The present invention relates to a multi-piece golf ball having a multi-layered structure, a method for manufacturing the same and a mold used for manufacturing the same.
Recently, several golf balls exhibiting both high ball bounce resilience and a soft feel when hit have been proposed. One example of such golf balls is a multi-piece golf ball in which the ball is composed of a plurality of layers. Generally, in a multi-layered golf ball, especially in a golf gall that has three or more layers, a highly rigid core is covered with an intermediate layer that has relatively low rigidity, and the outer surface of the intermediate layer is covered with a hard cover. This arrangement aims to attain both high ball bounce resilience and a soft feel when hit by using the rigidity of the core and the softness of the intermediate layer. One example of such a multi-piece golf ball is disclosed in Japanese Examined Patent Publication No. 1991-52310.
However, golf balls having a conventional multi-layer structure do not always exhibit a satisfactorily soft feel when hit and further improvement in this soft feel is desired.
The properties required in golf balls include a long carry distance attributable to the above-mentioned high ball bounce resilience and to the spin; however, it is difficult to provide both properties in the same ball. Therefore, in commonly marketed golf balls, only one of the properties is generally enhanced. Because different properties are required in different types of golf balls, it is difficult to manufacture them using the same mold, thus increasing the number of manufacturing steps. From the view of reducing the cost of molds, the demand exists for sharing the same mold for manufacturing different types of golf balls.
The present invention aims to solve the above problems. The first object of the present invention is to provide multi-piece golf balls having a satisfactorily soft feel and high ball bounce resilience. The second object of the present invention is to provide a method for manufacturing multi-piece golf balls that can achieve both a long carry distance and satisfactory spin, which are inherently conflicting properties, using the same mold, and a mold for manufacturing such golf balls.
The multi-piece golf ball of the present invention comprises a core, a first intermediate layer, a second intermediate layer, and a cover. To overcome the previously mentioned problems, the first intermediate layer comprises a plurality of ribs formed on the core, the second intermediate layer is placed in the concave portions surrounded by ribs, and the cover forms an outermost layer; such that the ribs extend in such a manner that the width of the ribs widens from the cover to the core, and the concave portions are formed into a cone-like shape by the side surfaces of the ribs, the hardness of the core, the first intermediate layer and the second intermediate layer are different from each other and the hardness of the first intermediate layer is greater than that of the second intermediate layer.
In this structure, the first intermediate layer formed on the surface of the core comprises a plurality of ribs, and the second intermediate layer is placed in the concave portions surrounded by the ribs. Each of the ribs extends such that its width is greater as approaching to the core, and this forms each concave portion into a funnel-like form. Therefore, in the region between the core and the cover, the area occupied by the first intermediate layer increases when moving from the cover to the core in concentric spherical surfaces. In other words, the proportion of the area of the second intermediate layer in the vicinity of the cover is large, while the proportion of the area of the first intermediate layer increases towards the core, so that the intermediate layers between the core and the cover have functionally graded properties in which two properties gradually change.
In the present invention, the hardness of the first intermediate layer is greater than that of the second intermediate layer, and therefore the hardness of the ball gradually increases from the cover to the core. Therefore, the initial stage of impact is greatly influenced by those properties that contribute to soft feel and, as impact progresses, ball bounce resilience increases. In the multi-piece golf ball of the present invention, because two contrasting properties smoothly change during impact, both excellent soft feel and high ball bounce resilience can be obtained, improving the balance of the properties of the ball.
When, as described above, the hardness of the first intermediate layer is set greater than that of the second intermediate layer, because the second intermediate layer having the lower hardness is placed in concave portions surrounded by harder ribs, deformation of the second intermediate layer in the spherical surface direction when hit is limited by the ribs. This makes it possible to prevent the striking force from being dispersed in directions along the spherical surface and to highly efficiently transmit the striking force to the center of the ball. As a result, in spit of the soft feel when hit, it is also possible to achieve a long carry distance.
In the present invention, “cone-like shape” means a shape such that each concave portion forms a cone-like-shape region by being surrounded by the side surfaces of ribs such that the area of the plane formed by cutting the region along a spherical surface having the same center as the core becomes smaller as approaching from the cover to the core. In this case, the shape of the above-described plane is not limited and may be, for example, a polygonal or circular. In some embodiments, the concave portion is formed into a cone-like shape by being surrounded only by ribs, while in other embodiments, the core is exposed at the bottom end of the concave portion and the side surfaces of the rib and the core together define the cone-like shape. However, when the core is exposed, the exposed area is small and a cone-like shape is formed as a whole. It is preferable that the height of the ribs be set in the range from 6.4 to 11.2 mm.
