Multi-piece heat shield

Information

  • Patent Grant
  • 10294819
  • Patent Number
    10,294,819
  • Date Filed
    Thursday, December 19, 2013
    11 years ago
  • Date Issued
    Tuesday, May 21, 2019
    5 years ago
Abstract
An assembly for a gas turbine engine includes a first casing, a fairing, and a multi-piece heat shield assembly. The fairing is disposed adjacent the first casing. The multi-piece heat shield assembly includes a first shield mounted to the first casing and extending between the first casing and the fairing, and a second shield mounted to the fairing and extending between the fairing and the first casing.
Description
BACKGROUND

The disclosure relates to gas turbine engines, and more particularly to heat shields used in gas turbine engines.


Gas turbine engines operate according to a continuous-flow, Brayton cycle. A compressor section pressurizes an ambient air stream, fuel is added and the mixture is burned in a central combustor section. The combustion products expand through a turbine section where bladed rotors convert thermal energy from the combustion products into mechanical energy for rotating one or more centrally mounted shafts. The shafts, in turn, drive the forward compressor section, thus continuing the cycle. Gas turbine engines are compact and powerful power plants, making them suitable for powering aircraft, heavy equipment, ships and electrical power generators. In power generating applications, the combustion products can also drive a separate power turbine attached to an electrical generator.


For many stator vane assemblies, a fairing is disposed about a frame in order to define a main gas flow path for the gas turbine engine. As the fairing is directly exposed to gas flow, including combustion gases, the fairing can be heated to high temperatures during operation. Heat from the fairing can heat the frame in an undesirable manner.


SUMMARY

An assembly for a gas turbine engine includes a first casing, a fairing, and a multi-piece heat shield assembly. The fairing is disposed adjacent the first casing. The multi-piece heat shield assembly includes a first shield mounted to the first casing and extending between the first casing and the fairing, and a second shield mounted to the fairing and extending between the fairing and the first casing.


A gas turbine engine includes a frame, an annularly shaped fairing, and a multi-piece heat shield. The frame has an inner casing, an outer casing, and struts that extend between the inner casing and outer casing. The annularly shaped fairing is disposed adjacent the frame between the inner casing and the outer casing. The multi-piece heat shield is connected to the frame and the fairing. The multi-piece heat shield includes a first shield that extends between the inner casing and the fairing, a second shield that is spaced from and extends across a portion of the first shield and extends between the fairing and the inner casing, and a third shield that extends between the outer radial casing and the fairing.


A method includes connecting a first shield to an upstream portion of an inner radial casing, connecting a second shield to a downstream portion of a fairing, and disposing a third shield comprised of a plurality of arcuate segments within an outer radial casing between a plurality of struts that extend between the inner radial casing and outer radial casing.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an industrial turbine cross-section.



FIG. 2 is exploded view of an assembly including a frame and a fairing.



FIG. 3A is a perspective view of a portion of the frame with one embodiment of the multi-piece heat shield assembly disposed therein.



FIG. 3B is a cross sectional view of the frame, the fairing, and the multi-piece heat shield assembly of FIG. 3A.



FIG. 4A illustrates segments of an outer radial shield of the multi-piece heat shield assembly of FIG. 3A being inserted into the frame.



FIG. 4B is a perspective view of one embodiment of a forward heat shield of the multi-piece heat shield assembly of FIG. 3A.



FIG. 4C is a perspective view of one embodiment of an aft heat shield of the multi-piece heat shield assembly of FIG. 3A.



FIG. 5 is a cross sectional view of the frame, the fairing, and another embodiment of a multi-piece heat shield assembly.



FIG. 6 is a cross-sectional view of the frame, the fairing, and yet another embodiment of a multi-piece heat shield assembly.



FIG. 7 is a cross-sectional view of the frame, the fairing, and another embodiment of a multi-piece heat shield assembly.



FIG. 8 is a cross-sectional view of the frame, the fairing, and another embodiment of a multi-piece heat shield assembly.



FIG. 9A is a cross-sectional view of another embodiment of a multi-piece heat shield assembly illustrating forward and aft heat shields that are intermittently circumferentially joined together.



FIG. 9B is a perspective view of the frame, fairing and multi-piece heat shield assembly of FIG. 9A illustrating the forward and aft heat shields intermittently circumferentially joined together.





DETAILED DESCRIPTION

This application discloses a multi-piece heat shield that is easily assembled within a frame. The multiple pieces of the heat shield overlap with one another or are joined together to eliminate line-of-sight from the fairings. The heat shield design blocks or reduces radiation heating from the frame, including the inner casing and outer casing, and therefore, allows less expensive materials (steel) to be used for those components.


