The presence of vascular debris (e.g., thrombus, embolus) in a vasculature can cause a number of significant health problems. A thrombus is a stationary blood clot that is often found along the wall of a blood vessel and may cause vascular obstruction. Thrombus is usually formed in vivo as the final product of the blood coagulation step in hemostasis. In relatively large blood vessels, a thrombus will typically decrease the blood flow through that vessel. In smaller blood vessels, blood flow may be completely cut-off resulting in death of tissue supplied to that vessel. A dislodged thrombus is often referred to as an “embolus.” Vascular obstruction or ischemia is the insufficient supply of blood to an organ, usually due to a blocked blood vessel. Symptoms of vascular obstruction may include chest pains, loss of vision, and in some cases death. Thrombectomy is a surgical procedure that involves the removal of a thrombus from a patient's vasculature.
Certain vascular devices are important for their intervening roles in patients with vascular debris in their vasculature. Some techniques for removing vascular debris utilize balloon catheters, aspiration catheters, and the like. These techniques may have safety (e.g., intimal lesions) and performance issues (e.g., use limited to certain arteries). Therefore, there is a need to provide additional systems and methods for removing vascular debris from a vasculature that are safe and overcome some of the existing performance issues.
Although at least one embodiment is described herein with respect to thrombus and thrombectomy, the subject technology may be used to remove any vascular debris that is compatible with one or more embodiments with the subject technology.
The subject technology is illustrated, for example, according to various aspects described below. Various examples of aspects of the subject technology are described as embodiments. These are provided as examples and do not limit the subject technology. It is noted that these embodiments may be combined in any combination.
Some embodiments provide a system for retrieving vascular debris in a vasculature comprising at least two segments radially expandable from a collapsed state to an expanded state, each segment having a waist comprising the radially largest region of the segment and two longitudinal ends; at least one intermediate portion, each intermediate portion comprising a pivot that connects adjacent segments, each pivot having a diameter comprising the radially largest region of the pivot; an outer lumen that is configured to at least partially encapsulate the segments in the compressed state; and a tether that is configured to retrieve a segment in the expanded state into the outer lumen.
In some embodiments, at least one segment is substantially spherical. In some embodiments, the segments comprises radially-expandable struts. In some embodiments, a segment comprises at least two struts. In some embodiments, a segment comprises at least three struts. In some embodiments, a segment comprises at least four struts. In some embodiments, a segment comprises at least five struts. In some embodiments, a segment comprises at least six struts. In some embodiments, a segment comprises at least seven struts. In some embodiments, a segment comprises at least eight struts. In some embodiments, a segment comprises at least nine struts. In some embodiments, a segment comprises at least ten struts. In some embodiments, a segment comprises at least eleven struts. In some embodiments, a segment comprises at least twelve struts. In some embodiments, at least one strut diverges from the longitudinal axis, divides into at least two struts, merges with an adjacent strut, and converges toward the longitudinal axis.
Some embodiments provide a system comprising at least three segments. Some embodiments provide a system comprising at least four segments. Some embodiments provide a system comprising at least five segments. Some embodiments provide a system comprising at least six segments. Some embodiments provide a system comprising at least seven segments. Some embodiments provide a system comprising at least eight segments. Some embodiments provide a system comprising at least nine segments. Some embodiments provide a system comprising at least ten segments.
Some embodiments provide a system for retrieving vascular debris in a vasculature comprising at least three segments expandable from a collapsed state to an expanded state, each segment having a waist comprising the radially largest region of the segment and two longitudinal ends; at least two intermediate portion, each intermediate portion comprising a pivot that connects adjacent segments, each pivot having a diameter comprising the radially largest region of the pivot; an outer lumen that is configured to encase the segments in a compressed state; and a tether that is configured to retract the segments into the outer lumen.
Some embodiments provide a method of retrieving vascular debris from a vasculature comprising inserting into the vasculature of a patient at least a portion of an outer lumen comprising a distal opening and encasing at least two or more segments expandable from a collapsed state to an expanded state, each segment having a waist comprising the radially largest region of the segment and two longitudinal ends; releasing at least a portion of a segment outside the distal opening wherein at least a portion of the segment expands to engage the vascular debris; and retrieving the segment and at least a portion of the vascular debris inside the outer lumen.
In some embodiments, the vascular debris is a thrombus or an embolus. In some embodiments, the outer diameter of the outer lumen is no larger than 50% of the diameter of the vasculature.
Additional features and advantages of the subject technology will be set forth in the description below, and in part will be apparent from the description, or may be learned by practice of the subject technology. The advantages of the subject technology will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the subject technology as claimed.
The accompanying drawings, which are included to provide further understanding of the subject technology and are incorporated in and constitute a part of this specification, illustrate aspects of the subject technology and together with the description serve to explain the principles of the subject technology.
In the following detailed description, numerous specific details are set forth to provide a full understanding of the subject technology. It will be apparent, however, to one ordinarily skilled in the art that the subject technology may be practiced without some of these specific details. In other instances, well-known structures and techniques have not been shown in detail so as not to obscure the subject technology.
While some of the embodiments described herein specifically relate to a vascular intervention device having two segments, the described features may generally be extended to devices having two or more segments.
Vascular Intervention Device
While one or more embodiments described herein relate to a vascular intervention device having two segments, the device 50 may comprise any number of segments that is compatible with one or more embodiments of the subject technology. The total number of segments (one proximal, one distal, and any number of intermediate segments starting from zero) may range from about 2 to about 15 or more depending on the a number of factors such as, but not limited to, size, shape, and location of the vascular debris within a vasculature. It is generally desirable that the device 50 is at least as long as the targeted vascular debris.
A vascular intervention device having a plurality of segments may provide a number of advantages related to the removal of vascular debris in a vasculature. For example, certain segments (e.g., distal, intermediate) may include widened portions 78 (
Proximal Segment
Referring to the embodiment illustrated in
The proximal end portion 60, located at the proximal end of the device 50, may comprise an interconnection of the proximal ends of the struts 58, which in turn can be coupled to a tether 140 (
When the device 50 is in a fully-expanded configuration shown in
In one or more embodiments, the struts 58 of the proximal segment 52 can have a substantially rectangular or flat cross section (e.g., where the struts 58 comprise uncut portions of a metallic tube or sheet). The struts 58 can alternatively have a substantially round (e.g., circular, elliptical, ovoid) cross section (e.g., where the struts 58 comprise round filaments). The proximal segment 52 can comprise two or more struts 58, or between two and twelve struts 58. Although the proximal segment 52 depicted in
Each of the segment may be reversibly expandable from a collapsed state to an expanded state, which allows portions of the device 50 to expand after deployment and also enables the device 50 to be retrieved after deployment (
Distal Segment
The distal segment 56 can be radially self-expanding and comprise a plurality of radially self-expanding struts 68. Eight struts 68 are depicted in the distal section 56 of
When the device is in the fully-expanded configuration shown in
When the device 50 is deployed in a patient's vasculature, any portion of the device such as the waist or tapering face of the distal, intermediate, and/or proximal segment may engage the vascular debris 142 (
The struts 68 of the distal segments can have a substantially rectangular or flat cross section (e.g., where the struts 68 comprise uncut portions of a metallic tube or sheet).