When the hardness of the core is set less than that of the second intermediate layer, i.e., the hardness of the core is made less than that of both the intermediate layers, even when the intermediate layers act to rotate the ball, because the soft core reduces the rotation, the rotation of the ball is controlled. This reduces the amount of spin and increases the shot angle, obtaining a long carry distance.
In contrast, when the hardness of the core is greater than that of the first intermediate layer, i.e., the hardness of the core is made greater than both the intermediate layers, when the less hard intermediate layers start rotating, the core follows this motion, increasing the amount of spin of the ball. Therefore, although the carry distance is less than desired, a high spin performance can be attained.
It is preferable that the diameter of the core of the golf ball be set in the range from 15.1 to 28.3 mm. The diameter of the core may be set outside this range; however, setting the diameter of the core within this range makes it possible to reduce the diameter of the core and increase the region between the core and the cover, i.e., the region in the radial direction is broad and the balance between soft feel and high ball bounce resilience is improved. In other words, feeling when hit the ball becomes satisfactorily soft and a long carry distance can be achieved at the same time.
Various configurations are possible as a rib structure, for example, ribs may extend along three great circles drawn around the core so as to intersect each other at right angles.
In the golf ball of the present invention, the ribs comprising the first intermediate layer may be configured various ways. For example, each of the ribs may comprise a notch so as to form a passageway between adjacent concave portions.
Forming a notch in the ribs can be advantageous during manufacturing. For example, when a golf ball of the present invention is manufactured in the manner of forming a core, covering the core with the first intermediate layer, placing it in a mold together with a material for the second intermediate layer and press molding, because the adjacent concave portions communicate with each other via the notches, when press molding is conducted, the material for the second intermediate layer spreads throughout the concave portions through the notches.
This makes it unnecessary to separately fill the material for the second intermediate layer in each of the concave portions, simplifying the manufacturing facility and reducing the manufacturing time. When the second intermediate layer is formed by injection molding, the second intermediate layer can be formed by using one or a small number of gates, reducing the production facility cost.
It is preferable that each of the ribs extend along three great circles drawn around the core so as to intersect each other at right angles, each circular arc section of the ribs divided at the intersections of the great circles being provided with a notch, the notch has a plane that extends from one point of the normal line of the core passing through the intersection of the great circles toward the circular arc section, wherein the plane has an angle that is not smaller than 90° relative to the normal line. Thereby, four concave portions that are arranged so as to have their common center at an intersection of the great circles are made to communicate with each other, and the material for the second intermediate layer can readily spread between them. Because the angle made between the plane and the normal line is not smaller than 90°, the angle serves as a draft angle, and, for example, when the core is molded using two molds, such as an upper mold and a lower mold, the core can easily be removed from the mold.
From the view of making adjacent concave portions communicate with each other, it is possible to form a notch in the middle of the circular arc section in the circular direction. It is preferable that the notch have two planes that each extends toward the intersection from a point on the normal line of the spherical body that passes through the mid point of each circular arc section in the circular direction, wherein the angle made between the planes and the normal line is 45 to 48°. This arrangement allows the above angle made between the planes and the normal line to serve as a draft angle, so that the first intermediate layer can be removed from the mold easily.
The method for manufacturing a multi-piece golf ball comprising a core, a first intermediate layer, a second intermediate layer and a cover, the method comprising the steps of forming a spherical core; preparing a first mold having a spherical core receiving part corresponding to the surface of the core, and the cavity having a plurality of grooves formed along the surfaces of the core receiving part, the grooves having substantially the same depth measured from the surface and their width becoming narrower as they become deeper; placing the core in the core receiving part of the first mold and then forming a first intermediate layer having a plurality of ribs by filling the cavity with a material having a hardness and/or specific gravity different from that of the core; preparing a second mold having a spherical cavity corresponding to the outermost diameter of the first intermediate layer; forming a second intermediate layer by placing a half-finished product comprising the core released from the first mold and the first intermediate layer in the cavity of the second mold, and filling the concave portions surrounded by the ribs with a material having a hardness and/or specific gravity different from that of the core and the first intermediate layer; and forming a cover over the second intermediate layer.