An exemplary industrial gas turbine engine 10 is circumferentially disposed about a central, longitudinal axis or axial engine centerline axis 12 as illustrated in FIG. 1. The engine 10 includes, in series order from front to rear, low and high pressure compressor sections 16 and 18, combustor section 20 and high and low pressure turbine sections 22 and 24. In some examples, free turbine section 26 is disposed aft of low pressure turbine 24. Although illustrated with reference to an industrial gas turbine engine, this application also extends to aero engines with a fan or gear driven fan, and engines with more or fewer sections than illustrated.


In gas turbines, incoming ambient air 30 becomes pressurized air 32 in compressors 16 and 18. Fuel mixes with pressurized air 32 in combustor section 20, where it is burned to produce combustion gases 34 that expand as they flow through turbine sections 22, 24 and power turbine 26. Turbine sections 22 and 24 drive high and low pressure rotor shafts 36 and 38 respectively, which rotate in response to the combustion products and thus attached compressor sections 18, 16. Free turbine section 26 may, for example, drive an electrical generator, pump, or gearbox (not shown).


It is understood that FIG. 1 provides a basic understanding and overview of the various sections and the basic operation of an industrial gas turbine engine. The present application is applicable to all types of gas turbine engines, including those with aerospace applications.



FIG. 2 shows an exploded view of assembly 40 with frame 42 and fairing 46. Embodiments of the heat shield are not shown in FIG. 2. Assembly 40 includes frame 42, heat shields, and fairing 46. Frame 42 includes outer radial casing 48, inner radial casing 50, and struts 52. Fairing 46 includes outer radial platform 54, inner radial platform 56, and strut liners 58.


Frame 42 comprises a stator component of gas turbine engine 10 (FIG. 1) and can form portions of compressor sections 16 and 18 or turbine sections 22 and 24. Fairing 46 is disposed within frame 42 and fairing 46 is connected to the frame 42 when assembled. Fairing 46 is disposed within the frame 42 to form the main gas flow path for a portion of gas turbine engine 10.


As illustrated in FIG. 2, outer radial casing 48 of frame 42 is conically shaped and forms a portion of the casing of gas turbine engine 10 (FIG. 1), for example, in low pressure turbine section 24. Inner radial casing 50 is disposed generally radially inward of outer radial casing 48 and is connected thereto by struts 52.


Fairing 46 is adapted to be disposed within frame 42 between outer radial casing 48 and inner radial casing 50. Outer radial platform 54 of fairing 46 has a generally conical shape. Similarly, inner radial platform 56 has a generally conical shape. Inner radial platform 56 is spaced from outer radial platform 54 by strut liners 58. Strut liners 58 are adapted to be disposed around struts 52 of frame 42.



FIG. 3A illustrates a portion of frame 42 and one embodiment of heat shield assembly 44. Fairing 46 (FIGS. 2 and 3B) is not shown in FIG. 3A. FIG. 3B shows assembly 40 with frame 42, fairing 46, and heat shield assembly 44. Assembly 40 of FIG. 3B includes frame 42, heat shield assembly 44, and fairing 46. Frame 42 includes outer radial casing 48, inner radial casing 50, and struts 52. Fairing 46 includes outer radial platform 54, inner radial platform 56, and strut liners 58. Heat shield assembly 44 includes strut shields 60A and 60B, outer radial heat shield 62, aft heat shield 64, forward heat shield 66, and flange 68.


As illustrated in FIGS. 3A and 3B, outer radial casing 48 of frame 42 is conically shaped and abuts and is connected to second outer radial casing 49 of another module of gas turbine engine 10. Inner radial casing 50 is disposed generally radially inward of outer radial casing 48 and is connected thereto by struts 52 (only one is shown in FIGS. 3A and 3B).


Fairing 46 is adapted to be disposed within frame 42 between outer radial casing 48 and inner radial casing 50. Strut liners 58 are adapted to be disposed around struts 52 of frame 42 as well as strut shields 60A and 60B of heat shield 44 when fairing 46 is assembled on frame 42 as illustrated in FIG. 3B. Outer radial platform 54, inner radial platform 56, and strut liners 58, form the main gas flow path, which directs combustion gases 34 through the portion of gas turbine engine illustrated in FIG. 3B.


Heat shield 44 is disposed between frame 42 and fairing 46 in FIG. 3B to block line-of-sight from fairing 46 to frame 42. As used therein, block line-of-sight means that no portion of frame 42 is exposed to faring 46 travelling axially from a forward end of frame 42 to an aft end. Thus, to block line-of-sight a part of heat shield assembly 44 is interposed between frame 42 and fairing 46. In one embodiment, heat shield assembly 44 is comprised of a nickel alloy sheet metal. As illustrated in FIGS. 3A and 3B, heat shield assembly 44 is comprised of separate components and/or subassemblies of heat shields including strut shields 60A and 60B, outer radial shield 62, aft shield 64, forward shield 66, and flange 68.


