This disclosure relates to implementations of a multi-pole dome switch.
A dome switch, or dome, configured to be mounted on a printed circuit board (PCB), a flex circuit, or a membrane is well known in the prior art. Each dome switch may be secured to a mounting substrate (e.g., a PCB) by an adhesive. To increase the actuation force of a single switch, two domes may be stacked in a single position on the mounting substrate. When depressed, a dome switch may be configured to make contact with two traces and thereby close (or complete) a single circuit. Therefore, two dome switches would be required to close two separate circuits.
However, using two dome switches to independently close two separate circuits has several disadvantages. First, the overall bulk of an electronic device increases as the number of dome switches increases. Second, since two prior art dome switches cannot be co-mounted, actuating two separate electronic devices by depressing a single switch is not possible.
A prior art solution for a single switch that can simultaneously close two separate circuits is a double-pole, double-throw (DPDT) rocker switch. Unfortunately, DPDT switches are too bulky for many applications.
Accordingly, it can be seen that needs exist for the multi-pole dome switch disclosed herein. It is to the provision of a multi-pole dome switch configured to address these needs, and others, that the present invention in primarily directed.
Implementations of a multi-pole dome switch are provided. In some implementations, a single multi-pole dome switch may be configured to simultaneously, or nearly simultaneously, close or open two circuits. In this way, for example, two separate electrical devices may be simultaneously, or nearly simultaneously, turned on or off.
In some implementations, a multi-pole dome switch may be disposed upon a printed circuit board (PCB) that includes a first trace, a second trace, a third trace, and a fourth trace. In some implementations, the first trace and the second trace may be portions of a first open circuit; the third trace and the fourth trace may be portions of a second open circuit.
In some implementations, a multi-pole dome switch may comprise a tactile metal dome and a conductive insert that are separated by an insulator. In some implementations, the insulator may be configured and positioned to prevent a short circuit between the dome and the conductive insert.
In some implementations, when the dome is depressed, the dome and the conductive insert may be configured to simultaneously, or nearly simultaneously, make conductive contact with the first and second traces and the third and fourth traces, respectively, positioned on the PCB. In this way, the multi-pole dome switch is able to simultaneously, or nearly simultaneously, close two separate circuits. Succinctly put, in some implementations, the multi-pole dome switch may be configured to act as a double-pole, double-throw switch.
In some implementations, the dome may comprise four legs, a centrally located bore that extends therethrough, and a downwardly curved contact portion.
In some implementations, each leg of the dome may be secured to the PCB in a manner that places them in conductive contact with the first trace thereof. While a four-leg metal dome is described, it should be understood that other domes (e.g., circular, triangle, oblong, and/or custom metal domes) may be used.
In some implementations, the downwardly curved contact portion may be an annular feature that encircles the bore extending through the dome. In some implementations, the downwardly curved contact portion may be configured to make contact with the second trace located on the PCB when the dome is depressed. In this way, the dome is able to conductively connect the first and second traces and thereby close the first circuit.
In some implementations, the centrally located bore of the dome may be configured so that a conductive portion (or contact) of a downwardly extending cylindrical feature of the conductive insert can extend therethrough. In this way, when the dome is depressed, the contact of the conductive insert is able to conductively connect the third and fourth traces of the PCB and thereby close the second circuit.
In some implementations, the conductive insert may comprise a centrally located contact portion and an annular flange.
In some implementations, the contact portion may be a bottom portion of the downwardly extending cylindrical feature of the conductive insert. In some implementations, the contact portion of the conductive insert may be any shape suitable for making conductive contact with the third and fourth traces on the PCB when the dome is depressed. In this way, the contact portion of the conductive insert may be used to close the second circuit.
In some implementations, the insulator may be positioned and configured to prevent contact between the dome and the conductive insert. In some implementations, the insulator may comprise an annular flange and a centrally located bore defined by a downwardly extending lip.