This manufacturing method makes it possible to obtain a multi-piece golf ball that has functionally graded properties between the cover and the core as described above and that achieves excellent performance. It is also possible to readily align the center of each layer. Furthermore, multi-piece golf balls having various properties can be manufactured by varying the materials for each intermediate layer or core. For example, when the materials are selected in such a manner that the hardness of the first intermediate layer is greater than that of the second intermediate layer, a golf ball having a hardness gradually increasing from the cover to the core can be manufactured, thus obtaining a golf ball having both high ball bounce resilience and soft feel.
When the materials are selected in such a manner that the hardness of the core is less than those of the intermediate layers, it is possible to manufacture a ball achieving a long carry distance, and when the materials are selected in such a manner that the hardness of the core is greater than those of the intermediate layers, it is possible to manufacture a ball having an excellent spin performance. Therefore, merely by varying the materials, golf balls having different excellent performance properties can be manufactured using the same mold. Furthermore, it is also possible to manufacture golf balls of various properties by varying not only hardness but also the specific gravities of the materials.
When the inside diameter of the core receiving part in the first mold is set in the range from 15.1 to 28.3 mm, it is possible to manufacture a golf ball having a good balance between soft feel and high ball bounce resilience. It is preferable that the depth of the grooves comprising the cavity be 6.4 to 11.2 mm.
When the cavity of the first mold is so structured that a plurality of grooves communicate with each other to form at least one closed region, and at least one shallower portion is formed in the grooves, a notch can be formed on a rib and the material can readily spread throughout each concave portion during the second intermediate layer formation step.
A first mold of the present invention is a mold for forming a first intermediate layer of a multi-piece golf ball, the mold comprising a spherical core receiving part corresponding to the surface of the core; and a cavity having a plurality of grooves formed along the surfaces of the core receiving part, the plurality of grooves having substantially the same depth measured from the surface and a width becoming narrower as they become deeper.
A second mold of the present invention is a mold for forming a second intermediate layer of a multi-piece golf ball, the mold comprising a spherical cavity corresponding to the outermost diameter of the first intermediate layer.
Hereunder, embodiments of a multi-piece golf ball of the present invention are explained with reference to drawings.
As shown in
The core 3 can be manufactured using a known rubber composition comprising a base rubber, a cross-linking agent, an unsaturated carboxylic acid metal salt, filler, etc. Specific examples of base rubber include natural rubber, polyisobutylene rubber, styrenebutadiene rubber, EPDM, etc. Among these, it is preferable to use high-cis polybutadiene that contains 40% or more cis-1,4-bonds and preferably 80% or more.
Specific examples of cross-linking agents include dicumyl peroxide, t-butylperoxide, and like organic peroxides; however, it is particularly preferable to use dicumyl peroxide. The compounding ratio of the cross-linking agent is generally 0.3 to 5 parts by weight, and preferably 0.5 to 2 parts by weight based on 100 parts by weight of the base rubber.
As metal salts of unsaturated carboxylic acids, it is preferable to use monovalent or bivalent metal salts of acrylic acid, methacrylic acid, and like C3 to C8 unsaturated carboxylic acids. Among these, use of zinc acrylate can improve the ball bounce resilience and is particularly preferable. The compounding ratio of the unsaturated carboxylic acid metal salt is preferably 10 to 40 parts by weight based on 100 parts by weight of base rubber.
Examples of filler include those generally added to cores. Specific examples thereof include zinc oxide, barium sulfate, calcium carbonate, etc. The preferable compounding ratio of the filler is 2 to 50 parts by weight based on 100 parts by weight of base rubber. If necessary, it is also possible to add an antioxidant, a peptizer, and the like.
Known elastomers, in addition to the above-mentioned rubber compositions, can also be used as materials for forming the core 3.
As shown in
As shown in
Note that, it is preferable that the width b of the rib end portion be set in the above range and the core 3 be exposed at the bottom surfaces of the concave portions 52 as shown in
Because of this shape of the ribs 51, the concave portions 52 form a trigonal pyramid-like shape surrounded by three ribs 51 and the surface of the core 3 that is slightly exposed.
The first intermediate layer 5 is composed of a rubber composition, and the same materials as used for the core 3 described above can be used. However, it is preferable that the compounding ratio of unsaturated carboxylic acids and organic peroxides be increased to make the intermediate layer harder than the core 3.
