This disclosure relates generally to drive systems for reciprocating plunger-style pumps used in hydraulic fracturing operations, and more particularly to multi-plunger hydraulic fracturing pumps and associated drive systems.
With advancements in technology over the past few decades, the ability to reach unconventional sources of hydrocarbons has tremendously increased. Horizontal drilling and hydraulic fracturing are two such ways that new developments in technology have led to hydrocarbon production from previously unreachable shale formations. Hydraulic fracturing (fracking) operations typically require powering numerous components in order to recover oil and gas resources from the ground. For example, hydraulic fracturing usually includes pumps that inject fracking fluid down the wellbore, blenders that mix proppant into the fluid, cranes, wireline units, and many other components that all must perform different functions to carry out fracking operations.
Hydraulic fracturing operations commonly use diesel-powered pumps to transmit fluid media down the well bore, the transmissions for the diesel-powered pumps often having seven speeds or more. When one or more pumps go offline during operation, for example due to system failure or for scheduled maintenance, the speed of the remaining operating pumps is increased accordingly. However, many of the top gears in these diesel transmissions provide speeds that are above the critical speed for the associated plunger pumps. Thus, compensating for the downed pump or pumps by up-shifting operation of the remaining pumps to these higher gears, above the critical speed for the pumps, can result in damage to the pumps. There is a need for hydraulic fracturing pumps that are capable of operation at or below the critical speed, without sacrificing pump rate, efficiency, and efficacy.
One of the most common transmissions utilized in hydraulic fracturing pump applications is a nine-speed transmission, often driven by a diesel-powered engine. When this transmission is in fifth gear and the engine is running at 1700 rotations per minute (rpm), for example, the critical speed of 120 rpm on an associated 8-inch stroke pump is reached. Therefore, running the pump with the transmission operating in any of gears six through nine, above the critical speed reached at gear five, could cause pump cavitation and damage accumulation to the fluid end of the pump.
It has historically been believed that pump cavitation is caused by air entering the pump. Through testing and data-gathering, however, Applicants have observed that pump cavitation and damage are caused by the formation of vacuum bubbles as a result of fluid being accelerated too fast through the pump. A heightened speed of operation creates low pressure within the pumps, creating vacuum bubbles. As the pump plungers retract, the vacuum bubbles implode, causing damage (cavitation) to the pump and engine systems. Although the risks of operating the pumps at too great of speeds may be known, concerns about lowered pump rates and lost efficiency resulting from maintaining slower transmission speeds commonly lead to disregard of the risks as an unavoidable consequence of maintaining pump efficiency.
In seeking to avoid such pump damage, Applicants have observed that, by operating transmissions such that pumps are maintained at or below critical pump speeds, such formation of vacuum bubbles and resulting pump cavitation and damage may be avoided. Further still, Applicants have observed that use of electric- or hydraulic-powered pumps may allow for better control of pump speeds at or below the critical speed due to the smaller increments between gear speeds as compared to those of pumps driven by diesel-powered engines.
Operation below critical pump speeds has previously been avoided as being considered inefficient and ineffective for pump usage in fracking, as slower pump speeds are historically believed to be directly tied to pump rates. Applicant has observed, however, that the introduction of multiple electric- or hydraulic-powered motors driving planetary gear trains can provide effective and efficient pumping power, thereby maintaining a consistent pump rate for fluid transfer, while also sustaining a pumping speed at or below the critical speed for the plungers. For example, Applicant discovered that varying pump bore sizes and stroke lengths, as well as number of plungers, allowed for operation at slower pump speeds while maintaining or increasing fluid pump rates. Applicant also discovered, through testing and analysis, that certain bore size, stroke length, and plunger number combinations provided maximum pump rate efficiency at a usable and economically effective overall pump size.
The present disclosure is directed to hydraulic fracturing system for fracturing a subterranean formation, according to various embodiments. In an embodiment, the hydraulic fracturing system can include a multi-plunger hydraulic fracturing pump fluidly connected to a well associated with the subterranean formation, and the multi-plunger pump can be configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation. In an embodiment, the system can further include a plurality of motors positioned to power the multi-plunger pump, and a planetary gear train having a plurality of input pinion gears in rotational contact with each of the plurality of motors. In an embodiment, a gear ratio of the planetary gear train and a speed at which the plurality of motors operates can be selected so as to limit a maximum pump speed associated with the multi-plunger pump.
In an embodiment, the system can include a plurality of speed reduction gearboxes positioned between the plurality of input pinion gears and the plurality of motors so as to achieve a desired pump rate.
In an embodiment, the plurality of motors can include one of a plurality of electric motors or a plurality of hydraulic motors.
In an embodiment, the maximum pump speed can correlate to a critical plunger speed associated with each of the plurality of hydraulic pumps.
In an embodiment, the maximum pump speed can be 5% or less over a critical plunger speed associated with each of the plurality of hydraulic pumps.
In an embodiment, the plurality of hydraulic pumps includes an odd number of plungers greater than or equal to five plungers.
In an embodiment, a stroke length of each of the plungers associated with the plurality of hydraulic pumps can be selected to inversely relate to a pump speed associated with the plurality of hydraulic pumps so as to achieve a predetermined flow rate.
In an embodiment, the system can include a variable frequency drive (VFD) connected to the plurality of motors to control the speed of the plurality of motors. The VFD can be positioned to accelerate or decelerate pump rotational speeds associated with each of the plurality of hydraulic pumps, according to an embodiment.
In an embodiment, the VFD can include a plurality of VFDs and the plurality of VFDs can be configured to share a load required to power the plurality of hydraulic pumps.
In an embodiment, the plurality of VFDs can be configured to automatically shut off in the event of an overpressure event with respect to the plurality of hydraulic pumps.
