 2009 | WO |
2010056686 | May 2010 | WO |
2010056687 | May 2010 | WO |
2010081093 | Jul 2010 | WO |
2010093823 | Aug 2010 | WO |
2011005937 | Jan 2011 | WO |
2011026068 | Mar 2011 | WO |
2011071790 | Jun 2011 | WO |
2011075377 | Jun 2011 | WO |
2011106435 | Sep 2011 | WO |
2012006616 | Jan 2012 | WO |
2012015639 | Feb 2012 | WO |
2012047961 | Apr 2012 | WO |
2012047964 | Apr 2012 | WO |
2012047969 | Apr 2012 | WO |
2012082704 | Jun 2012 | WO |
2012129407 | Sep 2012 | WO |
WO2012129419 | Sep 2012 | WO |
2013055746 | Apr 2013 | WO |
WO2013059195 | Apr 2013 | WO |
2013070924 | May 2013 | WO |
2013158942 | Oct 2013 | WO |
2013166068 | Nov 2013 | WO |
2014093751 | Jun 2014 | WO |
2014093764 | Jun 2014 | WO |
2014095690 | Jun 2014 | WO |
2014099630 | Jun 2014 | WO |
2014143926 | Sep 2014 | WO |
2014149462 | Sep 2014 | WO |
2014152017 | Sep 2014 | WO |
WO2014134302 | Sep 2014 | WO |
WO2014152017 | Sep 2014 | WO |
2015038620 | Mar 2015 | WO |
2015048279 | Apr 2015 | WO |
2015066502 | May 2015 | WO |
2015066532 | May 2015 | WO |
WO2015066502 | May 2015 | WO |
2015148673 | Oct 2015 | WO |
2016018932 | Feb 2016 | WO |
2016018932 | Feb 2016 | WO |
2016033217 | Mar 2016 | WO |
2016038470 | Mar 2016 | WO |
2016061233 | Apr 2016 | WO |
2016122805 | Aug 2016 | WO |
2016133558 | Aug 2016 | WO |
2016140708 | Sep 2016 | WO |
2016195095 | Dec 2016 | WO |
2016201351 | Dec 2016 | WO |
2017079449 | May 2017 | WO |
2017079733 | May 2017 | WO |
2017087358 | May 2017 | WO |
WO2017084551 | May 2017 | WO |
2017208230 | Dec 2017 | WO |
2017223544 | Dec 2017 | WO |
WO2017221196 | Dec 2017 | WO |
2018119408 | Jun 2018 | WO |
2018222579 | Dec 2018 | WO |
2018227014 | Dec 2018 | WO |
WO2019050690 | Mar 2019 | WO |
WO2020219456 | Oct 2020 | WO |
WO2021007535 | Jan 2021 | WO |
2021158882 | Aug 2021 | WO |
WO2022220861 | Oct 2022 | WO |
WO2022226269 | Oct 2022 | WO |
WO2023084382 | May 2023 | WO |
WO2023141552 | Jul 2023 | WO |
Entry |
---|
Klank et al. “CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems” Lab Chip 2002 2 242-246. |
Tsao et al. “Bonding of thermoplastic polymer microfluidics. Microfluid Nanofuild,” 2009 6:1-16. |
Umbrecht et al. “Solvent assisted bonding of polymethylmethacrylate: characterization using the response surface methodology” Jan. 2008, pp. 1325-1328. |
Liang et al. “Bionic intraocular lens with variable focus and integrated structure” Optical Engineering 2015 vol. 54 No. 10 Article No. 105106 Internal pp. 1-7. |
International Search Report and Written Opinion for PCT Application No. PCT/US2017/068226, filed Dec. 22, 2017, Applicant: Shifamed Holdings, LLC, Date of Mailing: Apr. 17, 2018, 15 pages. |
English translation of First Chinese Office Action mailed Sep. 10, 2020 for Chinese Patent Application No. 201780087361.6, Applicant: Shifamed Holdings, LLC, filing date: Dec. 23, 2017, 11 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2022/025887, filed Apr. 22, 2022, Applicant: Shifamed Holdings, LLC, Date of Mailing: Aug. 11, 2022, 9 pages. |
International Search Report and Written Opinion for PCT Application No. PCT/US2022/049046, filed Nov. 4, 2022, Applicant: Shifamed Holdings, LLC, Date of Mailing: Mar. 24, 2023, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20220160496 A1 | May 2022 | US |
Number | Date | Country | |
---|---|---|---|
62549333 | Aug 2017 | US | |
62544681 | Aug 2017 | US | |
62438969 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15890619 | Feb 2018 | US |
Child | 16426211 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16426211 | May 2019 | US |
Child | 17367107 | US | |
Parent | PCT/US2017/068226 | Dec 2017 | WO |
Child | 15890619 | US |