The present invention is directed generally to a multi-point suspended scaffold. More specifically, the present invention is directed to a suspended scaffold having wire mesh trusses. Most particularly, the present invention is directed to a suspended scaffold including vertical frame members, wire mesh trusses and horizontal cross bracing. The multi-point suspended scaffold includes pairs of spaced suspension pick-up points. The scaffold is intended for use primarily on high-rise buildings. The frames, wire mesh trusses and horizontal cross braces provide a scaffold with sufficient structural integrity and redundancy necessary for safety in the event of a failure of one or more of the suspending cables. The wire mesh trusses can be provided with integrated guard rails and toeboards that are required by statute. The scaffold provides two decks at a main level and one deck at a lower working level.
The construction and maintenance of multi-story buildings, such as high-rise office and residential buildings is accomplished, in part, through the use of multi-point suspended scaffolds. Such buildings are provided, typically along their upper roof edge, with a plurality of spaced cantilever or outrigger beams. These beams are pivotable, about a suitable pivot axis at the building edge, or are slidable into a cantilever position in which the beams extend out from the walls of the building. These beams are typically spaced apart at a uniform distance and are usable to support the suspended scaffolds which are used by masons, glaziers, window washers and similar building repair and maintenance personnel.
Scaffolds are suspended by cables from the cantilever outrigger beams and are movable vertically with respect to the walls of the building or other structures by winches. These winches are attached to the frame of the scaffolds and may be manually operated or may be powered by electricity or the like. In use, the winches are operated to raise or lower the scaffold to the appropriate work level.
One or more workmen will use the scaffold assembly as a work platform from which to perform the masonry work required in the construction of the building, the installation of window walls that may be utilized in the building construction, the application of metal fascia pieces, the installation of caulking and similar tasks. It is imperative that the scaffolds be provided with sufficient structural rigidity and strength to insure that the scaffold will not collapse under load and will not fall apart in the event of, for example, one of the cables failing or slipping on its associated winch. Various government codes and regulations have dictated that a scaffold be able to meet certain safety standards with respect to strength, durability and failure resistance.
In prior scaffolds, the structures have been complex and cumbersome. A large number of components have had to be assembled to form the resulting scaffold. Since the typical scaffold is assembled at a point of use, used over a finite period of time, and is then disassembled and taken to a new point of use, the assembly and disassembly times that are required are of importance. In prior scaffolds, the use of a large number of individual components has required a substantial amount of time to accomplish the assembly and disassembly of the scaffolds. The expenditure of such a large amount of time is costly.
Since each scaffold is typically suspended at a distance above the ground and must support the weight of one or more workmen and their equipment and supplies, the scaffold must have sufficient structural strength and rigidity to accomplish this task. In prior systems, this has tended to result in the use of large, strong components which also have a great deal of weight. This weight of the scaffold itself is a component of the overall weight that can be supported from the cantilever outrigger beams by the suspending cables. The greater the weight of the scaffold itself, the less payload, in the form of men, equipment and supplies that can be supported by the scaffold. The use of these heavy scaffold components, while providing the needed structural rigidity and strength, also reduces the weight of the workmen and supplies that each scaffold can carry. In addition, a heavy scaffold structure requires more labor to assemble, disassemble and transport. The prior scaffolds have thus been expensive to put together, to take apart, and to transport.
In the unlikely event of the failure of one or more of the suspension cables, the scaffold being supported by these cables must retain its structural integrity. It may tilt or drop at the point where the supporting cable has slipped or broken, but it cannot fail structurally. The scaffold must remain assembled at all times. In the past, this has again given rise to scaffold structures which have required a number of braces. While the use of such an arrangement of a plurality of braces has insured that the scaffold will maintain its structural integrity, it has also added to both the complexity and the weight of the resultant scaffold. As noted above, since virtually all scaffolds are assembled on a particular job site, used for a finite length of time at that job site and then taken apart and transported to another job site, the use of a large number of braces and reinforcing rods has added to the time needed for assembly and take down and has also added substantial weight to the scaffolds.