The present disclosure is also related to a hydraulic fracturing system for fracturing a subterranean formation, according to an embodiment. In an embodiment, the system can include a multi-plunger hydraulic fracturing pump fluidly connected to a well associated with the subterranean formation, and the multi-plunger pump can be configured to pump fluid into a wellbore associated with the well at a high pressure so that the fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation. In an embodiment, a plurality of motors can be positioned to power the multi-plunger pump. The system can further include a variable frequency drive connected to the plurality of motors to control the speeds of the plurality of electric motors, according to an embodiment. In an embodiment, the system can include a planetary gear train having a plurality of input pinion gears in rotational contact with each of the plurality of motors. In an embodiment, a gear ratio of the planetary gear train and a speed at which the plurality of motors operates can be selected so as to limit a maximum pump speed associated with the multi-plunger pump.
The present disclosure is also directed to a method for pumping fluid into a wellbore associated with a subterranean formation. In an embodiment, the method can include fluidly connecting a multi-plunger hydraulic fracturing pump to a well associated with the subterranean formation such that the multi-plunger pump pumps fluid into the wellbore at a high pressure so that fluid passes from the wellbore into the subterranean formation and fractures the subterranean formation. In an embodiment, the method can include powering the multi-plunger pump with a plurality of motors. In an embodiment, the method can further include providing a planetary gear train having a plurality of input pinion gears in rotational contact with each of the plurality of motors so as to translate power from the plurality of motors into a desired pump rate of the multi-plunger pump.
Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art after reading the detailed description herein and the accompanying figures.
Some of the features and benefits of the present invention having been stated, others will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
While the invention will be described in connection with the preferred embodiments, it will be understood that the included description is not intended to limit the invention to the described preferred embodiments. On the contrary, the description is intended to cover all alternatives, modifications, and equivalents, as may be included within the spirit and scope of the invention as defined by the appended claims.
The method and system of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The method and system of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein: rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout.
It is to be further understood that the scope of the present disclosure is not limited the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
Described herein is an example of a method and system for providing reciprocating, plunger-style pumps as part of a multi-plunger system for use in hydraulic fracturing operations. Also described are various drive systems for use with the described reciprocating, plunger-style pumps. In various embodiments, the pumps and drive systems may be utilized by conventionally powered (i.e., diesel engine-driven) hydraulic fracturing pumping systems, or in other embodiments by hydraulically powered or electrically powered hydraulic fracturing pumping systems.
Multi-plunger hydraulic fracturing pumps, though known in the art, are typically limited to either triplex (three plungers) or quintuplex (five plungers) arrangements. Common hydraulic fracturing pumps often utilize 8-inch, 10-inch, and 11-inch stroke triplex and quintuplex hydraulic fracturing pumps. Hydraulic fracturing pumps are commonly driven by an engine (usually a 2500 horsepower (HP) diesel engine) and a multiple speed transmission, usually having seven speeds or more. However, many of the top gears, depending on the manufacturer and gear ratios, provide speeds that are above the critical speed of a plunger pump.
For example, one of the most common transmissions utilized in hydraulic fracturing pump applications is the Caterpillar model TH55-E90, which is a 9-speed transmission. As shown in
Similarly, the common hydraulic fracturing application transmissions known in the art may exhibit the same issues in higher gears, as shown below in
Use of the multi-plunger hydraulic fracturing pumps according to the present disclosure may eliminate the need for a diesel engine and transmission. As shown above, diesel engines and transmissions often include multiple gears that accelerate the plunger speed above critical operating speeds. This elimination of the typical engine and transmission from hydraulic fracturing pump units may enable the pumps to be driven by multiple electric motors, according to some embodiments, or multiple hydraulic motors according to other embodiments. These electric or hydraulic motors may have fewer gears such that operation in gears that increase the plunger speeds above their critical speeds can be avoided. By using multiple motors, whether hydraulic or electric, to drive a single pump, pump rates can be increased without exceeding critical plunger speeds.
Use of electric or hydraulic motors, rather than diesel motors, may also make maintenance, repair, and replacement of the electric motors safer and faster than single or double electric motor-driven pumps. This configuration may prevent the fracturing pumps from being run at speeds higher than the critical plunger speed, which may help to minimize pump cavitation and damage accumulation, thus greatly extending the usable life of the pump fluid ends. For example, as discussed in more detail below, the system could be designed to allow only a slight overspeed of the pumps beyond the identified critical pump speed as a safety margin in the event that one of the fleet's pumps were taken offline for repairs or maintenance, and an additional rate of the remaining online pumps were required to complete the stage being pumped.
In the multiple electric motor-driven embodiment of the present disclosure, the electric motors may directly drive the pump, and the gear ratios of the planetary drive along with the electric motor-rated speeds may be chosen to limit the maximum pump speed, so as to not exceed the plunger critical speed. However, the gear ratios and electric motor-rated speeds may also be chosen to allow only a slight percentage of overspeed (higher than critical plunger speed) as a safe margin to enable a fleet of operating pumps to achieve a desired pump rate, for example when one pump is taken off line, as is often the case in hydraulic fracturing. For example, the gear ratios and electric motor-rated speeds may be chosen to operate 5% or less above the critical plunger speed according to some examples; 10% or less above the critical plunger speed according to some examples; or any other acceptable range as will be readily understood by one having ordinary skill in the art. Repairs or maintenance are generally performed as quickly as possible so that the offline pump is available by the next sequential fracturing stage. This same logic could be applied to the hydraulic motor driven system or the system that utilizes speed reduction gearboxes driving a single ring gear.
By the present disclosure, multi-plunger hydraulic fracturing pumps utilizing higher multiples of plungers, such as 7, 9, 11, 13, etc. (septenplex, novenplex, undenplex, tredenplex, etc.), are described. In some embodiments, more than 13 plungers may be utilized, as will be readily understood by one having ordinary skill in the art. In some embodiments, odd numbers of plungers may be chosen so that the pump flow ripple magnitude is minimized. For example, in multi-plunger hydraulic fracturing pumps having higher numbers of plungers, the plunger ripple frequency may be increased, thereby reducing the amount of time between ripples, which may provide a smoother pressure performance for the pumps.