Widened Portion
One or more of the struts of a segment(s) (preferably a distal and/or an intermediate segment) can optionally include or form widened portions or leaves 78 on the distal face 74 of the distal segment. As seen in
The struts 68 can be configured to form the sub-struts 82 and opening 84 via tapering portions 86 on either side of the opening 84. Distal and proximal of the tapering portions 86, the struts 68 can be of substantially uniform width. The proximal portion 88 of the strut 68 (proximal of the widened portion 78) can be wider than the distal portion 90 of the strut 68 (distal of the widened portion 78). In such a case, the width of the proximal strut portion 88 can nonetheless be substantially uniform from the proximal tapering portion 86 to the intermediate portion 54, and the width of the distal strut portion 90 can be substantially uniform (but narrower than the width of the proximal strut portion 88) from the distal tapering portion 86 to the distal tip portion 70 of the device 50. By employing struts 68 that are narrower in their distal portions 90 than in their proximal portions 88, the distal face of the distal portion 56 can be made relatively compliant and therefore more easily conformable, while retaining a desired degree of stiffness in the proximal components of the device 50.
In another aspect, the widened portions 78 may comprise a first and second ramp, where the first ramp extends from an edge of the strut to an edge of the widened portion 78, and the second ramp extends from the edge of the widened portion 78 to the edge of the strut. In this manner, the widened portions 78 can increase the occlusiveness of the distal face when desirable. Instead of or in addition to the widened portion(s) 78, a mesh, membrane or other covering may be employed on the distal face 74 to perform similar function(s).
Intermediate Segment
Referring to
Referring to
When the device is in the fully-expanded configuration shown in
Referring to
In some embodiments, one or more segments (proximal, distal, and intermediate) may be substantially similar in shape. In the embodiment shown in
Pivot Section and Pivotability
Referring to
So configured, the pivot section (e.g., 54, 54a, 54b, 54c) allows a relatively distal segment to pivot with respect to a relatively proximal segment and thereby allow the device 50 to be deployed in tortuous vasculature. For example, referring to
Referring to
The device may provide multiaxial or omniaxial pivoting or tilting up to relatively high deflection angles (e.g., up to 90 degrees) without significantly affecting the ability of the segments to maintain their expanded states and engage the vascular debris 142 (
While some of the embodiments described herein specifically relate to a vascular intervention device having two segments, the described features may generally be extended to devices having two or more segments.
Referring again to
Instead of, or in addition to, independence of the proximal struts 58 as a group, from the distal struts 68 as a group, the struts 58 may be independent of each other (within the group of struts 58), and/or the struts 68 may be independent of each other (within the group of struts 68). In the device 50 as depicted in
It should be noted, however, that independence as used herein does not exclude interconnecting independent components by members (e.g. membranes, very fine wires and the like) that are insufficiently rigid to cause one component to significantly affect the action of the other. The proximal struts 58 and/or the distal struts 68 can also be independent of each other, but only within a limited region of the segment(s). For example, the proximal struts 58 may be independent of each other within the distal face 64 of the proximal segment, and/or the distal struts 68 may be independent of each other within the proximal face 72 of the distal segment 56.
The tapered distal face 64 of the proximal segment 52 and tapered proximal face 72 of the distal segment 56 also allow the sections 52, 56 to pivot significantly without contact between the segments 52, 56 other than at the pivot section 54.
The pivot section can be rigid or flexible. Where the pivot section is rigid, the pivotability of the device 50 can be provided by the flexibility and/or independence of the struts 58 in the distal face 64 of the proximal segment 52 and of the struts 68 in the proximal face 72 of the distal segment 56. In this example, the proximal and distal segments are able to pivot multiaxially relative to each other without requiring plastic deformation of the pivot section. Each of struts 58 and struts 68 may be capable of flexing, extending, bowing, straightening, bending, or other elastic or plastic deformation along the length or a portion thereof.
Referring to
According to embodiments, such action is facilitated along one or more segments and/or sections of the device. According to embodiments, this pivot action is provided without requiring plastic deformation of pivot section or any action along the length of pivot section. The pivot section can comprise a short length of hypotube (e.g., a short length of uncut hypotube) which may be flexible or rigid. According to embodiments, the pivot section can comprise a flexible coil, longitudinally oriented such that its winds spiral around the central longitudinal axis of the device 50, or the pivot section can comprise a ball-and-socket joint, a length of flexible wire, or other flexible member.
Materials
The device 50 can further comprise one or more radiopaque markers (e.g. coils) coupled to or wound around portions of the device. For example, the device 50 can include radiopaque markers on one, two or all three of the proximal end portion 60, pivot section 54, and distal end portion 70. Instead of or in addition to those markers, the device 50 can include radiopaque markers on one or more of the struts 58, and/or on one or more of the struts 68. According to embodiments, when any of the proximal end portion 60, intermediate segment 54, or distal end portion 70 defines a central lumen therethrough (e.g., when the device 50 is cut or etched from a tube or sheet), radiopaque material may be placed within some, one or all of those lumens to make the proximal end portion 60, pivot section 54, and distal end portion 70 radiopaque. For example, radiopaque material maybe provided within a lumen of at least one of the proximal end portion 60, pivot section 54, and distal end portion 70 with securement at one or both of the ends of the lumen.
The device can comprise a self-expanding, super elastic, and/or a shape-memory material (e.g., comprising Nitinol, CoCr alloy, shape memory polymers (e.g., polyglycolic acid, polylactic acid), etc.), thereby causing the device to be self-expanding under certain conditions (e.g., when not restrained by a catheter). In some embodiments, the proximal segment, the pivot section, the distal segment, and/or intermediate segment(s) may comprise different materials. For example, the distal segment 56 may comprise polymer material while the proximal segment and the pivot section comprise metallic material, a different polymer material, etc. For another example, the distal segment may comprise metallic material while the proximal segment and the pivot section comprise different metallic materials, polymer material, etc. Other combinations of materials are also possible. The device can assume a low profile compressed state (e.g., confined within a catheter) for delivery. When cut from a tube or sheet, the device may assume substantially the diameter of the tube or rolled sheet when in the compressed state. Upon deployment from the catheter, the device expands from the compressed state to an expanded state.
The various versions of the vascular intervention device 50 disclosed herein can be manufactured in a process comprising cutting (or electrochemically etching) and shaping a metallic tube or sheet (e.g., a laser cut hypotube or sheet). A laser or electrochemical etcher may cut out portions of the tube, leaving in place the various structural elements of the proximal segment, the pivot section(s), the intermediate segment(s), and/or the distal segment. In the device 50 depicted in
After cutting from one or more tubes, the device 50 or segments/section(s) 52/54/56 thereof may be reshaped and heat treated to impart shape setting to the device or segments/section(s). The shape setting process may include several steps comprising, for example, stretching and confining the cut tube into a new shape during the heat treatment. At the end of each heat treatment step, the cut tube assumes the shape in which it was confined during the heat treatment process. The final shape (e.g., expanded state) and size may obtained by several such steps. The device 50 or cut tube may be electropolished during manufacture, which can reduce the initial wall thickness of the tube to a final, desired thickness.
The proximal portions 58a and the distal portions 58b are rotated or shifted laterally with respect to each other, such that each proximal portion 58a opposes (e.g., approximately one-half of each of) two distal portions 58b, and vice versa. From the distal end of each proximal portion 58a, two sub-struts 58c extend distally to the two distal portions 58b that oppose (or are longitudinally adjacent) the proximal portion 58a from which the sub-struts 58c extend. Accordingly, each proximal portion 58a is connected to the two adjacent or opposing distal portions 58b (and vice versa) via sub-struts 58c. For example, each strut may have a proximal end, a distal end, and a center portion therebetween, the center portion connected to adjacent struts.
In another example, each strut may extend from an origination junction and be divided into a first and second branch, wherein the first branch is connected to a first adjacent strut and the second branch is connected to a second adjacent strut. In this example, a length of the first branch and a length of the second branch may be different such that a connecting point between the strut and the first adjacent strut is disposed at a different longitudinal position than a connecting point between the strut and the second adjacent strut.