Various government regulations require that all scaffolds have certain features which are intended to aid in maintaining the safety of the workers who are using the scaffold. One of these requirements is the provision of toeboards that are used to prevent the toes or feet of the workmen from extending out past the working surface of the scaffold. This is important in the prevention of injuries. Another is the provision of guard rails at specified locations. Mesh is also typically required to prevent the likelihood of objects falling off the scaffold. However, the provision of these government-mandated toeboards, guard rails and retention mesh has required the installation of additional elements in the assembly of each scaffold. In the prior scaffolds, the sole purpose of the toeboard was to act as a guard for the feet of the workers. Guard rails were also thought of as being only for protection. The same was true with respect to retention mesh or netting. No thought was given to the possible use of these toeboards, guard rails and mesh as structural components of the scaffold. The result again has been an unduly complex structure that is time-consuming to assemble and to take apart and that is heavy and cumbersome to transport between job sites.
Prior scaffold assemblies have tended to be heavy, cumbersome structures that are labor intensive to assemble and to disassemble. They have used components that provide structural rigidity at the expense of reduced weight. While they have been safe and have complied with the applicable government rules and have met the necessary standards, they have not done so using a structure that is lightweight, and structurally uncomplicated. The multi-point suspended scaffold in accordance with the present invention, as will be set forth subsequently, overcomes these limitations of the prior art and is a substantial advance in the art.
It is an object of the present invention to provide a multi-point suspended scaffold.
Another object of the present invention is to provide a scaffold that uses spaced tubular metal frames joined by wire mesh trusses.
A further object of the present invention is to provide a multi-point suspended scaffold which has support decks at two different elevations.
Yet another object of the present invention is to provide a multi-point suspended scaffold which includes spaced frames which are connected to adjacent frames by upper and lower cross braces and by wire mesh trusses.
Still a further object of the present invention is to provide a scaffold assembly having the required toeboards, guard rails and retention mesh as parts of the wire mesh trusses.
Even yet another object of the present invention is to provide a multi-point suspended scaffold which will comply with all applicable government regulations and which will have improved structural rigidity and reduced weight.
As will be described in greater detail in the description of the preferred embodiments, which is set forth subsequently, the multi-point suspended scaffold in accordance with the present invention is constructed using spaced, standardized frames. Each frame includes a pair of spaced suspension points that will each receive a mechanical hoist or winch. Two of the frames can be joined together by the use of wire mesh trusses and by upper and lower cross braces to form a structurally rigid unit. Each such scaffold unit includes upper platforms that can function as supply staging areas and as walkways for support personnel. The scaffold also includes a lower platform on which a skilled worker will stand. The upper platforms are generally at hip height with respect to the skilled workmen standing on the lower platform and thus provide a convenient and easily accessible support area for the materials which the skilled workman, typically a mason, is apt to need to perform his tasks.
In contrast with prior scaffolds, the multi-point suspended scaffold in accordance with the present invention is less complicated structurally, is easier to assemble and to take apart, provides greater space for movement of skilled workers and assistants, has greater structural rigidity with reduced weight and is generally better suited to performing the tasks for which it is intended. In prior scaffolds, there were three bars or rods that were individually positioned along the rear of the scaffold. These included a top guard rail located at generally waist height, a middle guard rail at 19 inches above the deck and the toeboard with a height of 4 inches. Each one of these was installed separately and was a separate component. Further, a mesh retention material had to be installed between the top of the toeboard and the upper or top guard rail. This was typically in the form of a plastic mesh material that was not easily or effectively installed. In contrast, in the scaffold of the present invention, the steel mesh trusses are single components that include the top guard rail, the middle guard rail, the mesh, and in the case of the lower steel mesh trusses, also includes the toeboards. The result is a unified structure that is much more readily and correctly installed. In actual usage, it has been seen that the scaffold in accordance with the present invention, is readily understood and assembled by the end users. This assembly takes place in far less time than was required by prior scaffold assemblies.
The multi-point suspended scaffold of the present invention allows the assemblage of a plurality of scaffold sections in a manner that allows ease of access by the workmen and helpers. In the situation of use of such a scaffold assembly by masons who are building or blocking a wall, there is provided unencumbered access to supplies and the ability for the mason's assistants to replenish those supplies quickly. Each scaffold section can be placed adjacent other similar sections. The absence of vertical or vertically diagonal bracing means that there are unencumbered passages between adjacent scaffold sections. Transport of bricks, blocks, mortar and ancillary supplies along the main, upper deck are facilitated by the double width of the deck and by the unobstructed ends of each scaffold section. The location of the lower deck, with respect to the upper deck, as was discussed above, allows the placement of the supplies required by the mason, for example, at a height which is easy for him to access.