As shown in
It is possible to form the second intermediate layer 7 using rubber compositions or elastomers having almost the same components as those used for the core 3. However, when the second intermediate layer 7 is composed of a rubber compound, it is preferable that the compounding ratio of unsaturated carboxylic acids and organic peroxides be reduced to make the intermediate layer less hard than the first intermediate layer.
When the intermediate layer 5 is formed of an elastomer, it is possible to use, for example, styrene/butadiene/styrene block copolymer (SBS), styrene/isoprene/styrene block copolymer (SIS), styrene/ethylene/butylene/styrene block copolymer (SEBS), styrene/ethylene/propylene/styrene block copolymer (SEPS), and like styrene-based thermoplastic elastomers; olefin-based thermoplastic elastomers having polyethylene or polypropylene as a hard segment and butadiene rubber, acrylonitrile butadiene rubber or ethylene/propylene rubber as a soft segment; vinyl chloride-based plastic elastomers having crystallized poly(vinyl chloride) as a hard segment and amorphous poly(vinyl chloride) or an acrylonitrile butadiene rubber as a soft segment; urethane-based plastic elastomers having polyurethane as a hard segment and polyether or polyester urethane as a soft segment; polyester based plastic elastomers having polyester as a hard segment and polyether or polyester as a soft segment; amide based plastic elastomers having polyamide as a hard segment and polyether or polyester as a soft segment; ionomer resins; balata rubber, etc.
As shown in
A golf ball 1 having such a structure comprises a first intermediate layer 5 formed on the surface of a core 3, the first intermediate layer having three ribs 51 extending along great circles, and the second intermediate layer 7 being placed in the eight concave portions 52 surrounded by the ribs 51. Therefore, in the region between the core 3 and the cover 9, the area occupied by the first intermediate layer 5 of a spherical surface concentric to the core 3 increases from the cover 9 to the core 3. In other words, as shown in
In this structure, because the softer second intermediate layer 7 is placed in the concave portions 52 surrounded by the harder ribs 51, deformation of the second intermediate layer 7 in the spherical surface direction is limited by the ribs 51. It is possible to prevent the striking force from being dispersed in directions along the spherical surface, efficiently transferring the striking force to the center of the ball. As a result, in spite of the soft feel, a long carry distance can be attained.
Because the hardness of the core 3 is less than that of the intermediate layers 5 and 7, even if the intermediate layers 5 and 7 rotate, the rotation is controlled by the soft core 3 and spin of the ball can be controlled. This reduces the amount of spin and increases the shot angle, obtaining a long carry distance.
One embodiment of the present invention is described above; however, the present invention is not limited to this and various modifications are possible as long as they do not depart from the scope of the invention. For example, in the above embodiment, the carry distance of the ball is improved by setting the hardness of the core 3 less than those of the intermediate layers 5 and 7; it is also possible to make the hardness of the core 3 greater than those of the intermediate layers 5 and 7. With this constitution, because the intermediate layers are softer than the core, when the intermediate layers start rotating, the core follows this motion, increasing the amount of spin of the ball. Therefore, although the carry distance is reduced, a high spin performance can be attained.
Neither is the shape of the ribs 51 limited to the above. For example, in the above embodiment, the ribs 51 are formed along great circles; however, the ribs 51 need not necessarily have this structure as long as a plurality of concave portions 52 in which the second intermediate layers 7 can be placed.
As shown in
By forming notches 511 in this manner, four concave portions 52 that are arranged so as to have their common center at an intersection P of the great circles are made to communicate with each other, and the material for the intermediate layer can readily spread between the concave portions 52 via the notch 511. In this case, as shown in
It is also possible to form a notch in the middle of the circular arc section S formed between each intersection P of each rib 51. In other words, as shown in
Hereunder, one example of a method for manufacturing a golf ball having the above structure is explained with reference to drawings. A method for manufacturing a golf ball wherein an intermediate layer is formed from a rubber composition is explained below.
A rubber composition is first subjected to press molding in a mold, for example, at a temperature in the range from 130 to 160° C. for 5 to 25 minutes, forming a core 3. The core 3 may be formed from elastomers as described above, and, in this case, the core can be formed by injection molding instead of press molding. The thus formed core 3 is placed in the first mold 2 shown in
By roughly finishing the surface of the cavity 22, it is possible to make fine irregularities on the surface of the obtained ribs 51, thus increasing the contact area with the second intermediate layer 7.