According to embodiments, the length of the first branch and the length of the second branch may be the same. In another example, at least one strut may extend proximally from the intermediate section and be divided into a first and second branch at or near the waist of the proximal section. The first branch may be connected to the first adjacent strut and the second branch may be connected to the second adjacent strut. The first and second adjacent struts may extend proximally from the waist of the proximal section toward the radially central region of the device.
According to embodiments, one or more sections 52, 56 may have a first plurality of struts extending from a proximal end of the section and a second plurality of struts extending from the distal end of the section. The first and second plurality of struts may be interconnected at the waist or middle portion of the section by a third plurality of struts. Each of the first plurality of struts may be connected to two or more of the third plurality of struts. Each of the second plurality of struts may be connected to two or more of the third plurality of struts. The number of the first plurality of struts may equal the number of the second plurality of struts. The number of the third plurality of struts may be double, triple, or another multiple of one or each of the number of the first plurality of struts and the number of the second plurality of struts.
When the proximal section 52 of the device 50 is expanded, the sub-struts 58c extend both longitudinally to interconnect the proximal end portion 60 and the intermediate section 54, and laterally or circumferentially to each neighboring proximal or distal portion 58a or 58b. The resulting lateral or circumferential interconnection of the struts 58 of the proximal section 52 increases the outward radial force exerted by the proximal section 52 (and the inward radial force that the proximal section 52 can withstand without collapse) when expanded. In addition, the lateral/circumferential interconnection of the struts of the proximal section 52 reduces the tendency of the expanded struts 58 to bunch together in the vessel or “half-moon.” Further, the lateral/circumferential interconnection of the struts of the proximal section maintains the three dimensional shape of the proximal section. Moreover, the lateral/circumferential interconnection of the struts of the proximal section provides structural support for the interconnected struts.
As depicted in
As depicted in
When the distal segment 56 of the device 50 of
As depicted in
Dimensions
Although the device 50 is depicted in its expanded state in
The device may be of any dimension that is compatible with one or more embodiments of the subject technology. In some embodiments, the diameter of the waist (e.g., 66, 76) when expanded may be from about 2 mm to about 20 mm. In some embodiments, the diameter of the waist when contracted may be from about 0.25 mm to about 0.75 mm. In some embodiments, the length of the a segment when expanded may be from about 2 mm to about 20 mm. In some embodiments, the width of a strut may be from about 0.075 mm to about 0.15 mm. In some embodiments, the thickness of a strut may be from about 0.025 mm to about 0.10 mm. In some embodiments, the length of the pivot section may be from about 0.01 mm to about 5 mm. In some embodiments, the diameter of the pivot section may be from about 0.25 mm to about 0.75 mm. In some embodiments, the wall thickness of the pivot section may be from about 0.025 mm to about 0.10 mm.
In the embodiment shown in
In the embodiment shown in
Some embodiments provide a device for retrieving vascular debris in a vasculature comprising: at least two segments radially expandable from a collapsed state to an expanded state, each segment having a waist comprising the radially largest region of the segment and two longitudinal ends; at least one intermediate portion, each intermediate portion comprising a pivot that connects adjacent segments, each pivot having a diameter comprising the radially largest region of the pivot; a sheath that is configured to encase the segments in the compressed state; and a tether that is configured to retract the expanded segment into the outer sheath.
In some embodiments, the struts are radially-expandable. In some embodiments, at least one strut diverges from the longitudinal axis, divides into at least two struts, merges with a circumferentially adjacent strut, and converges toward the longitudinal axis.
Some embodiments provide a device comprising at least three segments. Some embodiments provide a device comprising at least four segments. Some embodiments provide a device comprising at least five segments. Some embodiments provide a device comprising at least six segments. Some embodiments provide a device comprising at least seven segments. Some embodiments provide a device comprising at least eight segments. Some embodiments provide a device comprising at least nine segments. Some embodiments provide a device comprising at least ten segments.
Some embodiments provide a device for retrieving vascular debris in a vasculature comprising: at least three segments expandable from a collapsed state to an expanded state, each segment having a waist comprising the radially largest region of the segment and two longitudinal ends; at least two intermediate portion, each intermediate portion comprising a pivot that connects adjacent segments, each pivot having a diameter comprising the radially largest region of the pivot; a sheath that is configured to encase the segments in a compressed state; and a tether that is configured to retract the segments into the sheath.
Some embodiments provide a method of retrieving vascular debris from a vasculature comprising: inserting into the vasculature of a patient at least a portion of a sheath comprising a distal opening and encasing at least two or more segments expandable from a collapsed state to an expanded state, each segment having a waist comprising the radially largest region of the segment and two longitudinal ends; releasing at least a portion of a segment outside the distal opening wherein at least a portion of the segment expands to engage the vascular debris; and retrieving the segment and at least a portion of the vascular debris inside the sheath.
In some embodiments, the vascular debris is a thrombus or an embolus. In some embodiments, the sheath encapsulates at least three expandable segments. In some embodiments, the outer diameter of the sheath is no larger than 50% of the diameter of the vasculature.
The foregoing description is provided to enable a person skilled in the art to practice the various configurations described herein. While the subject technology has been particularly described with reference to the various figures and configurations, it should be understood that these are for illustration purposes only and should not be taken as limiting the scope of the subject technology.
There may be many other ways to implement the subject technology. Various functions and elements described herein may be partitioned differently from those shown without departing from the scope of the subject technology. Various modifications to these configurations will be readily apparent to those skilled in the art, and generic principles defined herein may be applied to other configurations. Thus, many changes and modifications may be made to the subject technology, by one having ordinary skill in the art, without departing from the scope of the subject technology.
Furthermore, to the extent that the term “include,” “have,” or the like is used in the description or the claims, such term is intended to be inclusive in a manner similar to the term “comprise” as “comprise” is interpreted when employed as a transitional word in a claim.
A phrase such as “an aspect” does not imply that such aspect is essential to the subject technology or that such aspect applies to all configurations of the subject technology. A disclosure relating to an aspect may apply to all configurations, or one or more configurations. An aspect may provide one or more examples of the disclosure. A phrase such as “an aspect” may refer to one or more aspects and vice versa. A phrase such as “an embodiment” does not imply that such embodiment is essential to the subject technology or that such embodiment applies to all configurations of the subject technology. A disclosure relating to an embodiment may apply to all embodiments, or one or more embodiments. An embodiment may provide one or more examples of the disclosure. A phrase such as “an embodiment” may refer to one or more embodiments and vice versa. A phrase such as “a configuration” does not imply that such configuration is essential to the subject technology or that such configuration applies to all configurations of the subject technology. A disclosure relating to a configuration may apply to all configurations, or one or more configurations. A configuration may provide one or more examples of the disclosure. A phrase such as “a configuration” may refer to one or more configurations and vice versa.
The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other embodiments.
A reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” All structural and functional equivalents to the elements of the various configurations described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and intended to be encompassed by the subject technology. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the above description.
While certain aspects and embodiments of the invention have been described, these have been presented by way of example only, and are not intended to limit the scope of the invention. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms without departing from the spirit thereof. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the invention.