In the multi-point suspended scaffold of the present invention, the use of the steel mesh trusses provides great structural rigidity at reduced weight. Unlike prior structures that used separate top or upper and middle guard rails, a separate toeboard and removable mesh, the steel mesh trusses of the present invention are one piece units that provide better strength, reduced weight and easier, quicker assembly than did the prior multi-component structures. This gives rise to reduced assembly times, to reduced parts inventories, to improved workman safety and to an overall higher level of satisfaction with the scaffold. This is possible because of the simplification of the assembly by the use of the steel mesh trusses.
The scaffold is formed by the connection of two frames that are each able to be broken down into an upper frame section and a lower frame section. The overall height of the assembled frame units is approximately 10 feet. This will allow sufficient head room for the passage of helpers and other persons between adjacent scaffold sections. It does however, present a slight shipment and handling issue. To overcome that, each of the frames is separable into an upper frame section and a lower frame section by the use of a connection which allows the two sections to be easily separated and reconnected. This increases the ease of transport and handling of the frame sections while not diminishing their structural integrity.
The multi-point suspended scaffold in accordance with the present invention overcomes the limitations of the prior art. It provides greater structural integrity at reduced weight and with fewer components than its predecessors. It is simpler to assemble, easier to use and safer than prior scaffolds. It can be broken down and shipped with fewer components and in a faster time than was able to be accomplished using the prior devices. The multi-point suspended scaffold of the present invention is thus a significant improvement over prior devices and is a substantial advance in the art.
A full and complete understanding of the multi-point scaffold assembly in accordance with the present invention may be had by referring to the description of the preferred embodiment, as is set forth subsequently, and as illustrated in the accompanying drawings, in which:
Referring initially to
As may be seen in
Each of the scaffold frames 12 is provided with a pair of winches, generally at 26, each of which is connected to its respective scaffold frame 12. Each winch carries a length of suspension cable 28 that terminates, at its upper end, in a cable ring 30. As is generally well known in the art, the cable rings 30 are sized to fit around cantilever outrigger beams, generally at 32. As may be seen more clearly in
In use, the cantilever or outrigger beams 32, which are spaced at fixed intervals along the roof 38 of the building, are deployed either by being slid or pivoted outwardly. The suspension cables 28 are deployed from their respective winches 26 to provide adequate line slack so that the cable rings 30 can be slid around the beams 32. While these beams 32 are depicted as being I-beams, it will be understood that these are representative of various beam configurations that are usable. It will also be understood that suitable structures are provided on the beams, in accordance with well-known safety practice, to secure the cable rings in place on the beams at fixed locations. These locations of several of the cable rings 30 on the outrigger beams are selected so that the scaffold 10 will be supported adjacent to, but out of contact with a wall 40 of the building 36.
As may be seen by again referring to
Each of the scaffold frames 12 is comprised of an upper scaffold frame section 52 and a lower scaffold forme section 54 as may be seen in
The upper scaffold frame section 52 is a generally rectangular frame that is composed of an outer upper section vertical tube 60, an inner upper section vertical tube 62, a top upper section horizontal tube 64 and a bottom upper section horizontal tube 66. These four upper scaffold frame section tubes 60, 62, 64 and 66 are typically round steel tubing. However, they could have other cross-sectional shapes and could be made of other materials. The four tubes 60, 62, 64 and 66 are typically welded together to form the upper scaffold frame section 52 depicted in
As can be seen perhaps most clearly in
An upper stop plate 80 is attached to an inboard end 81 of the top extension tube 68 of the upper scaffold frame section 52. This upper stop plate 80 is, as is shown in
A pair of spaced frame pick-up plates 82 are bolted or otherwise secured to each of the outer and inner upper section vertical tubes 60; 62 respectively, as may be seen in
As discussed above, each winch 26 carries a length of suspension cable 28 that extends between the winch 26 and the cable ring 30. Each one of these suspension cables 28 passes through a cable sleeve 88 which is situated in the top upper section horizontal tube 64. These cable sleeves 88 serve to stabilize the scaffold frames 12 on their respective suspension cables 28.