The core 3 is then placed in the core receiving part 21 in the first mold 2 as shown in
Subsequently, the half-finished product comprising the core 3 and the first intermediate layer 5 is released from the first mold 2 and placed in a second mold 4. As shown in
As shown in
Here, the rubber composition N2 placed on top of the half-finished product and in the cavity 41 of the lower mold 4a is inserted into the concave portion 52 while being pressed toward the surface of the half-finished product. As described above, because the adjacent concave portions 52 communicate with each other via the notch 511, the rubber composition N2 spreads throughout the concave portions 52 and is uniformly distributed. It is also possible to form the second intermediate layer 7 by injection molding, for example, using a mold 6 shown in
Because the notches 511 are formed on the ribs 51 and the adjacent concave portions 52 communicate with each other via the notch 511, the rubber composition N2 can spread throughout the concave portions 52 when pressed from any position on the surface of the half-finished product. This makes it possible to cover the half-finished product with the second intermediate layer 7 by a single press-molding step, significantly reducing manufacturing time. Here, the second intermediate layer 7 is formed from a rubber composition; however, it is also possible to form it from an elastomer. This makes it possible to form the second intermediate layer 7 by injection molding.
When formation of the second intermediate layer 7 is completed, a half-finished product comprising the core 3, the first and the second intermediate layers 5 and 7 are released from the second mold 4. Subsequently, when the surface of the half-finished product is covered with a cover 9 having predetermined dimples by press molding or injection molding, a four-piece golf ball can be obtained.
In the above description, a method for manufacturing a golf ball having an intermediate layer provided with notches is explained; however, a golf ball without notches can be manufactured by a similar manner. However, when notches are not provided, it is necessary to conduct press molding so that the second intermediate layer can be distributed throughout the concave portions, or, when injection molding is conducted, a plurality of gates corresponding to each concave portion must be provided.
An example of a method for manufacturing the multi-piece ball of the present invention is explained above. The method of the present invention makes it possible to manufacture golf balls suitable for different purposes merely by changing the materials. For example, by setting the hardness of the core 3 less than those of the intermediate layers 5 and 7, a golf ball focusing on obtaining a long carry distance can be manufactured, and by setting the hardness of the core 3 greater than those of the intermediate layers 5 and 7, golf balls focusing on high spin performance can be manufactured.
In the above embodiment, a golf ball in which hardness is different between the core and each intermediate layer is explained; however, it is also possible to differentiate the specific gravities in intermediate layers 5 and 7, and the core 3. For example, it is possible to set the specific gravity of the first intermediate layer 5 less than that of the second intermediate layer 9 and that of the core 3 less than that of the first intermediate layer 5, so that the specific gravity of the ball as a whole gradually decreases from the cover 9 side to the inner radial direction. This arrangement increases the moment of inertia of the ball, and therefore spin when hit can be reduced and the spin can be maintained for a long time. As a result, the carry distance of the ball can be enhanced.
In contrast, when the specific gravity of the second intermediate layer 7 is made less than that of the first intermediate layer 5, and that of the core 3 is made greater than those of the first intermediate layer 5, the specific gravity gradually increases from the cover 9 to the inner radial direction. Because this arrangement reduces the moment of inertia of the ball, the amount of spin of the ball when hit is increased, improving the spin performance of the ball.
Therefore, by employing the manufacturing method of the present invention, golf balls having different properties such as a long carry distance and excellent spin performance can be obtained merely by changing the materials for the core using the same mold. As a result, a manufacturing facility including the mold can be simplified and costs be significantly reduced.
In the above manufacturing method, as shown in
In this case, the first mold 2 is provided with a spherical space larger than the core and the cavity for the ribs extends from the spherical space. Instead of holding the core in the core receiving part, the core is held in the spherical space by, for example, holding pins which can be moved forward and backward, and the first intermediate layer is then placed. Thereafter, when the holding pins are removed before the first intermediate layer is completely cured, it is possible to hold the core at the center of the first intermediate layer.
Examples and Comparative Examples of the present invention will be explained below. Here, the four types of four-piece golf balls according to the present invention are compared with two types of golf balls having a rib height that is outside the range of the present invention and two types of known golf balls having a core without ribs. In the conventional four-piece golf balls, a core, a first intermediate layer, a second intermediate layer and a cover are laminated in that order from the inner radial direction toward the outside.