This application is a continuation of U.S. patent application Ser. No. 16/884,665, filed May 27, 2020, which is a continuation of U.S. patent application Ser. No. 15/934,838, filed Mar. 23, 2018, now abandoned, which is a continuation of U.S. patent application Ser. No. 15/131,306, filed Apr. 18, 2016, now issued as U.S. Pat. No. 9,924,959, which is a continuation of U.S. patent application Ser. No. 13/669,652, filed Nov. 6, 2012, now issued as U.S. Pat. No. 9,314,248, all of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
740482 | Stare | Oct 1903 | A |
3108593 | Glassman | Oct 1963 | A |
4425908 | Simon | Jan 1984 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4655771 | Wallsten | Apr 1987 | A |
4768507 | Fischell et al. | Sep 1988 | A |
4921484 | Hillstead | May 1990 | A |
4998539 | Delsanti | Mar 1991 | A |
5026377 | Burton et al. | Jun 1991 | A |
5061275 | Wallsten et al. | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5104404 | Wolff | Apr 1992 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5158548 | Lau et al. | Oct 1992 | A |
5222971 | Willard et al. | Jun 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5308356 | Blackshear et al. | May 1994 | A |
5334210 | Gianturco | Aug 1994 | A |
5378239 | Termin et al. | Jan 1995 | A |
5405379 | Lane | Apr 1995 | A |
5425984 | Kennedy et al. | Jun 1995 | A |
5484444 | Braunschweiler et al. | Jan 1996 | A |
5499981 | Kordis | Mar 1996 | A |
5527338 | Purdy | Jun 1996 | A |
5545208 | Wolff et al. | Aug 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5549635 | Solar | Aug 1996 | A |
5624461 | Mariant | Apr 1997 | A |
5634942 | Chevillon et al. | Jun 1997 | A |
5645558 | Horton | Jul 1997 | A |
5662703 | Yurek et al. | Sep 1997 | A |
5690671 | McGurk et al. | Nov 1997 | A |
5702419 | Berry et al. | Dec 1997 | A |
5713907 | Wholey et al. | Feb 1998 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5728906 | Eguchi et al. | Mar 1998 | A |
5733294 | Forber et al. | Mar 1998 | A |
5741333 | Frid | Apr 1998 | A |
5749891 | Ken et al. | May 1998 | A |
5749919 | Blanc | May 1998 | A |
5749920 | Quiachon et al. | May 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5814062 | Sepetka et al. | Sep 1998 | A |
5830230 | Berryman et al. | Nov 1998 | A |
5846261 | Kotula et al. | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855578 | Guglielmi et al. | Jan 1999 | A |
5879366 | Shaw et al. | Mar 1999 | A |
5911731 | Pham et al. | Jun 1999 | A |
5916235 | Guglielmi | Jun 1999 | A |
5925060 | Forber | Jul 1999 | A |
5928228 | Kordis et al. | Jul 1999 | A |
5928260 | Chin et al. | Jul 1999 | A |
5935148 | Villar et al. | Aug 1999 | A |
5935362 | Petrick | Aug 1999 | A |
5941249 | Maynard | Aug 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5951599 | McCrory | Sep 1999 | A |
5957948 | Mariant | Sep 1999 | A |
5976162 | Doan et al. | Nov 1999 | A |
5980554 | Lenker et al. | Nov 1999 | A |
6001092 | Mirigian et al. | Dec 1999 | A |
6010517 | Baccaro | Jan 2000 | A |
6024756 | Huebsch et al. | Feb 2000 | A |
6033423 | Ken et al. | Mar 2000 | A |
6036720 | Abrams et al. | Mar 2000 | A |
6059813 | Vrba et al. | May 2000 | A |
6063070 | Eder | May 2000 | A |
6063104 | Villar et al. | May 2000 | A |
6086577 | Ken et al. | Jul 2000 | A |
6093199 | Brown et al. | Jul 2000 | A |
6096034 | Kupiecki et al. | Aug 2000 | A |
6096073 | Webster et al. | Aug 2000 | A |
6099526 | Whayne et al. | Aug 2000 | A |
6106530 | Harada | Aug 2000 | A |
6110191 | Dehdashtian et al. | Aug 2000 | A |
6123715 | Amplatz | Sep 2000 | A |
6139564 | Teoh | Oct 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6168592 | Kupiecki et al. | Jan 2001 | B1 |
6168615 | Ken et al. | Jan 2001 | B1 |
6168618 | Frantzen | Jan 2001 | B1 |
6168622 | Mazzocchi | Jan 2001 | B1 |
6183495 | Lenker et al. | Feb 2001 | B1 |
6190402 | Horton et al. | Feb 2001 | B1 |
6193708 | Ken et al. | Feb 2001 | B1 |
6221086 | Forber | Apr 2001 | B1 |
6261305 | Marotta et al. | Jul 2001 | B1 |
6280412 | Pederson et al. | Aug 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6309367 | Boock | Oct 2001 | B1 |
6322576 | Wallace et al. | Nov 2001 | B1 |
6325820 | Khosravi et al. | Dec 2001 | B1 |
6331184 | Abrams | Dec 2001 | B1 |
6332576 | Colley et al. | Dec 2001 | B1 |
6342068 | Thompson | Jan 2002 | B1 |
6344041 | Kupiecki et al. | Feb 2002 | B1 |
6344048 | Chin et al. | Feb 2002 | B1 |
6346117 | Greenhalgh | Feb 2002 | B1 |
6350270 | Roue | Feb 2002 | B1 |
6361558 | Hieshima et al. | Mar 2002 | B1 |
6368339 | Amplatz | Apr 2002 | B1 |
6375668 | Gifford et al. | Apr 2002 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6383174 | Eder | May 2002 | B1 |
6391037 | Greenhalgh | May 2002 | B1 |
6409750 | Hyodoh et al. | Jun 2002 | B1 |
6428558 | Jones et al. | Aug 2002 | B1 |
6443972 | Bosma et al. | Sep 2002 | B1 |
6447531 | Amplatz | Sep 2002 | B1 |
6454780 | Wallace | Sep 2002 | B1 |
6506204 | Mazzocchi | Jan 2003 | B2 |
6511468 | Cragg et al. | Jan 2003 | B1 |
6530934 | Jacobsen et al. | Mar 2003 | B1 |
6544278 | Vrba et al. | Apr 2003 | B1 |
6547804 | Porter et al. | Apr 2003 | B2 |
6551303 | Van et al. | Apr 2003 | B1 |
6569179 | Teoh et al. | May 2003 | B2 |
6579302 | Duerig et al. | Jun 2003 | B2 |
6579303 | Amplatz | Jun 2003 | B2 |
6585748 | Jeffree | Jul 2003 | B1 |
6585756 | Strecker | Jul 2003 | B1 |
6589256 | Forber | Jul 2003 | B2 |
6589265 | Palmer et al. | Jul 2003 | B1 |
6592605 | Lenker et al. | Jul 2003 | B2 |
