The disclosure relates to gas turbine engines, and more particularly to heat shields used in gas turbine engines.
Gas turbine engines operate according to a continuous-flow, Brayton cycle. A compressor section pressurizes an ambient air stream, fuel is added and the mixture is burned in a central combustor section. The combustion products expand through a turbine section where bladed rotors convert thermal energy from the combustion products into mechanical energy for rotating one or more centrally mounted shafts. The shafts, in turn, drive the forward compressor section, thus continuing the cycle. Gas turbine engines are compact and powerful power plants, making them suitable for powering aircraft, heavy equipment, ships and electrical power generators. In power generating applications, the combustion products can also drive a separate power turbine attached to an electrical generator.
For many stator vane assemblies, a fairing is disposed about a frame in order to define a main gas flow path for the gas turbine engine. As the fairing is directly exposed to gas flow, including combustion gases, the fairing can be heated to high temperatures during operation. Heat from the fairing can heat the frame in an undesirable manner.
An assembly for a gas turbine engine includes a first casing, a fairing, and a multi-piece heat shield assembly. The fairing is disposed adjacent the first casing. The multi-piece heat shield assembly includes a first shield mounted to the first casing and extending between the first casing and the fairing, and a second shield mounted to the fairing and extending between the fairing and the first casing.
A gas turbine engine includes a frame, an annularly shaped fairing, and a multi-piece heat shield. The frame has an inner casing, an outer casing, and struts that extend between the inner casing and outer casing. The annularly shaped fairing is disposed adjacent the frame between the inner casing and the outer casing. The multi-piece heat shield is connected to the frame and the fairing. The multi-piece heat shield includes a first shield that extends between the inner casing and the fairing, a second shield that is spaced from and extends across a portion of the first shield and extends between the fairing and the inner casing, and a third shield that extends between the outer radial casing and the fairing.
A method includes connecting a first shield to an upstream portion of an inner radial casing, connecting a second shield to a downstream portion of a fairing, and disposing a third shield comprised of a plurality of arcuate segments within an outer radial casing between a plurality of struts that extend between the inner radial casing and outer radial casing.
This application discloses a multi-piece heat shield that is easily assembled within a frame. The multiple pieces of the heat shield overlap with one another or are joined together to eliminate line-of-sight from the fairings. The heat shield design blocks or reduces radiation heating from the frame, including the inner casing and outer casing, and therefore, allows less expensive materials (steel) to be used for those components.
An exemplary industrial gas turbine engine 10 is circumferentially disposed about a central, longitudinal axis or axial engine centerline axis 12 as illustrated in
In gas turbines, incoming ambient air 30 becomes pressurized air 32 in compressors 16 and 18. Fuel mixes with pressurized air 32 in combustor section 20, where it is burned to produce combustion gases 34 that expand as they flow through turbine sections 22, 24 and power turbine 26. Turbine sections 22 and 24 drive high and low pressure rotor shafts 36 and 38 respectively, which rotate in response to the combustion products and thus attached compressor sections 18, 16. Free turbine section 26 may, for example, drive an electrical generator, pump, or gearbox (not shown).
It is understood that
Frame 42 comprises a stator component of gas turbine engine 10 (
As illustrated in
Fairing 46 is adapted to be disposed within frame 42 between outer radial casing 48 and inner radial casing 50. Outer radial platform 54 of fairing 46 has a generally conical shape. Similarly, inner radial platform 56 has a generally conical shape. Inner radial platform 56 is spaced from outer radial platform 54 by strut liners 58. Strut liners 58 are adapted to be disposed around struts 52 of frame 42.
As illustrated in
Fairing 46 is adapted to be disposed within frame 42 between outer radial casing 48 and inner radial casing 50. Strut liners 58 are adapted to be disposed around struts 52 of frame 42 as well as strut shields 60A and 60B of heat shield 44 when fairing 46 is assembled on frame 42 as illustrated in
Heat shield 44 is disposed between frame 42 and fairing 46 in
Strut shields 60A and 60B extend about struts 52 and are disposed between strut liner 58 and struts 52. Each strut shield 60A and 60B extends generally radially and is connected to outer radial shield 62. Outer radial shield 62 is disposed between outer radial casing 48 and outer radial platform 54. Strut shields 60A and 60B can initially be divided (as illustrated in
Aft shield 64 has a conical shape when assembled and is spaced from but generally extends along inner radial platform 56. In the embodiment of
Together, forward shield 66 and aft shield 64 block line-of-sight from fairing 46 to inner radial casing 50. This reduces or blocks radiant heat transfer from fairing 46 to inner radial casing 50. Additionally, spacing forward shield 66 from aft shield 64 so that the components overlap axially but do not make contact allows for ease of installation and removal of heat shield assembly 44 from frame 42. For example, during assembly forward shield 66 can be inserted in and connected to inner radial casing 50, and then fairing 46 and aft shield 64 can be insert into frame 42 and connected without having forward shield 66 interfere with the assembly process.