The golf balls of Examples 1–4 and Comparative Examples 1–4 are formed from the components shown in
The size of each ball is as shown in
Using the golf balls obtained in the Examples and Comparative Examples described above, hitting tests were conducted using a hitting robot (manufactured by Miyamae Co., Ltd.) with a number one wood (1W: Mizuno Corporation; Mizuno 300S-II 380, loft angle: 9°, length: 44.75 inches (113.66 mm), shaft hardness: S)) and a number five iron (5I: manufactured by Mizuno Corporation T-ZOID·MX-15, loft angle: 27°, length: 37.5 inches (95.25 mm), shaft hardness: S), and tests of the feeling when hit were conducted by ten amateurs using a 1W.
In the hitting tests when a 1W was used, the head speed was set at 43 m/s and when a 5I was used, the head speed was set at 38 m/s. Balls obtained in Examples 1 to 4, which included ribs, exhibited longer carry distances compared to the balls without ribs. Although the carry distance of the balls obtained in Example 4 was shorter than the other Examples, as indicated in the test result in which a 5I was used, they exhibited shorter run and excellent spin performance. Balls in all Examples exhibited excellent feeling when hit.
Because the ribs are too short in the balls of Comparative Example 1, satisfactorily functionally graded properties cannot be achieved. For example, in the test conducted using a 1W, because the deformation of the ball is great, the ball bounce resilience decreases affected by the core that is softer than the ribs, and the carry distance is less than desired. In the test conducted using a 5I, because of the short ribs, the feeling when hit was hard. Because the balls obtained in Comparative Example 2 have thick second intermediate layers, i.e., the soft region is large, the ball bounce resilience is reduced and the carry distance is less than expected. In the Comparative Examples 3 and 4, because no ribs are provided, there is a loss in striking force and the carry distance is less than expected.
It is clear that the balls obtained in Examples of the present invention achieve a long carry distance and excellent hit feeling, and are superior to those obtained in the Comparative Examples.
Number | Date | Country | Kind |
---|---|---|---|
2003-097285 | Mar 2003 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
698516 | Kempshall | Apr 1902 | A |
4173345 | Pocklington | Nov 1979 | A |
4229401 | Pocklington | Oct 1980 | A |
4660830 | Tomar | Apr 1987 | A |
5692973 | Dalton | Dec 1997 | A |
5820485 | Hwang | Oct 1998 | A |
5836834 | Masutani et al. | Nov 1998 | A |
5984807 | Wai et al. | Nov 1999 | A |
6004226 | Asakura | Dec 1999 | A |
6039910 | Tanaka et al. | Mar 2000 | A |
6126560 | Maruoka et al. | Oct 2000 | A |
6155935 | Maruko | Dec 2000 | A |
6213893 | Maruko et al. | Apr 2001 | B1 |
6217462 | Maruko et al. | Apr 2001 | B1 |
6293877 | Boehm | Sep 2001 | B1 |
6296578 | Masutani | Oct 2001 | B1 |
6398667 | Lemons | Jun 2002 | B1 |
6835146 | Jordan et al. | Dec 2004 | B2 |
6955613 | Ninomiya et al. | Oct 2005 | B2 |
20020016225 | Maruko et al. | Feb 2002 | A1 |
20030083153 | Sullivan et al. | May 2003 | A1 |
20040138006 | Ninomiya et al. | Jul 2004 | A1 |
20040254031 | Ninomiya et al. | Dec 2004 | A1 |
Number | Date | Country |
---|---|---|
40-003456 | Jan 1940 | JP |
49-136364 | Mar 1948 | JP |
60-241463 | Nov 1985 | JP |
62-073932 | Apr 1987 | JP |
62-270178 | Nov 1987 | JP |
03-052310 | Mar 1991 | JP |
10-337340 | Dec 1998 | JP |
2000-084120 | Mar 2000 | JP |
2000-288122 | Oct 2000 | JP |
2001-112889 | Apr 2001 | JP |
2001-112890 | Apr 2001 | JP |
2001-340493 | Dec 2001 | JP |
2004-041743 | Feb 2004 | JP |
WO 2004087265 | Oct 2004 | JP |
Number | Date | Country | |
---|---|---|---|
20040254031 A1 | Dec 2004 | US |