In some implementations, the centrally located bore of the insulator may be configured to be in coaxial alignment with the bore of the dome when positioned thereon. In this way, the contact portion of the downwardly extending cylindrical feature of the conductive insert may extend therethrough.
In some implementations, the annular flange of the insulator may be larger in diameter than the annular flange of the conductive insert. In this way, the insulator may be configured to prevent a short circuit between the dome and the annular flange of the conductive insert.
In another example implementations, the conductive insert and the insulator of a multi-pole dome switch may be a single unitary piece formed using an overmolding process. In some implementations, the conductive insert may be a circular contact area positioned on the underside of the insulator so that it extends into and through the bore of the dome. In this way, the contact area of the conductive insert is able to conductively connect two traces positioned thereunder when the dome is depressed.
In yet another example implementation, a multi-pole dome switch may comprise a first dome and a second dome separated by a non-conductive tape (e.g., a pressure sensitive adhesive tape). In some implementations, the non-conductive tape may be configured and positioned to prevent conductive contact between the first dome and the second dome of a multi-pole dome switch.
In some implementations, when the second dome is depressed, the first dome and the second dome may be configured to simultaneously, or nearly simultaneously, make conductive contact with a first pair of traces and a second pair of traces, respectively, positioned thereunder on a PCB. In this way, the multi-pole dome switch is able to simultaneously, or nearly simultaneously, close two separate circuits.
In some implementations, the second dome comprises four legs and a centrally located downward protrusion configured to extend through the centrally located bore of the first dome. In some implementations, while the second dome is depressed, the downward protrusion thereof may be configured to make conductive contact with two traces and thereby close a circuit.
In some implementations, when the multi-pole dome switch is assembled, a bore extending though the non-conductive tape may be in coaxial alignment with the bore extending through the first dome. In this way, when the domes are depressed, the downward protrusion of the second dome is able to extend through the bore of the non-conductive tape and the bore of the first dome to make conductive contact with two traces and thereby close a circuit.
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
In some implementations, a non-conductive tape (e.g., a pressure sensitive adhesive tape) may be used to cover the multi-pole dome switch 100. In this way, the conductive insert 120, insulator 130, and dome 110 of the multi-pole dome switch 100 may be held together as an assembly.
Therefore, in some implementations, when the dome 110 is depressed, the dome 110 and the conductive insert 120 may be configured to simultaneously, or nearly simultaneously, make conductive contact with the first and second traces 106, 107 and the third and fourth traces 108, 109, respectively, positioned on the PCB 104. In this way, a single multi-pole dome switch 100 is able to simultaneously, or nearly simultaneously, close two separate circuits. Succinctly put, in some implementations, the multi-pole dome switch 100 may be configured to act as a double-pole, double-throw switch.
As shown in
In some implementations, the dome 110 and/or the conductive insert 120 may be made of a stainless steel and/or another conductive material suitable for use as part of a multi-pole dome switch 100. In some implementations, the dome and/or the conductive insert 120 may be plated with a conductive material (e.g., nickel, gold, and/or silver).
In some implementations, the insulator 130 may be made of any non-conductive material (e.g., nylon) suitable for preventing current from traveling between the dome 110 and the conductive insert 120 of a multi-pole dome switch 100.
In some implementations, the non-conductive tape may be made of a polyester material and/or any other non-conductive material known to one of ordinary skill in the art that is suitable for use as part of a multi-pole dome switch 100.
In some implementations, the multi-pole dome switch 100 may be configured to simultaneously, or nearly simultaneously, close or open three of more circuits. In this way, three or more separate electrical devices may be simultaneously, or nearly simultaneously, turned on or off.
In some implementations, the dome 210 of the multi-pole dome switch 200 may be the same as, or similar to, the dome 110 discussed above in connection with the multi-pole dome switch 100.
As shown in
In some implementations, the conductive insert 220 may include an annular ledge extending from a top side thereof about which the material used to form the insulator 230 is molded. In this way, for example, the insulator 230 may be molded over an upper portion of the conductive insert 220 to thereby create a single unitary piece.