Referring again to
The two lower frame section vertical tubes 90 and 92 each has an upper end 98 and 100; respectively. These upper ends 98 and 100 are releasably connected to lower ends 102, 104 of the upper section vertical tubes 60 and 62, respectively. This releasable connection is accomplished again through the use of suitable peg and bolt couplings or connections, again indicated at 56 and described in detail above. It will be understood that other secure yet releasable couplers or connections can be utilized to couple the lower scaffold frame section 54 and the upper scaffold frame section 52 to each other to form the resultant scaffold frame 12. As was discussed above, the overall scaffold frame 12 has a length of approximately ten feet. The ability to disassemble the scaffold frame 12 into its upper and lower frame sections 52 and 54 facilitates handling and shipment of the frame sections.
A working level horizontal tube 106 is attached, typically in a permanent manner, to the inboard side of the inner lower frame section vertical tube 92. As may be seen more clearly in
A lower stop plate 112 is attached to an inboard end 114 of each of the working level horizontal tubes 106. Each such lower stop plate 112 is generally equivalent, in function, to its associated upper stop plate 80. When the scaffold, generally at 10 is properly suspended, by its multiple suspension cables 78 from the outrigger beams 32, it will be spaced closely to, but will not be in contact with the vertical wall 40 of the associated building 36. As was discussed above, such contact between the stop plates 80 and 112 and the building 36 is apt to occur only if the multi-point suspended scaffold 10 is caused to swing. Such a swinging motion is not expected to occur on a recurring basis. The stop plates 80 and 112 are preferably spaced from the building wall 40 by several inches. In addition, the lower stop plates 112 serve to retain the lower footboards 24 in place and prevent them from sliding toward the building.
Turning now to
As is generally known in the art, these footboards 22 and 24 are typically made of plywood or aluminum. They are sufficiently rigid to be able to support the weight of men and materials during use of the multi-point scaffold 10. The lower footboard 24 is sufficiently lower than the upper footboards 22 so that a skilled tradesman, such as a mason can stand on the lower footboard 24 while a helper or assistance stacks materials, such as bricks or blocks and mortar on a forward edge of the inner one of the upper footboards 22. This places the materials generally at the level of a hip of a skilled tradesman who is standing on the lower footboard 24. The laborer can easily provide the materials required by the skilled tradesman because the width of the upper scaffold frame section is wide enough to accommodate the positioning of two upper footboards 22 side by side. While not specifically depicted in
Each multi-point suspended scaffold 10 is formed by the combining of two spaced scaffold frames 12. This connection is accomplished, in part, by the securement of the footboards 22 and 24 to the associated tubes 66 and 106. That connection is not however sufficient to provide the rigidity and resistance to separation of the scaffold frames 12 which is required to provide a safe, secure multi-point suspended scaffold. In accordance with the present invention, that connection or joining of the scaffold frames 12, to form the multi-point suspended scaffold, is accomplished primarily through the use of the upper wire mesh truss 14 and the lower wire mesh truss 16. In part, that secure, rigid connection of the embodiment, spaced scaffold frames 12, to form the multi-point suspended scaffold 10 is also accomplished by the provision of the upper cross bracesl8 and the lower cross braces 20. These will now be discussed in detail.
Scaffolds are required, by various governmental regulations, to include guard rails, toeboards and mesh to prevent workmen and/or materials from falling off and either being injured or injuring people below the scaffolds. In the past, these guard rails, toeboards and mesh assemblies were all separate items that had to be provided and secured to the scaffold frames separately. These prior guard rails and toeboards were also not typically used as part of the scaffold structure in the sense of providing structural rigidity. The wire mesh trusses, either without or with integral toeboards, 16 and 18 respectively and in accordance with the present invention provide both requirements of protection and structural rigidity.
Referring to
A top guard rail 130 is joined both to the upper truss top horizontal tube 120 and also to an upper edge of the truss wire mesh 128. Again, welding is the preferred, but not the sole method of attachment that can be used. The top guard rail 130 is preferably round tubing and has flattened attachment ends 132 which are positioned outbound of the upper truss vertical end tubes 124 and 126. Each such flattened attachment end 132 is provided with an attachment bore 134 whose use will now be discussed. It is to be understood that the upper or top wire mesh truss 14, as its name implies, forms a truss or a structural member that has the requisite stiffness and rigidity to serve as a connective member between two spaced ones of the scaffold frames 12.
As may be seen more clearly in
Referring to
As outer leg 154 of the U-shaped lock slider 142 is connected to the inner leg by a connection web 156. The outer leg 154 has a downwardly opening slot 158 which is dimensioned, and spaced from the inner leg 144 by the connecting web 156 so that it will engage an outer end 160 of the lock pin 148.