6599308 | Amplatz | Jul 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6605111 | Bose et al. | Aug 2003 | B2 |
6607551 | Sullivan et al. | Aug 2003 | B1 |
6613074 | Mitelberg et al. | Sep 2003 | B1 |
6626939 | Burnside et al. | Sep 2003 | B1 |
6632241 | Hancock et al. | Oct 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6635069 | Teoh et al. | Oct 2003 | B1 |
6652555 | Vantassel et al. | Nov 2003 | B1 |
6652556 | Vantassel et al. | Nov 2003 | B1 |
6666882 | Bose et al. | Dec 2003 | B1 |
6666883 | Seguin et al. | Dec 2003 | B1 |
6669717 | Marotta et al. | Dec 2003 | B2 |
6669721 | Bose et al. | Dec 2003 | B1 |
6676696 | Marotta et al. | Jan 2004 | B1 |
6682505 | Bates et al. | Jan 2004 | B2 |
6682546 | Amplatz | Jan 2004 | B2 |
6689150 | Vantassel et al. | Feb 2004 | B1 |
6689486 | Ho et al. | Feb 2004 | B2 |
6695876 | Marotta et al. | Feb 2004 | B1 |
6698877 | Urlaub et al. | Mar 2004 | B2 |
6699274 | Stinson | Mar 2004 | B2 |
6709465 | Mitchell et al. | Mar 2004 | B2 |
6712835 | Mazzocchi et al. | Mar 2004 | B2 |
6723112 | Ho et al. | Apr 2004 | B2 |
6723116 | Taheri | Apr 2004 | B2 |
6730108 | Van et al. | May 2004 | B2 |
6746468 | Sepetka et al. | Jun 2004 | B1 |
6746890 | Gupta et al. | Jun 2004 | B2 |
6780196 | Chin et al. | Aug 2004 | B2 |
6792979 | Konya et al. | Sep 2004 | B2 |
6797083 | Peterson | Sep 2004 | B2 |
6802851 | Jones et al. | Oct 2004 | B2 |
RE38653 | Igaki et al. | Nov 2004 | E |
6811560 | Jones et al. | Nov 2004 | B2 |
6855153 | Saadat | Feb 2005 | B2 |
6855154 | Abdel-Gawwad | Feb 2005 | B2 |
RE38711 | Igaki et al. | Mar 2005 | E |
6860893 | Wallace et al. | Mar 2005 | B2 |
6936055 | Ken et al. | Aug 2005 | B1 |
6949103 | Mazzocchi et al. | Sep 2005 | B2 |
6949113 | Van et al. | Sep 2005 | B2 |
6953472 | Palmer et al. | Oct 2005 | B2 |
6979341 | Scribner et al. | Dec 2005 | B2 |
6989019 | Mazzocchi et al. | Jan 2006 | B2 |
6994092 | Van et al. | Feb 2006 | B2 |
6994717 | Konya et al. | Feb 2006 | B2 |
7011671 | Welch | Mar 2006 | B2 |
7018401 | Hyodoh et al. | Mar 2006 | B1 |
7029487 | Greene et al. | Apr 2006 | B2 |
7033375 | Mazzocchi et al. | Apr 2006 | B2 |
7048752 | Mazzocchi et al. | May 2006 | B2 |
7063679 | Maguire et al. | Jun 2006 | B2 |
7070607 | Murayama et al. | Jul 2006 | B2 |
7070609 | West | Jul 2006 | B2 |
7083632 | Avellanet et al. | Aug 2006 | B2 |
7128073 | Van et al. | Oct 2006 | B1 |
7128736 | Abrams et al. | Oct 2006 | B1 |
7169177 | Obara | Jan 2007 | B2 |
7195636 | Avellanet et al. | Mar 2007 | B2 |
7211109 | Thompson | May 2007 | B2 |
7229461 | Chin et al. | Jun 2007 | B2 |
7232461 | Ramer | Jun 2007 | B2 |
7244267 | Huter et al. | Jul 2007 | B2 |
7261720 | Stevens et al. | Aug 2007 | B2 |
7303571 | Makower et al. | Dec 2007 | B2 |
7306622 | Jones et al. | Dec 2007 | B2 |
7331980 | Dubrul et al. | Feb 2008 | B2 |
7367985 | Mazzocchi et al. | May 2008 | B2 |
7367986 | Mazzocchi et al. | May 2008 | B2 |
7371250 | Mazzocchi et al. | May 2008 | B2 |
7393358 | Malewicz | Jul 2008 | B2 |
7410482 | Murphy et al. | Aug 2008 | B2 |
7410492 | Mazzocchi et al. | Aug 2008 | B2 |
7413622 | Peterson | Aug 2008 | B2 |
7419503 | Pulnev et al. | Sep 2008 | B2 |
7442200 | Mazzocchi et al. | Oct 2008 | B2 |
7485088 | Murphy et al. | Feb 2009 | B2 |
7556635 | Mazzocchi et al. | Jul 2009 | B2 |
7566338 | Mazzocchi et al. | Jul 2009 | B2 |
7569066 | Gerberding et al. | Aug 2009 | B2 |
7572273 | Mazzocchi et al. | Aug 2009 | B2 |
7572288 | Cox | Aug 2009 | B2 |
7575590 | Watson | Aug 2009 | B2 |
7597704 | Frazier et al. | Oct 2009 | B2 |
7608088 | Jones et al. | Oct 2009 | B2 |
7621928 | Thramann et al. | Nov 2009 | B2 |
7632296 | Malewicz | Dec 2009 | B2 |
7670347 | Kessler et al. | Mar 2010 | B2 |
7670355 | Mazzocchi et al. | Mar 2010 | B2 |
7670356 | Mazzocchi et al. | Mar 2010 | B2 |
7678130 | Mazzocchi et al. | Mar 2010 | B2 |
7682390 | Seguin | Mar 2010 | B2 |
7691124 | Balgobin | Apr 2010 | B2 |
7695488 | Berenstein et al. | Apr 2010 | B2 |
7699056 | Tran et al. | Apr 2010 | B2 |
7727189 | Vantassel et al. | Jun 2010 | B2 |
7744583 | Seifert et al. | Jun 2010 | B2 |
7744652 | Morsi | Jun 2010 | B2 |
7763011 | Ortiz et al. | Jul 2010 | B2 |
7828815 | Mazzocchi et al. | Nov 2010 | B2 |
7828816 | Mazzocchi et al. | Nov 2010 | B2 |
7906066 | Wilson et al. | Mar 2011 | B2 |
7922732 | Mazzocchi et al. | Apr 2011 | B2 |
7955343 | Makower et al. | Jun 2011 | B2 |
7972359 | Kreidler | Jul 2011 | B2 |
7993364 | Morsi | Aug 2011 | B2 |
RE42758 | Ken et al. | Sep 2011 | E |
8016869 | Nikolchev | Sep 2011 | B2 |
8016872 | Parker | Sep 2011 | B2 |
8062379 | Morsi | Nov 2011 | B2 |
8075585 | Lee et al. | Dec 2011 | B2 |
8142456 | Rosqueta et al. | Mar 2012 | B2 |
8202280 | Richter | Jun 2012 | B2 |
8221445 | Van et al. | Jul 2012 | B2 |
8261648 | Marchand et al. | Sep 2012 | B1 |
8298257 | Sepetka et al. | Oct 2012 | B2 |
8430012 | Marchand et al. | Apr 2013 | B1 |
8454681 | Holman et al. | Jun 2013 | B2 |
8603014 | Alleman et al. | Dec 2013 | B2 |
8837800 | Bammer et al. | Sep 2014 | B1 |
9119656 | Bose et al. | Sep 2015 | B2 |
9126018 | Garrison | Sep 2015 | B1 |
9179918 | Levy et al. | Nov 2015 | B2 |
9211132 | Bowman | Dec 2015 | B2 |
9241699 | Kume et al. | Jan 2016 | B1 |
9265512 | Garrison et al. | Feb 2016 | B2 |
9308007 | Cully et al. | Apr 2016 | B2 |
9314248 | Molaei | Apr 2016 | B2 |
9399118 | Kume et al. | Jul 2016 | B2 |
9445828 | Turjman et al. | Sep 2016 | B2 |