Strut shields 60A and 60B extend about struts 52 and are disposed between strut liner 58 and struts 52. Each strut shield 60A and 60B extends generally radially and is connected to outer radial shield 62. Outer radial shield 62 is disposed between outer radial casing 48 and outer radial platform 54. Strut shields 60A and 60B can initially be divided (as illustrated in FIG. 3A) for installation around struts 52. After installation, outer radial shield 62 and strut shields 60A and 60B can be connected together by welding, brazing, riveting or other means.


Aft shield 64 has a conical shape when assembled and is spaced from but generally extends along inner radial platform 56. In the embodiment of FIG. 3B, inner radial platform 56 includes connection feature 72 such as an embossment, rib, rivet, bolt or weld that mounts aft shield 64 to inner radial platform 56. Additionally, aft shield 64 extends aft to interface with and connect to rib 70 of inner radial platform 56 in the embodiment of FIG. 3B. Aft shield 64 extends forward to overlap with and is spaced radially from forward shield 66. Forward shield 66 is connected to inner radial casing 50 by flange 68 and bolts. In other embodiments, flange 68 can be connected to inner radial casing 50 by welding, brazing, riveting, or another type of connection. Forward shield 66 is spaced from but extends along a forward portion of inner radial casing 50 and is disposed radially inward of aft shield 64.


Together, forward shield 66 and aft shield 64 block line-of-sight from fairing 46 to inner radial casing 50. This reduces or blocks radiant heat transfer from fairing 46 to inner radial casing 50. Additionally, spacing forward shield 66 from aft shield 64 so that the components overlap axially but do not make contact allows for ease of installation and removal of heat shield assembly 44 from frame 42. For example, during assembly forward shield 66 can be inserted in and connected to inner radial casing 50, and then fairing 46 and aft shield 64 can be insert into frame 42 and connected without having forward shield 66 interfere with the assembly process.


In the embodiment shown in FIGS. 3A and 3B, strut shield 60A and forward shield 66 are connected to one another by welding, riveting, brazing, or other means. Similarly, outer radial shield 62 and strut shields 60A and 60B are connected by welding, riveting, brazing, or other means. In other embodiments, strut shields 60A and 60B can comprise single components, can be axially or otherwise segmented, or can comprise subassemblies of several components. Similarly, in other embodiments, forward shield 66 and aft shield 64 can comprise a single component that is formed by machining, rolling, stamping, curling, punching, and/or another method of fabrication. In other embodiments, forward shield 66 and aft shield 64 can comprise single components, can be axially or otherwise segmented and attached, or can comprise subassemblies of several components.



FIG. 4A shows one embodiment of outer radial shield 62 with separate segments 74 prior to installation in frame 42. In the embodiment of outer radial shield 62 shown in FIG. 4A, segments 74 are individually inserted into frame 42 between struts 52 and between inner radial casing 50 and outer radial casing 48. Segments 74 are adapted with notches 77 therein. Notches 77 are adapted to receive half of each strut 52. Circumferential edges 76A and 78A of segments 74 are adapted to interface and abut circumferential edges 76B and 78B of neighboring segment 74. Edges 76A and 76B can then be welded, brazed, riveted, or otherwise joined together to form full ring of outer radial casing 62. Thus, struts 52 are enclosed by notches 77 in neighboring segments 74.



FIG. 4B shows a perspective view of one embodiment of forward shield 66. Forward shield 66 comprises a full annular ring with notches 79 therein to receive the inner radial portion of struts 52. Flange 68 extends generally radially from forward shield 66 and is adapted to interface with inner radial casing as shown in FIG. 3B.



FIG. 4C shows a perspective view of one embodiment of aft shield 64. Aft shield 64 is comprised of segments 80 that are arranged adjacent one another. Each segment 80 includes notches 81 adapted to receive an aft portion of each strut 52. In the embodiment shown, first edge 82B of segment 80 is spaced from and does not abut second edge 82A of neighboring segment 80. Each segment 80 forms apertures 84 that are adapted to receive bolts or fasteners (not shown) that extend through connection feature 72 (FIG. 3B) in fairing 46.



FIG. 5 shows another embodiment of assembly 140 with frame 42, fairing 46, and heat shield 144. Components of frame 42 and fairing 46 are unchanged in FIG. 3B and FIG. 5. In the embodiment of FIG. 5, outer radial heat shield 62 is the same as the embodiment of FIG. 3B. However, the embodiments of strut shields 160A and 160B, aft shield 164, and forward shield 166 differ in the embodiment of FIG. 5.


Strut shields 160A and 160B extend about struts 52 and are disposed between strut liner 58 and struts 52. Each strut shield 160A and 160B extends generally radially and is connected to outer radial shield 62. Strut shield 160A does not contact forward shield 166. Strut shield 160B is connected to aft shield 164 along an inner radial portion thereof.