In use, ones of these drop or slide locks 140 are secured to the scaffold frame tubes at suitable locations. The inner end of the lock pin 148, inboard of the inner spacer washer 150, is inserted into an appropriately located aperture in the selected tube, and the inner spacer washer 150 is welded to the tube. It would also be possible to have the inboard end of the lock pin 148 extend through the associated tube and be held a place by a cotter pin or snap lock pins or possibly by a threaded bolt connection. Once the lock pin 148 has been appropriately positioned, the lock slide 142 is raised, as depicted in
A generally similar lower wire mesh truss, generally at 16 is depicted in detail in
As may be seen in
When the lower wire mesh truss 16 is secured to the upper scaffold frames 52, by use of the drop or slide locks 140, as has been discussed previously in connection with the securement of the upper or top wire mesh trusses 14, it will be noted, as depicted more clearly in
The bottom plate 186 of each toeboard, generally at 164, is adjacent to, and covers an outer edge of its associated one of the footboards 22 or 24. In the depiction of
The upper and lower wire mesh trusses 14; 16, in accordance with the present invention, perform multiple functions. Each one of the trusses includes a guard rail, either the upper guard rail or the middle guard rail. Each one of the wire mesh trusses 14; 16 is securely attached to its associated scaffold frame sections and joins the two scaffold frame sections to solidify and to rigidify the multi-point suspended scaffold. In the case of the lower wire mesh trusses 16, the integral toeboards 164 further increase the rigidity of each such lower wire mesh truss 16 while also providing the required barrier so that a worker cannot extend his foot out of the scaffold. Further, the middle guard rail 168 of the lower wire metal truss 16, when the truss is used in combination with the lower scaffold frame section 54, effectively closes the space between the lower footboards 24 and the inner one of the upper footboards 22. This again closes potential gaps or spaces.
Further structural rigidity is provided to the assembled multi-point suspended scaffold by the provision of the upper cross braces 18 and the lower cross braces 20. Each of these cross braces is a generally X-shaped assemblage of two elongated metal tubes 190 and 192. These tubes are connected to each other at a pivot connection 194 equidistant their ends. Those ends 196 are provided as flattened ends with apertures, which are not specifically seen and which are engaged by, in this case, slide locks 198. These slide locks 198 are the same, in structure, as the drop locks 142 depicted in
While a multi-point suspended scaffold, in accordance with the present invention, has been set forth fully and completely hereinabove, it will be apparent to one of skill in the art that various changes could be made in, for example, the type of winches used, the specific structure of the outrigger beams, the materials used for the footboards, and the like, without departing from the true spirit and scope of the invention which is accordingly to be limited only by the appended claims.
This application claims priority to U.S. provisional patent application No. 61/129,860, filed Jul. 24, 2008. The disclosure of that U.S. provisional patent application is expressly incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
854959 | Murray | May 1907 | A |
959008 | Henderson | May 1910 | A |
1085607 | Haynes | Feb 1914 | A |
1127445 | Johnston | Feb 1915 | A |
1127446 | Johnston | Feb 1915 | A |
1187060 | Golden | Jun 1916 | A |
1244670 | Whitney | Oct 1917 | A |
1550364 | Johnston | Aug 1925 | A |
1655562 | Powers | Jan 1928 | A |
1725183 | Fischer | Aug 1929 | A |
2057092 | Geib | Oct 1936 | A |
2600199 | Brewster | Jun 1952 | A |
2833596 | Borgman et al. | May 1958 | A |
2928642 | Anderson et al. | Mar 1960 | A |
3752262 | Helms | Aug 1973 | A |
4401186 | Dobersch | Aug 1983 | A |
4787475 | Arteau et al. | Nov 1988 | A |
4997062 | Pizzo | Mar 1991 | A |
5145032 | Puccinelli et al. | Sep 1992 | A |
5394956 | Hulse | Mar 1995 | A |
5617931 | Zygmun | Apr 1997 | A |
6264001 | Herschbach | Jul 2001 | B1 |
Number | Date | Country |
---|---|---|
2006100471 | Jul 2006 | AU |
2379241 | Aug 2001 | GB |
Number | Date | Country | |
---|---|---|---|
20100018802 A1 | Jan 2010 | US |
Number | Date | Country | |
---|---|---|---|
61129860 | Jul 2008 | US |