This disclosure relates in general to a support pad for a fluid storage tank, and more specifically to a multi-piece storage tank pad with separate connectors used to support storage tanks including storage tanks used in oilfield.
In the oil and gas industry, it is often necessary to store large quantities of fluids. The storage may be temporary or permanent. To store such fluids, above-ground tanks or vessels are erected. Such tanks are often supported by a base formed of cement, gravel, or other material. Construction of a gravel base may be time consuming and require such construction in advance of erecting or otherwise installing the tank. In addition, a gravel base may require the transport and handling of large quantities of gravel from a remote location to the tank site. Also, a gravel base may allow ground water and rain water to collect, which may cause the storage tank to rust or otherwise corrode, which threatens the structural integrity of the tank and may make leaks more likely. Tank leaks are detrimental to the production or disposal process and also to the environment.
Embodiments disclosed include a multi-piece pad for supporting a storage tank, as might be found in oil and gas extraction or refining operations. The multi-piece pad includes a plurality of pad pieces where each pad piece has a core coated with a polymeric coating. Each pad piece also defines at least two connector receiving contours. Two pad pieces of the multi-piece pad are joined by a connector. In certain embodiments, the cores are formed from a material that allows the pad piece to be light weight in that it may be handled by hand by two individuals without additional lifting equipment. Each connector also has a core that is coated with the polymeric coating. Each connector is separate from the plurality of pad pieces, and each has a shape that corresponds to two adjacent connector receiving contours.
According to embodiments, the multi-piece pad includes four, six, eight, ten, or twelve pad pieces. Any suitable number of pad pieces may be joined to form a storage tank pad according to the present disclosure, and preferably an even number of tank pads. Outer pad pieces connect to two other pad pieces with two connectors, and inner pad pieces connect to three other pad pieces with three connectors. A portion of a perimeter of each pad piece forms part of a circumference of a circle when all the pad pieces are assembled.
According to one embodiment, the core is formed of an expanded polystyrene material and the coating is formed of a polyurea material that is applied by a thermal sprayer that coats the core with polyurea resin that cures to bond with the core to form an impermeable outer shell.
Technical advantages of tank pads with separate connectors according to the teachings of the present disclosure include tank pads that are easier to bundle and ship than tank pads with integral connector portions. Also, the surface area at the interface of the connector and the individual tank pad pieces allow for drainage between the two pieces.
Other aspects, features, and advantages will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, which are a part of this disclosure and which illustrate, by way of example, principles of the inventions disclosed.
The accompanying drawings facilitate an understanding of the various embodiments.
The storage tank 10 may be any size and shape. Some common sizes of oilfield storage tanks are diameters of ten feet, twelve feet, fifteen-and-half feet, and twenty-one-and-a-half feet.
Each tank pad piece 14 and each connector 16 of the multi-piece storage tank pad 12 is light weight so that it may be easily handled in transport and during assembly at the tank site. The individual pad pieces 14 and the connectors 16 are made of a core formed of sturdy light weight material that is coated with a polymeric coating. For example, the core may be formed of an extruded foam, such as an extruded polystyrene, an expanded foam, such as an expanded polystyrene material or similar strong, light weight material. According to certain embodiments, the core is formed of extruded polystyrene with a two pound density. In another embodiment, the density of the extruded polystyrene may have a density of three pounds.
In other embodiments, the light weight material may be a polymer with a foaming agent, a honeycomb material, an aerated polymer, a closed cell foam, an open cell foam, or a urethane. The coating may be a polyurea that is sprayed onto the core using a thermal spray system. The light weight material allows at most two individuals to move and position by hand a single pad piece, and in other embodiments a single individual may be able to handle and position a single pad piece.
The coating may be any suitable coating to coat and bond with the core material to seal the voids of the core from the ambient surroundings. Once cured, the coating bonds to the core and creates an impermeable shell covering the core. The coating may be paint, polyurethane, polyurea, thermoset, thermoplastic, epoxy, and the like. In one embodiment, the coating is a polymeric coating that is marketed under the trade name Ecodur 201 and provided by Castagra Products, Inc. of Reno, Nev. According to certain embodiments, the cured polymeric coating may have a thickness in the range of 40 to 80 mils.