In the embodiment shown in
Strut shields 160A and 160B extend about struts 52 and are disposed between strut liner 58 and struts 52. Each strut shield 160A and 160B extends generally radially and is connected to outer radial shield 62. Strut shield 160A does not contact forward shield 166. Strut shield 160B is connected to aft shield 164 along an inner radial portion thereof.
Aft shield 164 has a conical shape when assembled and is spaced from but generally extends along inner radial platform 56. In the embodiment of
Together, forward shield 166 and aft shield 164 block all line-of-sight from fairing 46 to inner radial casing 50. This reduces or blocks radiant heat transfer from fairing 46 to inner radial casing 50. Additionally, spacing forward shield 166 from aft shield 164 so that the components overlap axially but do not make contact due to radial spacing allows for ease of installation and removal of heat shield assembly 144 from frame 42. For example, during assembly forward shield 166 can be inserted in and connected to inner radial casing 50, and then fairing 46 and aft shield 164 can be insert into frame 42 and connected without having forward shield 166 interfere with the assembly process.
Strut shields 260A and 260B extend about struts 52 and are disposed between strut liner 58 and struts 52. Each strut shield 260A and 260B extends generally radially and is connected to outer radial shield 62. Strut shield 260A is spaced from and does not contact forward shield 66. Strut shield 260B is spaced from and does not contact aft shield 264.
Aft shield 264 has a conical shape when assembled and is spaced from but generally extends along inner radial platform 56. In the embodiment of
Together, forward shield 66 and aft shield 264 block all line-of-sight from fairing 46 to inner radial casing 50. This reduces or blocks radiant heat transfer from fairing 46 to inner radial casing 50. Additionally, spacing forward shield 66 from aft shield 264 so that the components overlap axially but do not make contact due to radial spacing allows for ease of installation and removal of heat shield assembly 244 from frame 42. For example, during assembly forward shield 66 can be inserted in and connected to inner radial casing 50, and then fairing 46 and aft shield 264 can be insert into frame 42 and connected without having forward shield 66 interfere with the assembly process.
Strut shields 360A and 360B extend about struts 52 and are disposed between strut liner 58 and struts 52. Each strut shield 360A and 360B extends generally radially and is connected to outer radial shield 62. Strut shield 360A does not contact forward shield 366. Strut shield 360B is connected to aft shield 364 along an inner radial portion thereof.
Aft shield 364 has a conical shape when assembled and is spaced from but generally extends along inner radial platform 56. Aft shield 364 is supported by member 376. Member 376 extends generally radially from and is connected to forward shield 366. Member 376 extends to abut and connect with a middle portion of aft shield 364. Aft shield 364 additionally extends to connect with forward shield 366 along a forward end thereof. In the embodiment of
Forward shield 366 is connected to inner radial casing 50 by flange 368 and bolts. In other embodiments, flange 368 can be connected to inner radial casing 50 by welding, brazing, riveting, or another type of connection. Forward shield 366 is spaced from but extends along a forward portion of inner radial casing 50.
Together, forward shield 366 and aft shield 364 block all line-of-sight from fairing 46 to inner radial casing 50. This reduces or blocks radiant heat transfer from fairing 46 to inner radial casing 50. Additionally, the arrangement of forward shield 366 and aft shield 364 disclosed allows for easy installation and removal of heat shield assembly 344 from frame 42. For example, during assembly forward shield 366 can be inserted in and connected to inner radial casing 50, and then fairing 46 and aft shield 364 can be inserted into frame 42 and connected. Once inserted, aft shield 364 can be welded or otherwise attached to forward shield 366 at a forward end. Member 376 can then be inserted and welded or otherwise attached to both aft shield 364 and forward shield 366.
Strut shields 460A and 460B extend about struts 52 and are disposed between strut liner 58 and struts 52. Each strut shield 460A and 460B extends generally radially and is connected to outer radial shield 62. Both strut shields 460A and 460B are connected to and extend past shield 464F and 464A, respectively. This is accomplished by slots in shield 464F and 464A that receive tabs in strut shield 460A and 460B in one embodiment.