In some embodiments, longer stroke lengths of the plunger pumps may be utilized to reduce plunger speed. For example, a 10-inch stroke pump of a given plunger size may be run at a slower speed than an 8-inch stroke pump of the same plunger size, in order to accomplish the same flow rate. Slowing the plunger down may also decrease the possibility of pump cavitation. For example, when triplex and quintuplex pumps, as are known in the art, are operated at higher rates, conditions for cavitation to occur are measurably higher. According to an embodiment, a critical pump speed may be 120 rpm of the pump crankshaft. With this pump speed, on the currently used 8-inch stroke pumps, the rotational speed translates to an average linear speed of the plungers at a velocity of 32 inches per second. At higher speeds, with every stroke of the plungers, fluid is accelerated into and out of the pump fluid end, creating a likelihood of low pressure regions within the fluid end that approach or dip below vapor pressure values for the fluid, thereby causing cavitation, and ultimately damage accumulation, to occur. The use of longer stroke plungers accordingly contributes critically to longer fluid end life.
Various drive systems for powering multi-plunger hydraulic fracturing pumps are contemplated. According to an embodiment, multiple electric motors may be utilized to power the multi-plunger hydraulic fracturing pump. The number of motors utilized may be selected based on the output hydraulic horsepower for which the pump is designed, in some examples. In other examples, the number of motors could be determined on an “n plus 1” basis, in which “n” number of motors would be adequate to provide enough input power according to the output hydraulic horsepower for which the pump is designed, and one (“1”) additional motor would be included to allow for a single motor failure or maintenance situation. In such a situation, the failed motor (or motor purposefully removed for maintenance) could be disconnected from the electrical circuit and allowed to freewheel, while the remaining operational motors would still provide adequate power for the pump, according to an embodiment.
In the example illustrated in
In the illustrated embodiment of
In another embodiment, multiple hydraulic motors may be utilized to power a multi-plunger hydraulic fracturing pump, in which a planetary gear train system 100 similar to that illustrated in
According to an alternate embodiment, for example as illustrated in
In an embodiment utilizing multiple electric motors, the fleet of fracturing pumps may be powered by multiple electric motors, and overall electric power may be generated by one or more diesel or gas turbines. When the pumps are being brought online to pump fluids into the well, the power may be switched via appropriate switchgear to the electric motors.
In some embodiments, the speed of the motors may be controlled by one or more variable frequency drives (VFD), which may accelerate or decelerate the pump rotational speeds using an S curve. The pump operator may select the various pump speeds via a human-machine interface (HMI) according to some embodiments, for example from inside a data van, or from a “suitcase,” which is a portable, standalone HMI. The HMI or suitcase may allow on/off control of the pumps as well as speed control of the pumps, to allow the pumps to run at speeds from zero crankshaft rpm up to the maximum speed, which would correlate with the plunger critical speed.
According to an embodiment, one of the VFDs may be designated as the master VFD, and the remaining VFDs may be designed to share the load required to power the pump under all load conditions. In the case of an overpressure event, the hydraulic fracturing controls may automatically turn the VFD off using the on/off signal for rapid shutdown, instead of using the rpm command, which uses an S curve to control the acceleration and/or deceleration. A manual emergency shutdown may also be included, which uses an HMI (such as a push button or other HMI, which may be electronic and/or manual) to shut off the VFD using the on/off function. This manual emergency shutdown feature may be configured to shut down all VFDs simultaneously, thereby shutting down the entire site. The emergency shutdown may also be configured to stop the VFD on the blender discharge pumps, and may or may not be tied into the electrical microgrid to open breakers, thereby stopping the flow and/or generation of electricity and/or gas compression.
The HMI may be designed to allow only a slight percentage of overspeed (higher than critical plunger speed) as a safe margin to enable a fleet of operating pumps to achieve a desired pump rate when one pump is taken offline, for example, as is often the case in hydraulic fracturing. Repairs or maintenance are generally performed as quickly as possible so that the offline pump is available by the next sequential fracturing stage. This same logic could be applied to the hydraulic motor driven system or the system that utilizes speed reduction gearboxes driving a single ring gear.
A crankshaft centerline 360 may bisect the multi-plunger pump 300 between the multi-plunger fluid end 350 and the pump power end 355. Two electric motors 330 may be positioned on opposing sides of the multi-plunger pump 300, across the crankshaft centerline 360. The four total electric motors 330 may drive the crankshaft associated with the nine plungers, as described above with respect to
The present invention described herein, therefore, is well adapted to carry out the objects and attain the ends and advantages mentioned, as well as others inherent therein. While a presently preferred embodiment of the invention has been given for purposes of disclosure, numerous changes exist in the details of procedures for accomplishing the desired results. These and other similar modifications will readily suggest themselves to those skilled in the art, and are intended to be encompassed within the spirit of the present invention disclosed herein and the scope of the appended claims.