In some implementations, a conductive coating (e.g., gold, silver, and/or nickel plating) may be applied to the underside of the insulator 230 and used in-lieu of the molded in conductive insert 220.
As shown in
As shown in
As shown in
Therefore, in some implementations, when the dome 210 is depressed, the dome 210 and the contact area of the conductive insert 220 may be configured to simultaneously, or nearly simultaneously, make conductive contact with a first pair of traces (e.g., elements 106, 107) and a second pair of traces (e.g., elements 108, 109), respectively, positioned thereunder on a PCB (e.g., element 104). In this way, the multi-pole dome switch 200 is able to simultaneously, or nearly simultaneously, close two separate circuits.
In some implementations, the first dome 310 of the multi-pole dome switch 300 may be the same as, or similar to, the dome 110 discussed above in connection with the multi-pole dome switch 100.
As shown in
In some implementations, the first non-conductive tape 302 (or insulator) may be positioned and configured to cover the first dome 310 and thereby prevent a short circuit between the first dome 310 and the second dome 340 of the multi-pole dome switch 300. In some implementations, the first tape 302 may include a centrally located bore that extends therethrough.
In some implementations, the first tape 302 may be configured so that a portion thereof adjacent the bore extends into the bore 314 of the dome 310 and is thereby positioned between the downward protrusion 344 of the second dome 340 and an interior edge of the bore 314. In this way, the first tape 302 may be further configured to prevent a short circuit. In some implementations, the first tape 302 may not be configured so that a portion thereof extends into the bore 314 of the first dome 310.
In some implementations, when the multi-pole dome switch 300 is assembled, the bore extending though the first tape 302 may be in coaxial alignment with the bore 314 extending through the first dome 310 (see, e.g.,
In some implementations, a second non-conductive tape 303 may be used to cover the multi-pole dome switch 300. In this way, the first dome 310, the first tape 302, and the second dome 340 of the multi-pole dome switch 300 may be held together as an assembly.
Therefore, in some implementations, when the second dome 340 is depressed, the first dome 310 and the second dome 340 may be configured to simultaneously, or nearly simultaneously, make conductive contact with a first pair of traces (e.g., elements 106, 107) and a second pair of traces (e.g., elements 108, 109), respectively, positioned thereunder on a PCB (e.g., element 104). In this way, the multi-pole dome switch 300 is able to simultaneously, or nearly simultaneously, close two separate circuits.
In some implementations, the first dome 310 and/or the second dome 340 may be made of a stainless steel and/or any other conductive material suitable for use as part of a multi-pole dome switch 300. In some implementations, the first dome 310 and/or the second dome 340 may be plated with a conductive material (e.g., nickel, gold, and/or silver).
In some implementations, the first and/or second non-conductive tapes 302, 303 may be made of a polyester material and/or any other non-conductive material known to one of ordinary skill in the art that is suitable for use as part of a multi-pole dome switch 300.
As shown in
In some implementations, a multi-pole dome switch 100, 200, 300 may be configured to operate as a pushbutton actuable “CONSTANT ON or OFF” switch (not shown). In such implementations, the two separate circuits remain closed until pressure is applied and then removed from the dome 110, 210, 310, 340 a second time.
In some implementations, a multi-pole dome switch 100, 200, 300 may be adapted for use on a flexible circuit (or flexible printed circuit board) and/or used as part of a membrane switch.
Reference throughout this specification to “an embodiment” or “implementation” or words of similar import means that a particular described feature, structure, or characteristic is included in at least one embodiment of the present invention. Thus, the phrase “in some implementations” or a phrase of similar import in various places throughout this specification does not necessarily refer to the same embodiment.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings.
The described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the above description, numerous specific details are provided for a thorough understanding of embodiments of the invention. One skilled in the relevant art will recognize, however, that embodiments of the invention can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations may not be shown or described in detail.
While operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/519,111, which was filed on Jun. 13, 2017, and is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62519111 | Jun 2017 | US |