Aft shield 164 has a conical shape when assembled and is spaced from but generally extends along inner radial platform 56. In the embodiment of FIG. 5, inner radial platform 56 includes connection feature 172 such as an embossment, rib, rivet, bolt or weld that mounts aft shield 164 to inner radial platform 56. Aft shield 164 is spaced from and does not connect to rib 70 of inner radial platform 56. Aft shield 164 extends forward to overlap and is spaced radially from forward shield 166. Forward shield 166 is connected to inner radial casing 50 by flange 168 and bolts. In other embodiments, flange 168 can be connected to inner radial casing 50 by welding, brazing, riveting, or another type of connection. Forward shield 166 is spaced from but extends along a forward portion of inner radial casing 50 and is disposed radially inward of aft shield 164.


Together, forward shield 166 and aft shield 164 block all line-of-sight from fairing 46 to inner radial casing 50. This reduces or blocks radiant heat transfer from fairing 46 to inner radial casing 50. Additionally, spacing forward shield 166 from aft shield 164 so that the components overlap axially but do not make contact due to radial spacing allows for ease of installation and removal of heat shield assembly 144 from frame 42. For example, during assembly forward shield 166 can be inserted in and connected to inner radial casing 50, and then fairing 46 and aft shield 164 can be insert into frame 42 and connected without having forward shield 166 interfere with the assembly process.



FIG. 6 shows another embodiment of assembly 240 with frame 42, fairing 46, and heat shield 244. Components of frame 42 and fairing 46 are unchanged in FIG. 3B and FIG. 6. In the embodiment of FIG. 6, outer radial heat shield 62, forward heat shield 66, and flange 68 are the same as the embodiment of FIG. 3B. However, the embodiments of strut shields 260A and 260B, and aft shield 264 differ in the embodiment of FIG. 6.


Strut shields 260A and 260B extend about struts 52 and are disposed between strut liner 58 and struts 52. Each strut shield 260A and 260B extends generally radially and is connected to outer radial shield 62. Strut shield 260A is spaced from and does not contact forward shield 66. Strut shield 260B is spaced from and does not contact aft shield 264.


Aft shield 264 has a conical shape when assembled and is spaced from but generally extends along inner radial platform 56. In the embodiment of FIG. 6, inner radial platform 56 does not include connection feature (FIG. 3B and FIG. 5). Aft shield 264 is connected to rib 70 of inner radial platform 56 by brazing, welding, riveting or other joining techniques. Aft shield 264 extends forward to overlap and is spaced radially from forward shield 66. Forward shield 66 is connected to inner radial casing 50 by flange 68 and bolts. In other embodiments, flange 68 can be connected to inner radial casing 50 by welding, brazing, riveting, or another type of connection. Forward shield 66 is spaced from but extends along a forward portion of inner radial casing 50.


Together, forward shield 66 and aft shield 264 block all line-of-sight from fairing 46 to inner radial casing 50. This reduces or blocks radiant heat transfer from fairing 46 to inner radial casing 50. Additionally, spacing forward shield 66 from aft shield 264 so that the components overlap axially but do not make contact due to radial spacing allows for ease of installation and removal of heat shield assembly 244 from frame 42. For example, during assembly forward shield 66 can be inserted in and connected to inner radial casing 50, and then fairing 46 and aft shield 264 can be insert into frame 42 and connected without having forward shield 66 interfere with the assembly process.



FIG. 7 shows another embodiment of assembly 340 with frame 42, fairing 46, and heat shield 344. Components of frame 42 and fairing 46 are unchanged in FIG. 3B and FIG. 7. In the embodiment of FIG. 7, outer radial heat shield 62 is the same as the embodiment of FIG. 3B. However, the embodiments of strut shields 360A and 360B, aft shield 364, and forward shield 366 differ in the embodiment of FIG. 7.


Strut shields 360A and 360B extend about struts 52 and are disposed between strut liner 58 and struts 52. Each strut shield 360A and 360B extends generally radially and is connected to outer radial shield 62. Strut shield 360A does not contact forward shield 366. Strut shield 360B is connected to aft shield 364 along an inner radial portion thereof.


Aft shield 364 has a conical shape when assembled and is spaced from but generally extends along inner radial platform 56. Aft shield 364 is supported by member 376. Member 376 extends generally radially from and is connected to forward shield 366. Member 376 extends to abut and connect with a middle portion of aft shield 364. Aft shield 364 additionally extends to connect with forward shield 366 along a forward end thereof. In the embodiment of FIG. 7, aft shield 364 is spaced from and does not connect to rib 70 nor any other portion of inner radial platform 56.


Forward shield 366 is connected to inner radial casing 50 by flange 368 and bolts. In other embodiments, flange 368 can be connected to inner radial casing 50 by welding, brazing, riveting, or another type of connection. Forward shield 366 is spaced from but extends along a forward portion of inner radial casing 50.