This application claims priority to and the benefit of U.S. Provisional Patent Application No. 62/594,912, filed Dec. 5, 2017, the full disclosure of which is hereby incorporated by reference herein for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
1656861 | Leonard | Jan 1928 | A |
1671436 | Melott | May 1928 | A |
2004077 | McCartney | Jun 1935 | A |
2183364 | Bailey | Dec 1939 | A |
2220622 | Aitken | Nov 1940 | A |
2248051 | Armstrong | Jul 1941 | A |
2407796 | Page | Sep 1946 | A |
2416848 | Rothery | Mar 1947 | A |
2753940 | Bonner | Jul 1956 | A |
3061039 | Peters | Oct 1962 | A |
3066503 | Fleming | Dec 1962 | A |
3302069 | Webster | Jan 1967 | A |
3334495 | Jensen | Aug 1967 | A |
3722595 | Kiel | Mar 1973 | A |
3764233 | Strickland | Oct 1973 | A |
3773140 | Mahajan | Nov 1973 | A |
3837179 | Barth | Sep 1974 | A |
3849662 | Blaskowski | Nov 1974 | A |
3881551 | Terry | May 1975 | A |
4037431 | Sugimoto | Jul 1977 | A |
4100822 | Rosman | Jul 1978 | A |
4151575 | Hogue | Apr 1979 | A |
4226299 | Hansen | Oct 1980 | A |
4265266 | Kierbow et al. | May 1981 | A |
4432064 | Barker | Feb 1984 | A |
4442665 | Fick et al. | Apr 1984 | A |
4456092 | Kubozuka | Jun 1984 | A |
4506982 | Smithers et al. | Mar 1985 | A |
4512387 | Rodriguez | Apr 1985 | A |
4529887 | Johnson | Jul 1985 | A |
4538916 | Zimmerman | Sep 1985 | A |
4676063 | Goebel et al. | Jun 1987 | A |
4759674 | Schroder | Jul 1988 | A |
4793386 | Sloan | Dec 1988 | A |
4845981 | Pearson | Jul 1989 | A |
4922463 | Del Zotto et al. | May 1990 | A |
5006044 | Walker, Sr. | Apr 1991 | A |
5025861 | Huber et al. | Jun 1991 | A |
5050673 | Baldridge | Sep 1991 | A |
5130628 | Owen | Jul 1992 | A |
5131472 | Dees et al. | Jul 1992 | A |
5172009 | Mohan | Dec 1992 | A |
5189388 | Mosley | Feb 1993 | A |
5366324 | Arlt | Nov 1994 | A |
5422550 | McClanahan | Jun 1995 | A |
5548093 | Sato | Aug 1996 | A |
5590976 | Kilheffer et al. | Jan 1997 | A |
5655361 | Kishi | Aug 1997 | A |
5736838 | Dove et al. | Apr 1998 | A |
5755096 | Holleyman | May 1998 | A |
5790972 | Kohlenberger | Aug 1998 | A |
5865247 | Paterson | Feb 1999 | A |
5879137 | Yie | Mar 1999 | A |
5894888 | Wiemers | Apr 1999 | A |
5907970 | Havlovick et al. | Jun 1999 | A |
6138764 | Scarsdale et al. | Oct 2000 | A |
6142878 | Barin | Nov 2000 | A |
6164910 | Mayleben | Dec 2000 | A |
6202702 | Ohira | Mar 2001 | B1 |
6208098 | Kume | Mar 2001 | B1 |
6254462 | Kelton | Jul 2001 | B1 |
6271637 | Kushion | Aug 2001 | B1 |
6273193 | Hermann | Aug 2001 | B1 |
6315523 | Mills | Nov 2001 | B1 |
6477852 | Dodo | Nov 2002 | B2 |
6484490 | Olsen | Nov 2002 | B1 |
6491098 | Dallas | Dec 2002 | B1 |
6529135 | Bowers et al. | Mar 2003 | B1 |
6776227 | Beida | Aug 2004 | B2 |
6802690 | Plan | Oct 2004 | B2 |
6808303 | Fisher | Oct 2004 | B2 |
6931310 | Shimizu et al. | Aug 2005 | B2 |
6936947 | Leijon | Aug 2005 | B1 |
7082993 | Ayoub | Aug 2006 | B2 |
7104233 | Ryczek et al. | Sep 2006 | B2 |
7170262 | Pettigrew | Jan 2007 | B2 |
7173399 | Sihler | Feb 2007 | B2 |
7308933 | Mayfield | Dec 2007 | B1 |
7312593 | Streicher et al. | Dec 2007 | B1 |
7336514 | Amarillas | Feb 2008 | B2 |
7445041 | O'Brien | Nov 2008 | B2 |
7494263 | Dykstra et al. | Feb 2009 | B2 |
7500642 | Cunningham | Mar 2009 | B2 |
7525264 | Dodge | Apr 2009 | B2 |
7563076 | Brunet | Jul 2009 | B2 |
7581379 | Yoshida | Sep 2009 | B2 |
7675189 | Grenier | Mar 2010 | B2 |
7683499 | Saucier | Mar 2010 | B2 |
7717193 | Egilsson et al. | May 2010 | B2 |
7755310 | West et al. | Jul 2010 | B2 |
7807048 | Collette | Oct 2010 | B2 |
7835140 | Mori | Nov 2010 | B2 |
7845413 | Shampine et al. | Dec 2010 | B2 |
7926562 | Poitzsch | Apr 2011 | B2 |
7977824 | Halen et al. | Jul 2011 | B2 |
7984757 | Keast | Jul 2011 | B1 |
8037936 | Neuroth | Oct 2011 | B2 |
8054084 | Schulz et al. | Nov 2011 | B2 |
8083504 | Williams | Dec 2011 | B2 |
8096354 | Poitzsch | Jan 2012 | B2 |
8096891 | Lochtefeld | Jan 2012 | B2 |
8139383 | Efraimsson | Mar 2012 | B2 |
8146665 | Neal | Apr 2012 | B2 |
8154419 | Daussin et al. | Apr 2012 | B2 |
8232892 | Overholt et al. | Jul 2012 | B2 |
8261528 | Chillar | Sep 2012 | B2 |
8272439 | Strickland | Sep 2012 | B2 |
8310272 | Quarto | Nov 2012 | B2 |
8354817 | Yeh et al. | Jan 2013 | B2 |
8474521 | Kajaria | Jul 2013 | B2 |
8534235 | Chandler | Sep 2013 | B2 |
8573303 | Kerfoot | Nov 2013 | B2 |
8596056 | Woodmansee | Dec 2013 | B2 |
8616005 | Cousino | Dec 2013 | B1 |
8616274 | Belcher et al. | Dec 2013 | B2 |
8646521 | Bowen | Feb 2014 | B2 |
8692408 | Zhang et al. | Apr 2014 | B2 |
8727068 | Bruin | May 2014 | B2 |