Shields 464A and 464F have a conical shape when assembled and are spaced from but generally extend along inner radial platform 56. In the embodiment of
This application discloses a multi-piece heat shield that is easily assembled within the frame. The multiple pieces of the heat shield overlap with one another or are joined together to eliminate line-of-sight from the fairings. The heat shield design blocks or reduces radiation heating from the frame, including the inner casing and outer casing, and therefore, allows less expensive materials (steel) to be used for those components.
The following are non-exclusive descriptions of possible embodiments of the present invention.
An assembly for a gas turbine engine includes a first casing, a fairing, and a multi-piece heat shield assembly. The fairing is disposed adjacent the first casing. The multi-piece heat shield assembly includes a first shield mounted to the first casing and extending between the first casing and the fairing, and a second shield mounted to the fairing and extending between the fairing and the first casing.
The assembly of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
struts extending from the first casing and supporting a second casing;
the first shield and the second shield include apertures adapted to receive the struts;
a third shield extending between the second casing and the fairing, the third shield includes apertures adapted to receive the struts;
the third shield is comprised of a plurality of connected arcuate segments.
a fourth shield disposed about the struts and extending between the struts and the fairing;
the first shield includes a flange adapted to interface with the casing;
the first shield includes a cylindrical portion that is disposed within the casing;
the second shield is attached to a rib of the fairing;
the second shield is attached to an inner radial platform of the fairing;
second shield is spaced from and extends across the first shield such that a portion of the second shield is disposed between the fairing and a portion of the first shield;
the first shield is connected to the second shield; and
the first shield is intermittently circumferentially connected to the second shield.
A gas turbine engine includes a frame, an annularly shaped fairing, and a multi-piece heat shield. The frame has an inner casing, an outer casing, and struts that extend between the inner casing and outer casing. The annularly shaped fairing is disposed adjacent the frame between the inner casing and the outer casing. The multi-piece heat shield is connected to the frame and the fairing. The multi-piece heat shield includes a first shield that extends between the inner casing and the fairing, a second shield that is spaced from and extends across a portion of the first shield and extends between the fairing and the inner casing, and a third shield that extends between the outer radial casing and the fairing.
The gas turbine engine of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
the first shield, the second shield, and the third shield include apertures adapted to receive the struts; and
a fourth shield disposed about the struts and extending between the struts and the fairing.
A method includes disposing the plurality of heat shield segments adjacent a casing and between a plurality of struts that extend from the casing, connecting the segments to the casing, and attaching the segments together to form a heat shield having a first portion positioned adjacent the casing and a second portion extending away from the casing.
The method of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components:
attaching the segments of the third shield together to form a generally conically shaped heat shield;
joining the first shield to the second shield; and