Together, forward shield 366 and aft shield 364 block all line-of-sight from fairing 46 to inner radial casing 50. This reduces or blocks radiant heat transfer from fairing 46 to inner radial casing 50. Additionally, the arrangement of forward shield 366 and aft shield 364 disclosed allows for easy installation and removal of heat shield assembly 344 from frame 42. For example, during assembly forward shield 366 can be inserted in and connected to inner radial casing 50, and then fairing 46 and aft shield 364 can be inserted into frame 42 and connected. Once inserted, aft shield 364 can be welded or otherwise attached to forward shield 366 at a forward end. Member 376 can then be inserted and welded or otherwise attached to both aft shield 364 and forward shield 366.



FIG. 8 shows another embodiment of assembly 440 with frame 42, fairing 46, and heat shield 444. Components of frame 42 and fairing 46 are unchanged in FIG. 3B and FIG. 8. In the embodiment of FIG. 8, outer radial heat shield 62 is the same as the embodiment of FIG. 3B. However, the embodiments of strut shields 160A and 160B, shield 464F and 464A differ in the embodiment of FIG. 8. Forward shield 66 of the embodiment of FIG. 3B has been eliminated in the embodiment of FIG. 8.


Strut shields 460A and 460B extend about struts 52 and are disposed between strut liner 58 and struts 52. Each strut shield 460A and 460B extends generally radially and is connected to outer radial shield 62. Both strut shields 460A and 460B are connected to and extend past shield 464F and 464A, respectively. This is accomplished by slots in shield 464F and 464A that receive tabs in strut shield 460A and 460B in one embodiment.


Shields 464A and 464F have a conical shape when assembled and are spaced from but generally extend along inner radial platform 56. In the embodiment of FIG. 8, inner radial platform 56 includes aft connection feature 472 such as an embossment, rib, rivet, bolt or weld that mounts shield 464A to inner radial platform 56. Similarly, inner radial platform 56 includes forward connection feature 472F such as an embossment, rib, rivet, bolt or weld that mounts shield 464F to inner radial platform 56. Shield 464A is spaced from and does not connect to rib 70 of inner radial platform 56. As will be discussed subsequently, shield 464A and shield 464F are intermittently connected around their circumference. As discussed previously, as shields 464A and 464F are extended along substantially the entire length between fairing 46 and inner radial casing 50, forward shield 66 (FIG. 3B) is eliminated from assembly 440. Together, shield 464F and shield 464A block all line-of-sight from fairing 46 to inner radial casing 50. This reduces or blocks radiant heat transfer from fairing 46 to inner radial casing 50.



FIG. 9A shows a perspective view of a section of another embodiment of heat shield 544 and inner radial platform 56. Frame 42 has been removed in FIG. 9A (but is shown in FIG. 9B) to illustrate the welding and gap between shield 564F and shield 564A. Similar to the embodiment of heat shield shown in FIG. 8, the embodiment shown in FIG. 9A includes shield 564F arranged forward of shield 564A. As shown in FIG. 9A, shield 564F is intermittently circumferentially connected by welds 580 to shield 564A. Similarly, shield 564F is intermittently spaced from shield 564A by gap 582. Shield 564F and shield 564A extend adjacent inner platform 56 from a forward section to an aft section. Shield 564F is connected to flange 568, which supports shield 564F from inner radial casing 50 (FIGS. 2-8). Shield 564A is supported from fairing 46 by connection features (not shown, FIGS. 3B, 5, and 8). In other embodiments, shield 564F and 564A may utilize other methods of joining rather than welding, for example, riveting or brazing. In yet other embodiments, shield 564F and 564A may comprise a single piece, be continuously circumferentially connected, or be entirely separated by gap 582 for the entire circumference of heat shield 544.



FIG. 9B illustrates a portion of frame 42 and fairing 46 with a segment of inner radial platform 56 removed to illustrate shield 564F and 564A, intermittent welds 580, and gaps 582. As shown in FIG. 9B, the portion of frame 42 illustrated includes forward (upstream with respect to the direction of gas flow) portions of outer radial casing 48 and inner radial casing 50. Outer radial platform 54 is spaced adjacent outer radial casing 48. Inner radial platform 56 has a segment removed to illustrate shield 564F and 564A, intermittent welds 580, and gaps 582. In particular, shield 564F arranged forward of shield 564A. Shield 564F is intermittently circumferentially connected by welds 580 to shield 564A. Shield 564F is intermittently spaced from shield 564A by gap 582. Shield 564F includes notches 584 that extend around a forward portion of strut 52 (strut liner 58 is removed in FIG. 9B) and shield 564A includes notches 586 that extend around an aft portion of strut 52.


This application discloses a multi-piece heat shield that is easily assembled within the frame. The multiple pieces of the heat shield overlap with one another or are joined together to eliminate line-of-sight from the fairings. The heat shield design blocks or reduces radiation heating from the frame, including the inner casing and outer casing, and therefore, allows less expensive materials (steel) to be used for those components.


Discussion of Possible Embodiments

The following are non-exclusive descriptions of possible embodiments of the present invention.