8760657 | Pope et al. | Jun 2014 | B2 |
8774972 | Rusnak et al. | Jul 2014 | B2 |
8789601 | Broussard | Jul 2014 | B2 |
8800652 | Bartko | Aug 2014 | B2 |
8807960 | Stephenson | Aug 2014 | B2 |
8838341 | Kumano | Sep 2014 | B2 |
8851860 | Oct 2014 | B1 | |
8857506 | Stone, Jr. | Oct 2014 | B2 |
8899940 | Laugemors | Dec 2014 | B2 |
8905056 | Kendrick | Dec 2014 | B2 |
8905138 | Lundstedt et al. | Dec 2014 | B2 |
8997904 | Cryer | Apr 2015 | B2 |
9018881 | Mao et al. | Apr 2015 | B2 |
9051822 | Ayan | Jun 2015 | B2 |
9067182 | Nichols | Jun 2015 | B2 |
9103193 | Coll | Aug 2015 | B2 |
9119326 | McDonnell | Aug 2015 | B2 |
9121257 | Coli et al. | Sep 2015 | B2 |
9140110 | Coli et al. | Sep 2015 | B2 |
9160168 | Chapel | Oct 2015 | B2 |
9175554 | Watson | Nov 2015 | B1 |
9206684 | Parra | Dec 2015 | B2 |
9322239 | Angeles Boza et al. | Apr 2016 | B2 |
9366114 | Coli et al. | Jun 2016 | B2 |
9410410 | Broussard et al. | Aug 2016 | B2 |
9450385 | Kristensen | Sep 2016 | B2 |
9458687 | Hallundbaek | Oct 2016 | B2 |
9475020 | Coli et al. | Oct 2016 | B2 |
9475021 | Coli et al. | Oct 2016 | B2 |
9534473 | Morris et al. | Jan 2017 | B2 |
9562420 | Morris et al. | Feb 2017 | B2 |
9587649 | Oehring | Mar 2017 | B2 |
9611728 | Oehring | Apr 2017 | B2 |
9650871 | Oehring et al. | May 2017 | B2 |
9650879 | Broussard et al. | May 2017 | B2 |
9728354 | Skolozdra | Aug 2017 | B2 |
9738461 | DeGaray | Aug 2017 | B2 |
9745840 | Oehring et al. | Aug 2017 | B2 |
9840901 | Oehring et al. | Dec 2017 | B2 |
9863228 | Shampine et al. | Jan 2018 | B2 |
9893500 | Oehring | Feb 2018 | B2 |
9915128 | Hunter | Mar 2018 | B2 |
9932799 | Symchuk | Apr 2018 | B2 |
9963961 | Hardin | May 2018 | B2 |
9970278 | Broussard | May 2018 | B2 |
9976351 | Randall | May 2018 | B2 |
9995218 | Oehring | Jun 2018 | B2 |
10008880 | Vicknair | Jun 2018 | B2 |
10020711 | Oehring | Jul 2018 | B2 |
10036238 | Oehring | Jul 2018 | B2 |
10107086 | Oehring | Oct 2018 | B2 |
10119381 | Oehring | Nov 2018 | B2 |
10196878 | Hunter | Feb 2019 | B2 |
10227854 | Glass | Mar 2019 | B2 |
10232332 | Oehring | Mar 2019 | B2 |
10246984 | Payne | Apr 2019 | B2 |
10254732 | Oehring | Apr 2019 | B2 |
10260327 | Kajaria | Apr 2019 | B2 |
10280724 | Hinderliter | May 2019 | B2 |
10287873 | Filas | May 2019 | B2 |
10309205 | Randall | Jun 2019 | B2 |
10371012 | Davis | Aug 2019 | B2 |
10378326 | Morris | Aug 2019 | B2 |
10393108 | Chong | Aug 2019 | B2 |
10407990 | Oehring | Sep 2019 | B2 |
10436026 | Ounadjela | Oct 2019 | B2 |
20020169523 | Ross et al. | Nov 2002 | A1 |
20030056514 | Lohn | Mar 2003 | A1 |
20030138327 | Jones et al. | Jul 2003 | A1 |
20040040746 | Niedermayr | Mar 2004 | A1 |
20040102109 | Cratty et al. | May 2004 | A1 |
20040167738 | Miller | Aug 2004 | A1 |
20050061548 | Hooper | Mar 2005 | A1 |
20050116541 | Seiver | Jun 2005 | A1 |
20050274508 | Folk | Dec 2005 | A1 |
20060052903 | Bassett | Mar 2006 | A1 |
20060260331 | Andreychuk | Nov 2006 | A1 |
20070131410 | Hill | Jun 2007 | A1 |
20070187163 | Cone | Aug 2007 | A1 |
20070201305 | Heilman et al. | Aug 2007 | A1 |
20070226089 | DeGaray et al. | Sep 2007 | A1 |
20070277982 | Shampine | Dec 2007 | A1 |
20070278140 | Mallet et al. | Dec 2007 | A1 |
20080017369 | Sarada | Jan 2008 | A1 |
20080041596 | Blount | Feb 2008 | A1 |
20080112802 | Orlando | May 2008 | A1 |
20080137266 | Jensen | Jun 2008 | A1 |
20080208478 | Ella et al. | Aug 2008 | A1 |
20080217024 | Moore | Sep 2008 | A1 |
20080236818 | Dykstra | Oct 2008 | A1 |
20080264625 | Ochoa | Oct 2008 | A1 |
20080264640 | Eslinger | Oct 2008 | A1 |
20080264649 | Crawford | Oct 2008 | A1 |
20090045782 | Datta | Feb 2009 | A1 |
20090065299 | Vito | Mar 2009 | A1 |
20090078410 | Krenek et al. | Mar 2009 | A1 |
20090090504 | Weightman | Apr 2009 | A1 |
20090093317 | Kajiwara et al. | Apr 2009 | A1 |
20090095482 | Surjaatmadja | Apr 2009 | A1 |
20090145611 | Pallini, Jr. | Jun 2009 | A1 |
20090153354 | Daussin et al. | Jun 2009 | A1 |
20090188181 | Forbis | Jul 2009 | A1 |
20090200035 | Bjerkreim et al. | Aug 2009 | A1 |
20090260826 | Sherwood | Oct 2009 | A1 |
20090308602 | Bruins et al. | Dec 2009 | A1 |
20100000508 | Chandler | Jan 2010 | A1 |
20100019574 | Baldassarre et al. | Jan 2010 | A1 |
20100038907 | Hunt | Feb 2010 | A1 |
20100045109 | Arnold | Feb 2010 | A1 |
20100051272 | Loree et al. | Mar 2010 | A1 |
20100101785 | Khvoshchev | Apr 2010 | A1 |
20100132949 | DeFosse et al. | Jun 2010 | A1 |
20100146981 | Motakef | Jun 2010 | A1 |
20100172202 | Borgstadt | Jul 2010 | A1 |
20100200224 | Nguete | Aug 2010 | A1 |
20100250139 | Hobbs et al. | Sep 2010 | A1 |