9445829 | Brady et al. | Sep 2016 | B2 |
9492637 | Garrison et al. | Nov 2016 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9561345 | Garrison et al. | Feb 2017 | B2 |
9579119 | Cully et al. | Feb 2017 | B2 |
9585741 | Ma | Mar 2017 | B2 |
9642635 | Vale et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9737318 | Monstadt et al. | Aug 2017 | B2 |
9770251 | Bowman et al. | Sep 2017 | B2 |
9801643 | Hansen et al. | Oct 2017 | B2 |
9861783 | Garrison et al. | Jan 2018 | B2 |
9901472 | Newell et al. | Feb 2018 | B2 |
9924959 | Molaei | Mar 2018 | B2 |
9993257 | Losordo et al. | Jun 2018 | B2 |
10028782 | Orion | Jul 2018 | B2 |
10029008 | Creighton | Jul 2018 | B2 |
10039906 | Kume et al. | Aug 2018 | B2 |
10478194 | Rhee et al. | Nov 2019 | B2 |
11406405 | Molaei | Aug 2022 | B2 |
20010000797 | Mazzocchi | May 2001 | A1 |
20010007082 | Dusbabek et al. | Jul 2001 | A1 |
20010012949 | Forber | Aug 2001 | A1 |
20010051822 | Stack et al. | Dec 2001 | A1 |
20020013599 | Limon et al. | Jan 2002 | A1 |
20020013618 | Marotta et al. | Jan 2002 | A1 |
20020042628 | Chin et al. | Apr 2002 | A1 |
20020062091 | Jacobsen et al. | May 2002 | A1 |
20020111647 | Khairkhahan et al. | Aug 2002 | A1 |
20020165572 | Saadat | Nov 2002 | A1 |
20020169473 | Sepetka et al. | Nov 2002 | A1 |
20030004538 | Secrest et al. | Jan 2003 | A1 |
20030028209 | Teoh et al. | Feb 2003 | A1 |
20030057156 | Peterson et al. | Mar 2003 | A1 |
20030171739 | Murphy et al. | Sep 2003 | A1 |
20030171770 | Kusleika et al. | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030195553 | Wallace et al. | Oct 2003 | A1 |
20030199913 | Dubrul et al. | Oct 2003 | A1 |
20030199919 | Palmer et al. | Oct 2003 | A1 |
20040015224 | Armstrong et al. | Jan 2004 | A1 |
20040034386 | Fulton et al. | Feb 2004 | A1 |
20040044391 | Porter | Mar 2004 | A1 |
20040098027 | Teoh et al. | May 2004 | A1 |
20040098030 | Makower et al. | May 2004 | A1 |
20040106945 | Thramann et al. | Jun 2004 | A1 |
20040106977 | Sullivan et al. | Jun 2004 | A1 |
20040111112 | Hoffmann | Jun 2004 | A1 |
20040122467 | Vantassel et al. | Jun 2004 | A1 |
20040122468 | Yodfat et al. | Jun 2004 | A1 |
20040143239 | Zhou et al. | Jul 2004 | A1 |
20040143286 | Johnson et al. | Jul 2004 | A1 |
20040153119 | Kusleika et al. | Aug 2004 | A1 |
20040162606 | Thompson | Aug 2004 | A1 |
20040172056 | Guterman et al. | Sep 2004 | A1 |
20040172121 | Eidenschink et al. | Sep 2004 | A1 |
20040181253 | Sepetka et al. | Sep 2004 | A1 |
20040186562 | Cox | Sep 2004 | A1 |
20040193206 | Gerberding et al. | Sep 2004 | A1 |
20040215229 | Coyle | Oct 2004 | A1 |
20040215332 | Frid | Oct 2004 | A1 |
20040249408 | Murphy et al. | Dec 2004 | A1 |
20040267346 | Shelso | Dec 2004 | A1 |
20050010281 | Yodfat et al. | Jan 2005 | A1 |
20050021077 | Chin et al. | Jan 2005 | A1 |
20050033408 | Jones et al. | Feb 2005 | A1 |
20050033409 | Burke et al. | Feb 2005 | A1 |
20050043759 | Chanduszko | Feb 2005 | A1 |
20050060017 | Fischell et al. | Mar 2005 | A1 |
20050096728 | Ramer | May 2005 | A1 |
20050096732 | Marotta et al. | May 2005 | A1 |
20050107823 | Leone et al. | May 2005 | A1 |
20050131443 | Abdel-Gawwad | Jun 2005 | A1 |
20050222605 | Greenhalgh et al. | Oct 2005 | A1 |
20050228434 | Amplatz et al. | Oct 2005 | A1 |
20050267568 | Berez et al. | Dec 2005 | A1 |
20050273135 | Chanduszko et al. | Dec 2005 | A1 |
20050288763 | Andreas et al. | Dec 2005 | A1 |
20060052816 | Bates et al. | Mar 2006 | A1 |
20060064151 | Guterman et al. | Mar 2006 | A1 |
20060074475 | Gumm | Apr 2006 | A1 |
20060106421 | Teoh | May 2006 | A1 |
20060116713 | Sepetka et al. | Jun 2006 | A1 |
20060116714 | Sepetka et al. | Jun 2006 | A1 |
20060155323 | Porter et al. | Jul 2006 | A1 |
20060167494 | Suddaby | Jul 2006 | A1 |
20060190070 | Dieck et al. | Aug 2006 | A1 |
20060190076 | Taheri | Aug 2006 | A1 |
20060200221 | Malewicz | Sep 2006 | A1 |
20060206199 | Churchwell et al. | Sep 2006 | A1 |
20060206200 | Garcia et al. | Sep 2006 | A1 |
20060217799 | Mailänder et al. | Sep 2006 | A1 |
20060229700 | Acosta et al. | Oct 2006 | A1 |
20060235464 | Avellanet et al. | Oct 2006 | A1 |
20060235501 | Igaki | Oct 2006 | A1 |
20060241690 | Amplatz et al. | Oct 2006 | A1 |
20060247680 | Amplatz et al. | Nov 2006 | A1 |
20060264905 | Eskridge et al. | Nov 2006 | A1 |
20060264907 | Eskridge et al. | Nov 2006 | A1 |
20060271149 | Berez et al. | Nov 2006 | A1 |
20060271153 | Garcia et al. | Nov 2006 | A1 |
20060276827 | Mitelberg et al. | Dec 2006 | A1 |
20060282152 | Beyerlein et al. | Dec 2006 | A1 |
20060292206 | Kim et al. | Dec 2006 | A1 |
20060293744 | Peckham et al. | Dec 2006 | A1 |
20070005125 | Berenstein et al. | Jan 2007 | A1 |
20070016243 | Ramaiah et al. | Jan 2007 | A1 |
20070021816 | Rudin | Jan 2007 | A1 |
20070050017 | Sims et al. | Mar 2007 | A1 |
20070088387 | Eskridge et al. | Apr 2007 | A1 |
20070093889 | Wu et al. | Apr 2007 | A1 |
20070100415 | Licata et al. | May 2007 | A1 |
20070106311 | Wallace et al. | May 2007 | A1 |
20070135826 | Zaver et al. | Jun 2007 | A1 |
20070150045 | Ferrera | Jun 2007 | A1 |
20070162104 | Frid | Jul 2007 | A1 |
20070173928 | Morsi | Jul 2007 | A1 |
20070191884 | Eskridge et al. | Aug 2007 | A1 |
20070191924 | Rudakov | Aug 2007 | A1 |
20070198075 | Levy | Aug 2007 | A1 |
20070203567 | Levy | Aug 2007 | A1 |
20070219619 | Dieck et al. | Sep 2007 | A1 |
20070221230 | Thompson et al. | Sep 2007 | A1 |
20070225760 | Moszner et al. | Sep 2007 | A1 |