disposing the second shield such that a portion of the second shield is spaced from and extends across a portion of the first shield.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/076392 | 12/19/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/105603 | 7/3/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2214108 | Nichols | Jul 1938 | A |
2869941 | Shoup, Jr. et al. | Jan 1959 | A |
2928648 | Haines et al. | Mar 1960 | A |
3576328 | Vose | Apr 1971 | A |
3802046 | Wachtell et al. | Apr 1974 | A |
3970319 | Carroll et al. | Jul 1976 | A |
4009569 | Kozlin | Mar 1977 | A |
4044555 | McLoughlin et al. | Apr 1977 | A |
4088422 | Martin | May 1978 | A |
4114248 | Smith et al. | Sep 1978 | A |
4305697 | Cohen et al. | Dec 1981 | A |
4321007 | Dennison et al. | Mar 1982 | A |
4369016 | Dennison | Jan 1983 | A |
4478551 | Honeycutt, Jr. et al. | Oct 1984 | A |
4645217 | Honeycutt, Jr. et al. | Feb 1987 | A |
4678113 | Bridges et al. | Jul 1987 | A |
4738453 | Ide | Apr 1988 | A |
4756536 | Belcher | Jul 1988 | A |
4793770 | Schonewald et al. | Dec 1988 | A |
4920742 | Nash | May 1990 | A |
4987736 | Ciokajlo | Jan 1991 | A |
4989406 | Vdoviak et al. | Feb 1991 | A |
4993918 | Myers et al. | Feb 1991 | A |
5031922 | Heydrich | Jul 1991 | A |
5042823 | Mackay et al. | Aug 1991 | A |
5071138 | Mackay et al. | Dec 1991 | A |
5076049 | VonBenken et al. | Dec 1991 | A |
5100158 | Gardner | Mar 1992 | A |
5108116 | Johnson et al. | Apr 1992 | A |
5169159 | Pope et al. | Dec 1992 | A |
5174584 | Lahrman | Dec 1992 | A |
5188507 | Sweeney | Feb 1993 | A |
5211536 | Ackerman et al. | May 1993 | A |
5211541 | Fledderjohn et al. | May 1993 | A |
5236302 | Weisgerber et al. | Aug 1993 | A |
5246295 | Ide | Sep 1993 | A |
5265807 | Steckbeck et al. | Nov 1993 | A |
5269057 | Mendham | Dec 1993 | A |
5271714 | Shepherd et al. | Dec 1993 | A |
5272869 | Dawson et al. | Dec 1993 | A |
5273397 | Czachor et al. | Dec 1993 | A |
5292227 | Czachor et al. | Mar 1994 | A |
5312227 | Grateau et al. | May 1994 | A |
5338154 | Meade et al. | Aug 1994 | A |
5357744 | Czachor et al. | Oct 1994 | A |
5370402 | Gardner et al. | Dec 1994 | A |
5385409 | Ide | Jan 1995 | A |
5401036 | Basu | Mar 1995 | A |
5438756 | Halchak et al. | Aug 1995 | A |
5474305 | Flower | Dec 1995 | A |
5483792 | Czachor et al. | Jan 1996 | A |
5558341 | McNickle et al. | Sep 1996 | A |
5597286 | Dawson et al. | Jan 1997 | A |
5605438 | Burdgick et al. | Feb 1997 | A |
5609467 | Lenhart et al. | Mar 1997 | A |
5632493 | Gardner | May 1997 | A |
5634767 | Dawson | Jun 1997 | A |
5691279 | Tauber et al. | Nov 1997 | A |
5755445 | Arora | May 1998 | A |
5851105 | Frio et al. | Dec 1998 | A |
5911400 | Niethammer et al. | Jun 1999 | A |
6163959 | Arraitz | Dec 2000 | A |
6196550 | Arora et al. | Mar 2001 | B1 |
6227800 | Spring et al. | May 2001 | B1 |
6337751 | Kimizuka | Jan 2002 | B1 |
6343912 | Mangeiga et al. | Feb 2002 | B1 |
6358001 | Bosel et al. | Mar 2002 | B1 |
6364316 | Arora | Apr 2002 | B1 |
6439841 | Bosel | Aug 2002 | B1 |
6463739 | Mueller et al. | Oct 2002 | B1 |
6511284 | Darnell et al. | Jan 2003 | B2 |
6578363 | Hashimoto et al. | Jun 2003 | B2 |
6601853 | Inoue | Aug 2003 | B2 |
6612807 | Czachor | Sep 2003 | B2 |
6619030 | Seda et al. | Sep 2003 | B1 |
6638013 | Nguyen et al. | Oct 2003 | B2 |
6652229 | Lu | Nov 2003 | B2 |
6672833 | MacLean et al. | Jan 2004 | B2 |
6719524 | Nguyen et al. | Apr 2004 | B2 |
6736401 | Chung et al. | May 2004 | B2 |
6792758 | Dowman | Sep 2004 | B2 |
6796765 | Kosel et al. | Sep 2004 | B2 |
6805356 | Inoue | Oct 2004 | B2 |
6811154 | Proctor et al. | Nov 2004 | B2 |
6935631 | Inoue | Aug 2005 | B2 |
6969826 | Trewiler et al. | Nov 2005 | B2 |
6983608 | Allen, Jr. et al. | Jan 2006 | B2 |
7055305 | Baxter et al. | Jun 2006 | B2 |
7094026 | Coign et al. | Aug 2006 | B2 |