An assembly for a gas turbine engine includes a first casing, a fairing, and a multi-piece heat shield assembly. The fairing is disposed adjacent the first casing. The multi-piece heat shield assembly includes a first shield mounted to the first casing and extending between the first casing and the fairing, and a second shield mounted to the fairing and extending between the fairing and the first casing.


The assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:


struts extending from the first casing and supporting a second casing;


the first shield and the second shield include apertures adapted to receive the struts;


a third shield extending between the second casing and the fairing, the third shield includes apertures adapted to receive the struts;


the third shield is comprised of a plurality of connected arcuate segments.


a fourth shield disposed about the struts and extending between the struts and the fairing;


the first shield includes a flange adapted to interface with the casing;


the first shield includes a cylindrical portion that is disposed within the casing;


the second shield is attached to a rib of the fairing;


the second shield is attached to an inner radial platform of the fairing;


second shield is spaced from and extends across the first shield such that a portion of the second shield is disposed between the fairing and a portion of the first shield;


the first shield is connected to the second shield; and


the first shield is intermittently circumferentially connected to the second shield.


A gas turbine engine includes a frame, an annularly shaped fairing, and a multi-piece heat shield. The frame has an inner casing, an outer casing, and struts that extend between the inner casing and outer casing. The annularly shaped fairing is disposed adjacent the frame between the inner casing and the outer casing. The multi-piece heat shield is connected to the frame and the fairing. The multi-piece heat shield includes a first shield that extends between the inner casing and the fairing, a second shield that is spaced from and extends across a portion of the first shield and extends between the fairing and the inner casing, and a third shield that extends between the outer radial casing and the fairing.


The gas turbine engine of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:


the first shield, the second shield, and the third shield include apertures adapted to receive the struts; and


a fourth shield disposed about the struts and extending between the struts and the fairing.


A method includes disposing the plurality of heat shield segments adjacent a casing and between a plurality of struts that extend from the casing, connecting the segments to the casing, and attaching the segments together to form a heat shield having a first portion positioned adjacent the casing and a second portion extending away from the casing.


The method of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:


attaching the segments of the third shield together to form a generally conically shaped heat shield;


joining the first shield to the second shield; and


disposing the second shield such that a portion of the second shield is spaced from and extends across a portion of the first shield.