20070225794 | Thramann et al. | Sep 2007 | A1 |
20070233224 | Leynov et al. | Oct 2007 | A1 |
20070233244 | Lopez et al. | Oct 2007 | A1 |
20070239261 | Bose et al. | Oct 2007 | A1 |
20070265656 | Amplatz et al. | Nov 2007 | A1 |
20070270902 | Slazas et al. | Nov 2007 | A1 |
20070288083 | Hines | Dec 2007 | A1 |
20070293935 | Olsen et al. | Dec 2007 | A1 |
20080009934 | Schneider et al. | Jan 2008 | A1 |
20080021535 | Leopold et al. | Jan 2008 | A1 |
20080039933 | Yodfat et al. | Feb 2008 | A1 |
20080045996 | Makower et al. | Feb 2008 | A1 |
20080045997 | Balgobin et al. | Feb 2008 | A1 |
20080051705 | Von et al. | Feb 2008 | A1 |
20080058856 | Ramaiah et al. | Mar 2008 | A1 |
20080065141 | Holman et al. | Mar 2008 | A1 |
20080065145 | Carpenter | Mar 2008 | A1 |
20080097495 | Feller et al. | Apr 2008 | A1 |
20080109063 | Hancock et al. | May 2008 | A1 |
20080114391 | Dieck et al. | May 2008 | A1 |
20080114436 | Dieck et al. | May 2008 | A1 |
20080114439 | Ramaiah et al. | May 2008 | A1 |
20080119886 | Greenhalgh et al. | May 2008 | A1 |
20080125806 | Mazzocchi et al. | May 2008 | A1 |
20080125848 | Kusleika et al. | May 2008 | A1 |
20080132989 | Snow et al. | Jun 2008 | A1 |
20080140177 | Hines | Jun 2008 | A1 |
20080154286 | Abbott et al. | Jun 2008 | A1 |
20080195139 | Donald et al. | Aug 2008 | A1 |
20080219533 | Grigorescu | Sep 2008 | A1 |
20080221600 | Dieck et al. | Sep 2008 | A1 |
20080243226 | Fernandez et al. | Oct 2008 | A1 |
20080249562 | Cahill | Oct 2008 | A1 |
20080262598 | Elmaleh | Oct 2008 | A1 |
20080281350 | Sepetka et al. | Nov 2008 | A1 |
20080319533 | Lehe | Dec 2008 | A1 |
20090025820 | Adams | Jan 2009 | A1 |
20090069806 | De et al. | Mar 2009 | A1 |
20090082803 | Adams et al. | Mar 2009 | A1 |
20090099647 | Glimsdale et al. | Apr 2009 | A1 |
20090112251 | Qian et al. | Apr 2009 | A1 |
20090118811 | Moloney | May 2009 | A1 |
20090125094 | Rust | May 2009 | A1 |
20090143849 | Ozawa et al. | Jun 2009 | A1 |
20090143851 | Paul | Jun 2009 | A1 |
20090198315 | Boudjemline | Aug 2009 | A1 |
20090204145 | Matthews | Aug 2009 | A1 |
20090210047 | Amplatz et al. | Aug 2009 | A1 |
20090216307 | Kaufmann et al. | Aug 2009 | A1 |
20090228029 | Lee | Sep 2009 | A1 |
20090228093 | Taylor et al. | Sep 2009 | A1 |
20090259202 | Leeflang et al. | Oct 2009 | A1 |
20090264914 | Riina et al. | Oct 2009 | A1 |
20090275974 | Marchand et al. | Nov 2009 | A1 |
20090287291 | Becking et al. | Nov 2009 | A1 |
20090287294 | Rosqueta et al. | Nov 2009 | A1 |
20090287297 | Cox | Nov 2009 | A1 |
20090318941 | Sepetka et al. | Dec 2009 | A1 |
20090318948 | Davis et al. | Dec 2009 | A1 |
20100004726 | Hancock et al. | Jan 2010 | A1 |
20100004761 | Flanders et al. | Jan 2010 | A1 |
20100023048 | Mach | Jan 2010 | A1 |
20100023105 | Levy et al. | Jan 2010 | A1 |
20100030220 | Truckai et al. | Feb 2010 | A1 |
20100036390 | Gumm | Feb 2010 | A1 |
20100042133 | Ramzipoor et al. | Feb 2010 | A1 |
20100069948 | Veznedaroglu et al. | Mar 2010 | A1 |
20100087908 | Hilaire et al. | Apr 2010 | A1 |
20100094335 | Gerberding et al. | Apr 2010 | A1 |
20100131002 | Connor et al. | May 2010 | A1 |
20100152767 | Greenhalgh et al. | Jun 2010 | A1 |
20100185271 | Zhang | Jul 2010 | A1 |
20100222802 | Gillespie et al. | Sep 2010 | A1 |
20100249894 | Oba et al. | Sep 2010 | A1 |
20100256667 | Ashby et al. | Oct 2010 | A1 |
20100268260 | Riina et al. | Oct 2010 | A1 |
20100274276 | Chow et al. | Oct 2010 | A1 |
20100312270 | Mcguckin et al. | Dec 2010 | A1 |
20100331948 | Turovskiy et al. | Dec 2010 | A1 |
20110022149 | Cox et al. | Jan 2011 | A1 |
20110054519 | Neuss | Mar 2011 | A1 |
20110082493 | Samson et al. | Apr 2011 | A1 |
20110106234 | Grandt | May 2011 | A1 |
20110144669 | Becking et al. | Jun 2011 | A1 |
20110152993 | Marchand et al. | Jun 2011 | A1 |
20110184452 | Huynh et al. | Jul 2011 | A1 |
20110184453 | Levy et al. | Jul 2011 | A1 |
20110196415 | Ujiie et al. | Aug 2011 | A1 |
20110202085 | Loganathan et al. | Aug 2011 | A1 |
20110208227 | Becking | Aug 2011 | A1 |
20110213403 | Aboytes | Sep 2011 | A1 |
20110245862 | Dieck et al. | Oct 2011 | A1 |
20110265943 | Rosqueta et al. | Nov 2011 | A1 |
20110276120 | Gilson et al. | Nov 2011 | A1 |
20110313447 | Strauss et al. | Dec 2011 | A1 |
20110319926 | Becking et al. | Dec 2011 | A1 |
20120041470 | Shrivastava et al. | Feb 2012 | A1 |
20120065720 | Strauss et al. | Mar 2012 | A1 |
20120101561 | Porter | Apr 2012 | A1 |
20120143237 | Cam et al. | Jun 2012 | A1 |
20120143317 | Cam et al. | Jun 2012 | A1 |
20120165803 | Bencini et al. | Jun 2012 | A1 |
20120165919 | Cox et al. | Jun 2012 | A1 |
20120197283 | Marchand et al. | Aug 2012 | A1 |
20120226343 | Vo et al. | Sep 2012 | A1 |
20120245674 | Molaei et al. | Sep 2012 | A1 |
20120245675 | Molaei et al. | Sep 2012 | A1 |
20120283768 | Cox et al. | Nov 2012 | A1 |
20120316598 | Becking et al. | Dec 2012 | A1 |
20120330341 | Becking et al. | Dec 2012 | A1 |
20120330347 | Becking et al. | Dec 2012 | A1 |
20130018451 | Grabowski et al. | Jan 2013 | A1 |
20130030461 | Marks et al. | Jan 2013 | A1 |
20130066357 | Aboytes et al. | Mar 2013 | A1 |
20130066360 | Becking et al. | Mar 2013 | A1 |
20130085522 | Becking et al. | Apr 2013 | A1 |
20130092013 | Thompson et al. | Apr 2013 | A1 |
20130123830 | Becking et al. | May 2013 | A1 |
20130211495 | Halden et al. | Aug 2013 | A1 |
20130233160 | Marchand et al. | Sep 2013 | A1 |