7100358 | Gekht et al. | Sep 2006 | B2 |
7200933 | Lundgren et al. | Apr 2007 | B2 |
7229249 | Durocher et al. | Jun 2007 | B2 |
7238008 | Bobo et al. | Jul 2007 | B2 |
7367567 | Farah et al. | May 2008 | B2 |
7371044 | Nereim | May 2008 | B2 |
7389583 | Lundgren | Jun 2008 | B2 |
7614150 | Lundgren | Nov 2009 | B2 |
7631879 | Diantonio | Dec 2009 | B2 |
7673461 | Cameriano et al. | Mar 2010 | B2 |
7677047 | Somanath et al. | Mar 2010 | B2 |
7735833 | Braun et al. | Jun 2010 | B2 |
7798768 | Strain et al. | Sep 2010 | B2 |
7815417 | Somanath et al. | Oct 2010 | B2 |
7824152 | Morrison | Nov 2010 | B2 |
7891165 | Bader et al. | Feb 2011 | B2 |
7909573 | Cameriano et al. | Mar 2011 | B2 |
7955446 | Dierberger | Jun 2011 | B2 |
7959409 | Guo et al. | Jun 2011 | B2 |
7988799 | Dierberger | Aug 2011 | B2 |
8069648 | Snyder et al. | Dec 2011 | B2 |
8083465 | Herbst et al. | Dec 2011 | B2 |
8091371 | Durocher et al. | Jan 2012 | B2 |
8092161 | Cai et al. | Jan 2012 | B2 |
8152451 | Manteiga et al. | Apr 2012 | B2 |
8162593 | Guimbard et al. | Apr 2012 | B2 |
8172526 | Lescure et al. | May 2012 | B2 |
8177488 | Manteiga et al. | May 2012 | B2 |
8221071 | Wojno et al. | Jul 2012 | B2 |
8245399 | Anantharaman et al. | Aug 2012 | B2 |
8245518 | Durocher et al. | Aug 2012 | B2 |
8282342 | Tonks et al. | Oct 2012 | B2 |
8371127 | Durocher et al. | Feb 2013 | B2 |
8371812 | Manteiga et al. | Feb 2013 | B2 |
20020182058 | Darnell et al. | Dec 2002 | A1 |
20030025274 | Allan et al. | Feb 2003 | A1 |
20030042682 | Inoue | Mar 2003 | A1 |
20030062684 | Inoue | Apr 2003 | A1 |
20030062685 | Inoue | Apr 2003 | A1 |
20050046113 | Inoue | Mar 2005 | A1 |
20050050898 | Noda | Mar 2005 | A1 |
20060010852 | Gekht et al. | Jan 2006 | A1 |
20060123796 | Aycock et al. | Jun 2006 | A1 |
20070025847 | Wakazono et al. | Feb 2007 | A1 |
20080216300 | Anderson et al. | Sep 2008 | A1 |
20100054927 | Almstedt et al. | Mar 2010 | A1 |
20100132371 | Durocher et al. | Jun 2010 | A1 |
20100132374 | Manteiga et al. | Jun 2010 | A1 |
20100132377 | Durocher et al. | Jun 2010 | A1 |
20100202872 | Weidmann | Aug 2010 | A1 |
20100236244 | Longardner | Sep 2010 | A1 |
20100275572 | Durocher et al. | Nov 2010 | A1 |
20100275614 | Fontaine et al. | Nov 2010 | A1 |
20100307165 | Wong et al. | Dec 2010 | A1 |
20110000223 | Russberg | Jan 2011 | A1 |
20110005234 | Hashimoto et al. | Jan 2011 | A1 |
20110020116 | Hashimoto | Jan 2011 | A1 |
20110061767 | Vontell et al. | Mar 2011 | A1 |
20110081237 | Durocher et al. | Apr 2011 | A1 |
20110081239 | Durocher | Apr 2011 | A1 |
20110081240 | Durocher et al. | Apr 2011 | A1 |
20110085895 | Durocher et al. | Apr 2011 | A1 |
20110214433 | Feindel et al. | Sep 2011 | A1 |
20110262277 | Sjoqvist et al. | Oct 2011 | A1 |
20110302929 | Bruhwiler | Dec 2011 | A1 |
20120111023 | Sjoqvist et al. | May 2012 | A1 |
20120156020 | Kottilingam et al. | Jun 2012 | A1 |
20120186254 | Ito et al. | Jul 2012 | A1 |
20120204569 | Schubert | Aug 2012 | A1 |
20120227371 | Johnson et al. | Sep 2012 | A1 |
20130011242 | Beeck et al. | Jan 2013 | A1 |
20130223982 | Durocher et al. | Aug 2013 | A1 |
20140007588 | Sanchez | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
705513 | Mar 2013 | CH |
2187019 | May 2010 | EP |
WO 03020469 | Mar 2003 | WO |
WO 2006007686 | Jan 2006 | WO |
WO 2009157817 | Dec 2009 | WO |
WO 2010002295 | Jan 2010 | WO |
WO 2010002296 | Jan 2010 | WO |
WO 2011129724 | Oct 2011 | WO |
WO 2012158070 | Nov 2012 | WO |
Entry |
---|
International Searching Authority, PCT Notification of the Transmittal of the International Search Report and the Written Opinion, dated Apr. 10, 2014, 15 pages. |
Number | Date | Country | |
---|---|---|---|
20150345330 A1 | Dec 2015 | US |
Number | Date | Country | |
---|---|---|---|
61747239 | Dec 2012 | US |