While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims
  • 1. An assembly for a gas turbine engine, comprising: a first casing;a second casing;a plurality of struts extending from the first casing and supporting the second casing;a fairing disposed adjacent the first casing; anda multi-piece heat shield assembly comprising: a first shield mounted to the first casing and extending between the first casing and the fairing; anda second shield mounted to the fairing and extending between the fairing and the first casing, wherein the first shield and the second shield include apertures, each aperture adapted to receive one of the plurality of struts.
  • 2. The assembly of claim 1, further comprising: a third shield extending between the second casing and the fairing, wherein the third shield includes apertures adapted to receive the struts.
  • 3. The assembly of claim 2, wherein the third shield is comprised of a plurality of connected arcuate segments, wherein the plurality of connected arcuate segments are circumferentially spaced.
  • 4. The assembly of claim 1, further comprising a fourth shield disposed about the struts and extending between the struts and the fairing.
  • 5. The assembly of claim 1, wherein the first shield includes a flange adapted to interface with the first casing.
  • 6. The assembly of claim 5, wherein the first shield includes a cylindrical portion that is disposed within the first casing.
  • 7. The assembly of claim 1, wherein the second shield is attached to a rib of the fairing.
  • 8. The assembly of claim 1, wherein the second shield is attached to an inner radial platform of the fairing.
  • 9. The assembly of claim 1, wherein the second shield is spaced from and extends across the first shield such that a portion of the second shield is disposed between the fairing and a portion of the first shield.
  • 10. The assembly of claim 1, wherein the first shield is connected to the second shield.
  • 11. The assembly of claim 1, wherein the first shield is intermittently connected to the second shield along a circumferentially-extending gap formed by and between the first and second shields.
  • 12. A gas turbine engine comprising: a frame having an inner casing, an outer casing, and struts extending between the inner casing and outer casing;an annularly shaped fairing disposed adjacent the frame between the inner casing and the outer casing; anda multi-piece heat shield connected to the frame and the fairing, the multi-piece heat shield comprising: a first shield extending between the inner casing and the fairing;a second shield spaced from and extending across a portion of the first shield and extending between the fairing and the inner casing; anda third shield extending between the outer radial casing and the fairing, wherein the first shield, the second shield, and the third shield include apertures, each aperture adapted to receive one of the struts.
  • 13. The engine of claim 12, further comprising a fourth shield disposed about the struts and extending between the struts and the fairing.
  • 14. A method comprising: connecting a first shield to an upstream portion of an inner radial casing;connecting a second shield to a downstream portion of a fairing; anddisposing a third shield comprised of a plurality of arcuate segments spaced circumferentially within an outer radial casing between a plurality of struts that extend between the inner radial casing and the outer radial casing, wherein circumferentially adjacent segments have abutting circumferential edges, and wherein the circumferentially adjacent segments have notches adapted to receive one of the plurality of struts disposed between the circumferentially adjacent segments.
  • 15. The method of claim 14, further comprising: attaching the plurality of arcuate segments of the third shield together to form a generally conically shaped heat shield.
  • 16. The method of claim 15, further comprising: disposing the second shield such that a portion of the second shield is spaced from and extends across a portion of the first shield.
  • 17. The method of claim 14, further comprising intermittently joining the first shield to the second shield along a circumferentially-extending gap formed by and between the first and second shields.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/076392 12/19/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/105603 7/3/2014 WO A
US Referenced Citations (162)
Number Name Date Kind
2214108 Nichols Jul 1938 A
2869941 Shoup, Jr. et al. Jan 1959 A
2928648 Haines et al. Mar 1960 A
3576328 Vose Apr 1971 A
3802046 Wachtell et al. Apr 1974 A
3970319 Carroll et al. Jul 1976 A
4009569 Kozlin Mar 1977 A
4044555 McLoughlin et al. Apr 1977 A
4088422 Martin May 1978 A
4114248 Smith et al. Sep 1978 A
4305697 Cohen et al. Dec 1981 A
4321007 Dennison et al. Mar 1982 A
4369016 Dennison Jan 1983 A
4478551 Honeycutt, Jr. et al. Oct 1984 A
4645217 Honeycutt, Jr. et al. Feb 1987 A
4678113 Bridges et al. Jul 1987 A
4738453 Ide Apr 1988 A
4756536 Belcher Jul 1988 A
4793770 Schonewald et al. Dec 1988 A
4920742 Nash May 1990 A
4987736 Ciokajlo Jan 1991 A
4989406 Vdoviak et al. Feb 1991 A
4993918 Myers et al. Feb 1991 A
5031922 Heydrich Jul 1991 A