20100293973 | Erickson | Nov 2010 | A1 |
20100303655 | Scekic | Dec 2010 | A1 |
20100322802 | Kugelev | Dec 2010 | A1 |
20110005757 | Hebert | Jan 2011 | A1 |
20110017468 | Birch et al. | Jan 2011 | A1 |
20110061855 | Case et al. | Mar 2011 | A1 |
20110085924 | Shampine | Apr 2011 | A1 |
20110166046 | Weaver | Jul 2011 | A1 |
20110247878 | Rasheed | Oct 2011 | A1 |
20110272158 | Neal | Nov 2011 | A1 |
20120018016 | Gibson | Jan 2012 | A1 |
20120049625 | Hopwood | Mar 2012 | A1 |
20120085541 | Love et al. | Apr 2012 | A1 |
20120127635 | Grindeland | May 2012 | A1 |
20120205301 | McGuire et al. | Aug 2012 | A1 |
20120205400 | DeGaray et al. | Aug 2012 | A1 |
20120222865 | Larson | Sep 2012 | A1 |
20120232728 | Karimi et al. | Sep 2012 | A1 |
20120247783 | Berner, Jr. | Oct 2012 | A1 |
20120255734 | Coli et al. | Oct 2012 | A1 |
20130009469 | Gillett | Jan 2013 | A1 |
20130025706 | DeGaray et al. | Jan 2013 | A1 |
20130175038 | Conrad | Jul 2013 | A1 |
20130175039 | Guidry | Jul 2013 | A1 |
20130199617 | DeGaray et al. | Aug 2013 | A1 |
20130233542 | Shampine | Sep 2013 | A1 |
20130306322 | Sanborn et al. | Nov 2013 | A1 |
20130341029 | Roberts et al. | Dec 2013 | A1 |
20130343858 | Flusche | Dec 2013 | A1 |
20140000899 | Nevison | Jan 2014 | A1 |
20140010671 | Cryer et al. | Jan 2014 | A1 |
20140054965 | Jain | Feb 2014 | A1 |
20140060658 | Hains | Mar 2014 | A1 |
20140095114 | Thomeer | Apr 2014 | A1 |
20140096974 | Coli | Apr 2014 | A1 |
20140124162 | Leavitt | May 2014 | A1 |
20140138079 | Broussard et al. | May 2014 | A1 |
20140174717 | Broussard et al. | Jun 2014 | A1 |
20140219824 | Burnette | Aug 2014 | A1 |
20140246211 | Guidry et al. | Sep 2014 | A1 |
20140251623 | Lestz et al. | Sep 2014 | A1 |
20140255214 | Burnette | Sep 2014 | A1 |
20140277772 | Lopez | Sep 2014 | A1 |
20140290768 | Randle | Oct 2014 | A1 |
20140379300 | Devine et al. | Dec 2014 | A1 |
20150027712 | Vicknair | Jan 2015 | A1 |
20150053426 | Smith | Feb 2015 | A1 |
20150068724 | Coli et al. | Mar 2015 | A1 |
20150068754 | Coli et al. | Mar 2015 | A1 |
20150075778 | Walters | Mar 2015 | A1 |
20150083426 | Lesko | Mar 2015 | A1 |
20150097504 | Lamascus | Apr 2015 | A1 |
20150114652 | Lestz | Apr 2015 | A1 |
20150136043 | Shaaban | May 2015 | A1 |
20150144336 | Hardin et al. | May 2015 | A1 |
20150159911 | Holt | Jun 2015 | A1 |
20150175013 | Cryer et al. | Jun 2015 | A1 |
20150176386 | Castillo et al. | Jun 2015 | A1 |
20150211512 | Wiegman | Jul 2015 | A1 |
20150211524 | Broussard | Jul 2015 | A1 |
20150217672 | Shampine | Aug 2015 | A1 |
20150225113 | Lungu | Aug 2015 | A1 |
20150252661 | Glass | Sep 2015 | A1 |
20150300145 | Coli et al. | Oct 2015 | A1 |
20150314225 | Coli et al. | Nov 2015 | A1 |
20150330172 | Allmaras | Nov 2015 | A1 |
20150354322 | Vicknair | Dec 2015 | A1 |
20160032703 | Broussard et al. | Feb 2016 | A1 |
20160102537 | Lopez | Apr 2016 | A1 |
20160105022 | Oehring | Apr 2016 | A1 |
20160208592 | Oehring | Apr 2016 | A1 |
20160160889 | Hoffman et al. | Jun 2016 | A1 |
20160177675 | Morris et al. | Jun 2016 | A1 |
20160177678 | Morris | Jun 2016 | A1 |
20160186531 | Harkless et al. | Jun 2016 | A1 |
20160208593 | Coli et al. | Jul 2016 | A1 |
20160208594 | Coli et al. | Jul 2016 | A1 |
20160208595 | Tang | Jul 2016 | A1 |
20160221220 | Paige | Aug 2016 | A1 |
20160230524 | Dumoit | Aug 2016 | A1 |
20160230525 | Lestz et al. | Aug 2016 | A1 |
20160258267 | Payne et al. | Sep 2016 | A1 |
20160265457 | Stephenson | Sep 2016 | A1 |
20160273328 | Oehring | Sep 2016 | A1 |
20160281484 | Lestz | Sep 2016 | A1 |
20160290114 | Oehring | Oct 2016 | A1 |
20160290563 | Diggins | Oct 2016 | A1 |
20160312108 | Lestz et al. | Oct 2016 | A1 |
20160319650 | Oehring | Nov 2016 | A1 |
20160326854 | Broussard | Nov 2016 | A1 |
20160326855 | Coli et al. | Nov 2016 | A1 |
20160341281 | Brunvold et al. | Nov 2016 | A1 |
20160348479 | Oehring | Dec 2016 | A1 |
20160349728 | Oehring | Dec 2016 | A1 |
20160369609 | Morris et al. | Dec 2016 | A1 |
20170016433 | Chong | Jan 2017 | A1 |
20170021318 | McIver et al. | Jan 2017 | A1 |
20170022788 | Oehring et al. | Jan 2017 | A1 |
20170022807 | Dursun | Jan 2017 | A1 |
20170028368 | Oehring et al. | Feb 2017 | A1 |
20170030177 | Oehring et al. | Feb 2017 | A1 |
20170030178 | Oehring et al. | Feb 2017 | A1 |
20170036178 | Coli et al. | Feb 2017 | A1 |
20170036872 | Wallace | Feb 2017 | A1 |
20170037717 | Oehring | Feb 2017 | A1 |
20170037718 | Coli et al. | Feb 2017 | A1 |
20170051732 | Hemandez et al. | Feb 2017 | A1 |
20170096885 | Oehring | Apr 2017 | A1 |