20130239790 | Thompson et al. | Sep 2013 | A1 |
20130245667 | Marchand et al. | Sep 2013 | A1 |
20130245670 | Fan | Sep 2013 | A1 |
20130268053 | Molaei et al. | Oct 2013 | A1 |
20130274862 | Cox et al. | Oct 2013 | A1 |
20130274863 | Cox et al. | Oct 2013 | A1 |
20130274866 | Cox et al. | Oct 2013 | A1 |
20130274868 | Cox et al. | Oct 2013 | A1 |
20130281788 | Garrison | Oct 2013 | A1 |
20130304179 | Bialas et al. | Nov 2013 | A1 |
20130345739 | Brady | Dec 2013 | A1 |
20140005713 | Bowman | Jan 2014 | A1 |
20140128905 | Molaei | May 2014 | A1 |
20140172001 | Becking et al. | Jun 2014 | A1 |
20140200648 | Newell et al. | Jul 2014 | A1 |
20140276074 | Warner | Sep 2014 | A1 |
20140277361 | Farhat et al. | Sep 2014 | A1 |
20140343595 | Monstadt et al. | Nov 2014 | A1 |
20150157331 | Levy et al. | Jun 2015 | A1 |
20150245932 | Molaei et al. | Sep 2015 | A1 |
20150359547 | Vale et al. | Dec 2015 | A1 |
20160015395 | Molaei et al. | Jan 2016 | A1 |
20160015402 | Brady et al. | Jan 2016 | A1 |
20160015935 | Chan et al. | Jan 2016 | A1 |
20160106448 | Brady et al. | Apr 2016 | A1 |
20160106449 | Brady et al. | Apr 2016 | A1 |
20160113663 | Brady et al. | Apr 2016 | A1 |
20160113665 | Brady et al. | Apr 2016 | A1 |
20160113786 | Levy et al. | Apr 2016 | A1 |
20160151618 | Powers et al. | Jun 2016 | A1 |
20160157985 | Vo et al. | Jun 2016 | A1 |
20160199620 | Pokorney et al. | Jul 2016 | A1 |
20160296690 | Kume et al. | Oct 2016 | A1 |
20160302808 | Loganathan et al. | Oct 2016 | A1 |
20160375180 | Anzai | Dec 2016 | A1 |
20170079766 | Wang et al. | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170086862 | Vale et al. | Mar 2017 | A1 |
20170100143 | Grandfield | Apr 2017 | A1 |
20170105743 | Vale et al. | Apr 2017 | A1 |
20170164963 | Goyal | Jun 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170290599 | Youn et al. | Oct 2017 | A1 |
20180049762 | Seip et al. | Feb 2018 | A1 |
20180084982 | Yamashita et al. | Mar 2018 | A1 |
20180116717 | Taff et al. | May 2018 | A1 |
20180132876 | Zaidat | May 2018 | A1 |
20180140314 | Goyal et al. | May 2018 | A1 |
20180140315 | Bowman et al. | May 2018 | A1 |
20180140354 | Lam et al. | May 2018 | A1 |
20180185614 | Garrison et al. | Jul 2018 | A1 |
20200281613 | Molaei | Sep 2020 | A1 |
Number | Date | Country |
---|---|---|
2607529 | Apr 2008 | CA |
101472537 | Jul 2009 | CN |
1283434 | Nov 1968 | DE |
102008028308 | Apr 2009 | DE |
102010050569 | May 2012 | DE |
102011011510 | Aug 2012 | DE |
0743047 | Nov 1996 | EP |
0855170 | Jul 1998 | EP |
0775470 | Mar 1999 | EP |
1621148 | Feb 2006 | EP |
1637176 | Mar 2006 | EP |
1752112 | Feb 2007 | EP |
1942972 | Jul 2008 | EP |
1872742 | May 2009 | EP |
2279023 | Feb 2011 | EP |
2363075 | Sep 2011 | EP |
2496299 | Sep 2012 | EP |
2319575 | Nov 2013 | EP |
2675402 | Dec 2013 | EP |
2890306 | Mar 2007 | FR |
2003520103 | Jul 2003 | JP |
2003524434 | Aug 2003 | JP |
2004049585 | Feb 2004 | JP |
2005522266 | Jul 2005 | JP |
2006506201 | Feb 2006 | JP |
2008541832 | Nov 2008 | JP |
4673987 | Jan 2011 | JP |
2014004219 | Jan 2014 | JP |
2018118132 | Aug 2018 | JP |
20180102877 | Sep 2018 | KR |
8800813 | Feb 1988 | WO |
9601591 | Jan 1996 | WO |
9726939 | Jul 1997 | WO |
9903404 | Jan 1999 | WO |
9905977 | Feb 1999 | WO |
9908607 | Feb 1999 | WO |
9908743 | Feb 1999 | WO |
9940873 | Aug 1999 | WO |
9962432 | Dec 1999 | WO |
03037191 | May 2003 | WO |
02071977 | Jun 2003 | WO |
2005117718 | Dec 2005 | WO |
2006026744 | Mar 2006 | WO |
2006034166 | Mar 2006 | WO |
2006052322 | May 2006 | WO |
2006091891 | Aug 2006 | WO |
2006119422 | Nov 2006 | WO |
2007047851 | Apr 2007 | WO |
2007076480 | Jul 2007 | WO |
2007095031 | Aug 2007 | WO |
2007121405 | Oct 2007 | WO |
2008022327 | Feb 2008 | WO |
2008109228 | Sep 2008 | WO |
2008151204 | Dec 2008 | WO |
2008157507 | Dec 2008 | WO |
2009076515 | Jun 2009 | WO |
2009132045 | Oct 2009 | WO |
2009134337 | Nov 2009 | WO |
2009135166 | Nov 2009 | WO |
2010028314 | Mar 2010 | WO |
2010030991 | Mar 2010 | WO |
2010147808 | Dec 2010 | WO |
2011057002 | May 2011 | WO |
2011057277 | May 2011 | WO |
2011130081 | Oct 2011 | WO |
2011153304 | Dec 2011 | WO |
2012068175 | May 2012 | WO |
2012112749 | Aug 2012 | WO |
2012166804 | Dec 2012 | WO |
2015141317 | Sep 2015 | WO |
2017192999 | Nov 2017 | WO |
2018019829 | Feb 2018 | WO |
2018033401 | Feb 2018 | WO |
2018046408 | Mar 2018 | WO |
2018137029 | Aug 2018 | WO |
2018137030 | Aug 2018 | WO |
2018145212 | Aug 2018 | WO |
2018156813 | Aug 2018 | WO |
2018172891 | Sep 2018 | WO |
2018187776 | Oct 2018 | WO |
Entry |
---|
Hill , et al., “Initial Results of the AMPLATZER Vascular Plug in the Treatment of Congenital Heart Disease, Business Briefing”, US Cardiology 2004. |
Ronnen , et al., “AMPLATZER Vascular Plug Case Study, Closure of Arteriovenous Fistula Between Deep Femoral Artery and Superficial Femoral Vein”, AGA Medical Corporation, May 2007. |
Thorell , et al., “Y-configured Dual Intracranial Stent-assisted Coil Embolization for the Treatment of Wide-necked Basilar Tip Aneurysms”, Neurosurgery, May 2005, vol. 56, Issue 5, pp. 1035-1040. |
Number | Date | Country | |
---|---|---|---|
20220330962 A1 | Oct 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16884665 | May 2020 | US |
Child | 17810717 | US | |
Parent | 15934838 | Mar 2018 | US |
Child | 16884665 | US | |
Parent | 15131306 | Apr 2016 | US |
Child | 15934838 | US | |
Parent | 13669652 | Nov 2012 | US |
Child | 15131306 | US |