5042823 Mackay et al. Aug 1991 A
5071138 Mackay et al. Dec 1991 A
5076049 VonBenken et al. Dec 1991 A
5100158 Gardner Mar 1992 A
5108116 Johnson et al. Apr 1992 A
5169159 Pope et al. Dec 1992 A
5174584 Lahrman Dec 1992 A
5188507 Sweeney Feb 1993 A
5211536 Ackerman et al. May 1993 A
5211541 Fledderjohn et al. May 1993 A
5236302 Weisgerber et al. Aug 1993 A
5246295 Ide Sep 1993 A
5265807 Steckbeck et al. Nov 1993 A
5269057 Mendham Dec 1993 A
5271714 Shepherd et al. Dec 1993 A
5272869 Dawson et al. Dec 1993 A
5273397 Czachor et al. Dec 1993 A
5292227 Czachor et al. Mar 1994 A
5312227 Grateau et al. May 1994 A
5338154 Meade et al. Aug 1994 A
5357744 Czachor et al. Oct 1994 A
5370402 Gardner et al. Dec 1994 A
5385409 Ide Jan 1995 A
5401036 Basu Mar 1995 A
5438756 Halchak et al. Aug 1995 A
5474305 Flower Dec 1995 A
5483792 Czachor et al. Jan 1996 A
5558341 McNickle et al. Sep 1996 A
5597286 Dawson et al. Jan 1997 A
5605438 Burdgick et al. Feb 1997 A
5609467 Lenhart et al. Mar 1997 A
5632493 Gardner May 1997 A
5634767 Dawson Jun 1997 A
5691279 Tauber et al. Nov 1997 A
5755445 Arora May 1998 A
5851105 Frio et al. Dec 1998 A
5911400 Niethammer et al. Jun 1999 A
6163959 Arraitz Dec 2000 A
6196550 Arora et al. Mar 2001 B1
6227800 Spring et al. May 2001 B1
6337751 Kimizuka Jan 2002 B1
6343912 Mangeiga et al. Feb 2002 B1
6358001 Bosel et al. Mar 2002 B1
6364316 Arora Apr 2002 B1
6439841 Bosel Aug 2002 B1
6463739 Mueller et al. Oct 2002 B1
6511284 Darnell et al. Jan 2003 B2
6578363 Hashimoto et al. Jun 2003 B2
6601853 Inoue Aug 2003 B2
6612807 Czachor Sep 2003 B2
6619030 Seda et al. Sep 2003 B1
6638013 Nguyen et al. Oct 2003 B2
6652229 Lu Nov 2003 B2
6672833 MacLean et al. Jan 2004 B2
6719524 Nguyen et al. Apr 2004 B2
6736401 Chung et al. May 2004 B2
6792758 Dowman Sep 2004 B2
6796765 Kosel et al. Sep 2004 B2
6805356 Inoue Oct 2004 B2
6811154 Proctor et al. Nov 2004 B2
6935631 Inoue Aug 2005 B2
6969826 Trewiler et al. Nov 2005 B2
6983608 Allen, Jr. et al. Jan 2006 B2
7055305 Baxter et al. Jun 2006 B2
7094026 Coign et al. Aug 2006 B2
7100358 Gekht et al. Sep 2006 B2
7200933 Lundgren et al. Apr 2007 B2
7229249 Durocher et al. Jun 2007 B2
7238008 Bobo et al. Jul 2007 B2
7367567 Farah et al. May 2008 B2
7371044 Nereim May 2008 B2
7389583 Lundgren Jun 2008 B2
7614150 Lundgren Nov 2009 B2
7631879 Diantonio Dec 2009 B2
7673461 Cameriano et al. Mar 2010 B2
7677047 Somanath et al. Mar 2010 B2
7735833 Braun et al. Jun 2010 B2
7798768 Strain et al. Sep 2010 B2
7815417 Somanath et al. Oct 2010 B2
7824152 Morrison Nov 2010 B2
7891165 Bader et al. Feb 2011 B2
7909573 Cameriano et al. Mar 2011 B2
7955446 Dierberger Jun 2011 B2
7959409 Guo et al. Jun 2011 B2
7988799 Dierberger Aug 2011 B2
8069648 Snyder et al. Dec 2011 B2
8083465 Herbst et al. Dec 2011 B2
8091371 Durocher et al. Jan 2012 B2
8092161 Cai et al. Jan 2012 B2
8152451 Manteiga et al. Apr 2012 B2
8162593 Guimbard et al. Apr 2012 B2
8172526 Lescure et al. May 2012 B2
8177488 Manteiga et al. May 2012 B2
8221071 Wojno et al. Jul 2012 B2
8245399 Anantharaman et al. Aug 2012 B2
8245518 Durocher et al. Aug 2012 B2
8282342 Tonks et al. Oct 2012 B2
8371127 Durocher et al. Feb 2013 B2
8371812 Manteiga et al. Feb 2013 B2
20020182058 Darnell et al. Dec 2002 A1
20030025274 Allan et al. Feb 2003 A1
20030042682 Inoue Mar 2003 A1
20030062684 Inoue Apr 2003 A1
20030062685 Inoue Apr 2003 A1
20050046113 Inoue Mar 2005 A1
20050050898 Noda Mar 2005 A1
20060010852 Gekht et al. Jan 2006 A1
20060123796 Aycock et al. Jun 2006 A1
20070025847 Wakazono et al. Feb 2007 A1
20080216300 Anderson et al. Sep 2008 A1
20100054927 Almstedt et al. Mar 2010 A1
20100132371 Durocher et al. Jun 2010 A1
20100132374 Manteiga et al. Jun 2010 A1
20100132377 Durocher et al. Jun 2010 A1
20100202872 Weidmann Aug 2010 A1
20100236244 Longardner Sep 2010 A1
20100275572 Durocher et al. Nov 2010 A1
20100275614 Fontaine et al. Nov 2010 A1
20100307165 Wong et al. Dec 2010 A1
20110000223 Russberg Jan 2011 A1
20110005234 Hashimoto et al. Jan 2011 A1
20110020116 Hashimoto Jan 2011 A1
20110061767 Vontell et al. Mar 2011 A1
20110081237 Durocher et al. Apr 2011 A1
20110081239 Durocher Apr 2011 A1
20110081240 Durocher et al. Apr 2011 A1
20110085895 Durocher et al. Apr 2011 A1
20110214433 Feindel et al. Sep 2011 A1
20110262277 Sjoqvist et al. Oct 2011 A1
20110302929 Bruhwiler Dec 2011 A1
20120111023 Sjoqvist et al. May 2012 A1
20120156020 Kottilingam et al. Jun 2012 A1
20120186254 Ito et al. Jul 2012 A1
20120204569 Schubert Aug 2012 A1
20120227371 Johnson et al. Sep 2012 A1
20130011242 Beeck et al. Jan 2013 A1
20130223982 Durocher et al. Aug 2013 A1
20140007588 Sanchez Jan 2014 A1
Foreign Referenced Citations (9)
Number Date Country
705513 Mar 2013 CH
2187019 May 2010 EP
WO 03020469 Mar 2003 WO
WO 2006007686 Jan 2006 WO
WO 2009157817 Dec 2009 WO
WO 2010002295 Jan 2010 WO
WO 2010002296 Jan 2010 WO
WO 2011129724 Oct 2011 WO
WO 2012158070 Nov 2012 WO
Non-Patent Literature Citations (1)
Entry
International Searching Authority, PCT Notification of the Transmittal of the International Search Report and the Written Opinion, dated Apr. 10, 2014, 15 pages.
Related Publications (1)
Number Date Country
20150345330 A1 Dec 2015 US
Provisional Applications (1)
Number Date Country
61747239 Dec 2012 US