In the illustrated embodiment, the multi-piece storage tank pad 12 is formed of four outer pad pieces 18 and two inner pieces 20. Each one of the outer pieces 18 and the inner pieces 20 includes an arcuate perimeter surface 22 that forms part of the overall circular perimeter of the multi-piece tank pad 12 when the pieces are joined together. Each outer pad piece 18 connects to another outer pad piece 18 and to one inner pad piece 20. Two inner pieces 20 connect to each other and each inner pad piece 20 connects to an outer pad piece 18 on each side of the inner pad piece 20.
To join the pieces 14, each individual pad piece 14 is positioned adjacent to another piece 14 such that respective connector-receiving contours 24 together form a connector-receiving cutout 26. Once two pieces are in position, a connector 16 may be received by the connector-receiving cutout 26 to join the two pieces 14.
Reference is now made to
Once in position, the connector 16 constrains movement of individual adjacent tank pad pieces 14 with respect to each other. The connector 16 generally has a thickness equal to the thickness of the tank pad pieces 14 such that a top surface 34 of the connector is flush with the top surfaces of the tank pad pieces 14. According to certain embodiments, the arcuate surfaces of the concave contour 28 of the tank pad pieces 14 and the convex connector surface 30 of the connector 16 allow tenacious bonding of the polymeric coating, such as polyurea. The coating bonds to and completely coats rounded surfaces better than sharp corner-type surfaces. As such, the coating may better prevent liquid from reaching the voids of the core and being absorbed and retained by such voids in the material of the core.
According to an embodiment of the present disclosure, all connectors 16 for a particular multi-piece pad 12 are the same size and shape such that any connector 16 can be received by any connector-receiving cutouts 26 in adjacent pad pieces 14. Although the connectors 16 and the corresponding connector receiving cutouts 26 are illustrated symmetrical, the present disclosure contemplates non-symmetrical connectors 16 and connector receiving cutouts 26. Also, the connector receiving cutouts 26 need not extend the full thickness of the pad piece 14. Similarly, the connector 16 may have a thickness that is less than the thickness of the pad piece 14, and the top surface 34 of the connector 16 may or may not be flush with the top surface of the pad pieces 14.
With continued reference to
The six piece tank pad 12 shown in
Reference is made to
Reference is made to
One skilled in the art will recognize that the multi-piece oil field tank pad is not limited to the particular number of pieces disclosed in the illustrated embodiments, but rather any suitable number of pieces and connectors may be joined to form any diameter tank pad, as required.
According to the teachings of the present disclosure, a multi-piece tank pad 12 may be assembled with six or more pieces that are dimensionally sized to easily be transported and handled at a tank construction site. Similarly, the individual pieces 14 and connectors 16 are easily handled by assemblers at the worksite. The single-sized connector 16 simplifies assembly such that any connector 16 may be fit to join any two adjacent tank pad pieces 14.
In the foregoing description of certain embodiments, specific terminology has been resorted to for the sake of clarity. However, the disclosure is not intended to be limited to the specific terms so selected, and it is to be understood that each specific term includes other technical equivalents which operate in a similar manner to accomplish a similar technical purpose. Terms such as “left” and right”, “front” and “rear”, “above” and “below,” “top” and “bottom” and the like are used as words of convenience to provide reference points and are not to be construed as limiting terms.
In this specification, the word “comprising” is to be understood in its “open” sense, that is, in the sense of “including”, and thus not limited to its “closed” sense, that is the sense of “consisting only of”. A corresponding meaning is to be attributed to the corresponding words “comprise”, “comprised” and “comprises” where they appear.
In addition, the foregoing describes only some embodiments of the invention(s), and alterations, modifications, additions and/or changes can be made thereto without departing from the scope and spirit of the disclosed embodiments, the embodiments being illustrative and not restrictive.
Furthermore, invention(s) have been described in connection with what are presently considered to be the most practical and preferred embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the invention(s). Also, the various embodiments described above may be implemented in conjunction with other embodiments, e.g., aspects of one embodiment may be combined with aspects of another embodiment to realize yet other embodiments. Further, each independent feature or component of any given assembly may constitute an additional embodiment.
This application is a non-provisional application claiming priority to provisional application for patent Ser. No. 62/157,906 filed on May 6, 2015, and entitled “Multi-Piece Storage Tank Pad With Separate Connectors,” which is hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
62157906 | May 2015 | US |