20170104389 | Morris et al. | Apr 2017 | A1 |
20170114625 | Norris | Apr 2017 | A1 |
20170145918 | Oehring | May 2017 | A1 |
20170146189 | Herman | May 2017 | A1 |
20170159570 | Bickert | Jun 2017 | A1 |
20170218727 | Oehring | Aug 2017 | A1 |
20170218843 | Oehring | Aug 2017 | A1 |
20170222409 | Oehring | Aug 2017 | A1 |
20170226839 | Broussard | Aug 2017 | A1 |
20170226842 | Omont et al. | Aug 2017 | A1 |
20170234250 | Janik | Aug 2017 | A1 |
20170241221 | Seshadri | Aug 2017 | A1 |
20170259227 | Morris et al. | Sep 2017 | A1 |
20170292513 | Haddad | Oct 2017 | A1 |
20170313499 | Hughes et al. | Nov 2017 | A1 |
20170314380 | Oehring | Nov 2017 | A1 |
20170328179 | Dykstra | Nov 2017 | A1 |
20170369258 | DeGaray et al. | Dec 2017 | A1 |
20180028992 | Stegemoeller | Feb 2018 | A1 |
20180038216 | Zhang | Feb 2018 | A1 |
20180156210 | Oehring | Jun 2018 | A1 |
20180183219 | Oehring | Jun 2018 | A1 |
20180216455 | Andreychuk | Aug 2018 | A1 |
20180245428 | Richards | Aug 2018 | A1 |
20180258746 | Broussard | Sep 2018 | A1 |
20180274446 | Oehring | Sep 2018 | A1 |
20180320483 | Zhang | Nov 2018 | A1 |
20180363437 | Coli | Dec 2018 | A1 |
20190003329 | Morris | Jan 2019 | A1 |
20190010793 | Hinderliter | Jan 2019 | A1 |
20190063309 | Davis | Feb 2019 | A1 |
20190100989 | Stewart | Apr 2019 | A1 |
20190112910 | Oehring | Apr 2019 | A1 |
20190120024 | Oehring | Apr 2019 | A1 |
20190128080 | Ross | May 2019 | A1 |
20190162061 | Stephenson | May 2019 | A1 |
20190169971 | Oehring | Jun 2019 | A1 |
20190178057 | Hunter | Jun 2019 | A1 |
20190178235 | Coskrey | Jun 2019 | A1 |
20190203567 | Ross | Jul 2019 | A1 |
20190203572 | Morris | Jul 2019 | A1 |
20190211661 | Reckels | Jul 2019 | A1 |
20190226317 | Payne | Jul 2019 | A1 |
20190245348 | Hinderliter | Aug 2019 | A1 |
20190292866 | Ross | Sep 2019 | A1 |
20190292891 | Kajaria | Sep 2019 | A1 |
20190316447 | Oehring | Oct 2019 | A1 |
Number | Date | Country |
---|---|---|
2007340913 | Jul 2008 | AU |
2406801 | Nov 2001 | CA |
2707269 | Dec 2010 | CA |
2482943 | May 2011 | CA |
3050131 | Nov 2011 | CA |
2955706 | Oct 2012 | CA |
2966672 | Oct 2012 | CA |
3000322 | Apr 2013 | CA |
2787814 | Feb 2014 | CA |
2833711 | May 2014 | CA |
2978706 | Sep 2016 | CA |
2944980 | Feb 2017 | CA |
3006422 | Jun 2017 | CA |
3018485 | Aug 2017 | CA |
2964593 | Oct 2017 | CA |
2849825 | Jul 2018 | CA |
2919649 | Feb 2019 | CA |
2919666 | Jul 2019 | CA |
2797081 | Sep 2019 | CA |
2945579 | Oct 2019 | CA |
201687513 | Dec 2010 | CN |
101977016 | Feb 2011 | CN |
202023547 | Nov 2011 | CN |
102602322 | Jul 2012 | CN |
2004264589 | Sep 2004 | JP |
2016144939 | Sep 2016 | WO |
2016160458 | Oct 2016 | WO |
Entry |
---|
Non-Final Office Action dated Feb. 12, 2019 in related U.S. Appl. No. 16/170,695. |
International Search Report and Written Opinion dated Feb. 15, 2019 in related PCT Application No. PCT/US18/63977. |
Non-Final Office Action dated Feb. 25, 2019 in related U.S. Appl. No. 16/210,749. |
International Search Report and Written Opinion dated Mar. 5, 2019 in related PCT Application No. PCT/US18/63970. |
Non-Final Office Action dated Mar. 6, 2019 in related U.S. Appl. No. 15/183,387. |
Office Action dated Mar. 1, 2019 in related Canadian Patent Application No. 2,943,275. |
Office Action dated Jan. 30, 2019 in related Canadian Patent Application No. 2,936,997. |
Office Action dated Dec. 12, 2018 in related U.S. Appl. No. 16/160,708. |
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54542. |
International Search Report and Written Opinion dated Jan. 2, 2019 in related PCT Patent Application No. PCT/US18/54548. |
International Search Report and Written Opinion dated Dec. 31, 2018 in related PCT Patent Application No. PCT/US18/55913. |
International Search Report and Written Opinion dated Jan. 4, 2019 in related PCT Patent Application No. PCT/US18/57539. |
International Search Report and Written Opinion dated Apr. 10, 2019 in corresponding PCT Application No. PCT/US2019/016635. |
Notice of Allowance dated Apr. 23, 2019 in corresponding U.S. Appl. No. 15/635,028. |
Schlumberger, “Jet Manual 23, Fracturing Pump Units, SPF/SPS-343, Version 1.0,” Jan. 31, 2007, 68 pages. |
Stewart & Stevenson, “Stimulation Systems,” 2007, 20 pages. |
Luis Gamboa, “Variable Frequency Drives in Oil and Gas Pumping Systems,” Dec. 17, 2011, 5 pages. |
“Griswold Model 811 Pumps: Installation, Operation and Maintenance Manual, ANSI Process Pump,” 2010, 60 pages. |
UK Power Networks—Transformers to Supply Heat to Tate Modern—from Press Releases May 16, 2013. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/293,681 dated Feb. 16, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Mar. 14, 2017. |
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Jan. 20, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,443 dated Feb. 7, 2017. |
Notice of Allowance issued in corresponding U.S. Appl. No. 15/217,040 dated Mar. 28, 2017. |
Notice of Allowance issued in corresponding U.S. Appl. No. 14/622,532 dated Mar. 27, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/291,842 dated Jan. 6, 2017. |
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 7, 2016. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated May 17, 2016. |
Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Dec. 21, 2015. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/622,532 dated Aug. 5, 2015. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 12, 2016. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/217,040 dated Nov. 29, 2016. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/235,788 dated Dec. 14, 2016. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated May 15, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/486,970 dated Jun. 22, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,656 dated Jun. 23, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/487,694 dated Jun. 26, 2017. |
Final Office Action issued in corresponding U.S. Appl. No. 15/294,349 dated Jul. 6, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/884,363 dated Sep. 5, 2017. |
Final Office Action issued in corresponding U.S. Appl. No. 15/145,491 dated Sep. 6, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 14/881,535 dated Oct. 6, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/145,414 dated Nov. 29, 2017. |
Non-Final Office Action issued in corresponding U.S. Appl. No. 15/644,487 dated Nov. 13, 2017. |
Canadian Office Action dated Mar. 2, 2018 in related Canadian Patent Application No. 2,833,711. |
Office Action dated Apr. 10, 2018 in related U.S. Appl. No. 15/294,349. |
Office Action dated Apr. 2, 2018 in related U.S. Appl. No. 15/183,387. |
Office Action dated May 29, 2018 in related U.S. Appl. No. 15/235,716. |
Candian Office Action dated Apr. 18, 2018 in related Canadian Patent Application No. 2,928,711. |
Canadian Office Action dated Jun. 22, 2018 in related Canadian Patent Application No. 2,886,697. |
Office Action dated Jul. 25, 2018 in related U.S. Appl. No. 15/644,487. |
Office Action dated Oct. 4, 2018 in related U.S. Appl. No. 15/217,081. |
International Search Report and Written Opinion dated Sep. 19, 2018 in related PCT Patent Application No. PCT/US2018/040683. |
Canadian Office Action dated Sep. 28, 2018 in related Canadian Patent Application No. 2,945,281. |
International Search Report and Written Opinion dated Jul. 9, 2019 in corresponding PCT Application No. PCT/US2019/027584. |
Office Action dated Jun. 11, 2019 in corresponding U.S. Appl. No. 16/210,749. |
Office Action dated May 10, 2019 in corresponding U.S. Appl. No. 16/268,030. |
Canadian Office Action dated May 30, 2019 in corresponding CA Application No. 2,833,711. |
Canadian Office Action dated Jun. 20, 2019 in corresponding CA Application No. 2,964,597. |
Office Action dated Jun. 7, 2019 in corresponding U.S. Appl. No. 16/268,030. |
International Search Report and Written Opinion dated Sep. 11, 2019 in related PCT Application No. PCT/US2019/037493. |
Office Action dated Aug. 19, 2019 in related U.S. Appl. No. 15/356,436. |
Office Action dated Oct. 2, 2019 in related U.S. Appl. No. 16/152,732. |
Office Action dated Sep. 11, 2019 in related U.S. Appl. No. 16/268,030. |
Office Action dated Oct. 11, 2019 in related U.S. Appl. No. 16/385,070. |
Office Action dated Sep. 3, 2019 in related U.S. Appl. No. 15/994,772. |
Office Action dated Sep. 20, 2019 in related U.S. Appl. No. 16/443,273. |
Canadian Office Action dated Oct. 1, 2019 in related Canadian Patent Application No. 2,936,997. |
International Search Report and Written Opinion dated Nov. 26, 2019 in related PCT Application No. PCT/US19/51018. |
International Search Report and Written Opinion dated Jan. 2, 2020 in related PCT Application No. PCT/US19/55325. |
Notice of Allowance dated Jan. 9, 2020 in related U.S. Appl. No. 16/570,331. |
Non-Final Office Action dated Dec. 23, 2019 in related U.S. Appl. No. 16/597,008. |
Non-Final Office Action dated Jan. 10, 2020 in related U.S. Appl. No. 16/597,014. |
Non-Final Office Action dated Dec. 6, 2019 in related U.S. Appl. No. 16/564,186. |
Number | Date | Country | |
---|---|---|---|
20190249754 A1 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
62594912 | Dec 2017 | US |