Certain embodiments of the invention are illustrated in the drawing and will be described hereafter in more detail.
In the drawing:
The plug-in contacts 13 are each formed by contact elements 16, each comprising a plug-in area, arranged in a housing 17 of the plug-in connector and, therefore, not visible in
In
Provided in the plug-in area 30 is a contact spring 34 which comprises a first and a second spring leg 35, 36 that are connected one to the other via a spring leg connection member 37. Contact tips 38, 39 formed on the forward ends of the two spring legs 35, 36 form together a contact inlet in the plug-in direction 40 of the plug-in connector 10.
In the plug-in area 30, there is provided at least one locking element 41 for the plug-in area which, after assembly of the contact element 16 in the plug-in connector housing 17, engages a corresponding recess provided in the plug-in connector housing 17 thereby helping increase the mechanical stability, especially increasing the pull-out strength.
The plug-in area 30 is followed by the flat conduction area 18, which likewise has an at least approximately rectangular cross-section, for example, so that a wide side 50 and a narrow side 51 are obtained for the conduction area 18.
The solder areas 19, which for example comprise SMD connections 60 for being soldered to a printed conductor structure on the printed board 20, not shown in detail, are provided at the rear ends of the contact elements 16.
It is envisaged by the invention that the wide side 31 of the plug-in area 30 is rotated by a predefined angle 70 relative to the wide side 50 of the conduction area 18 of a contact element 16.
The value of the angle 70 can be adjusted to the expected space required for spreading out the contact tips 38, 39 when establishing contact with the corresponding contact element of the corresponding plug-in connector, taking into account the spacing 71 between two contact elements 16 arranged one adjacent the other in the direction of the plug-in contact column 11. An especially convenient solution is obtained when the angle 70 is determined to be at least approximately 90 degrees. In this case, the wide side 31 of the plug-in area 30 extends at least approximately in parallel to a contact row plane 15. In the soldered condition of the plug-in connector 10 on the printed board 20 the contact row plane 15 preferably extends in parallel to the plane 21 of the printed board.
Rotation by the predefined angle 70 of preferably 90 degrees initially allows the spacing 71 between two contact elements 16, arranged one adjacent the other in the contact column plane 14, to be reduced as the spring legs 35, 36 with the contact tips 38, 39 formed thereon, if any, are no longer spread out in a direction parallel to the contact column plane 14, but rather in a direction defined by the angle 70 during contact-making. Provided the angle has the preferred value of at least approximately 90 degrees, such spreading-out during contact-making occurs at least approximately in the contact row plane 15. As a result of the space savings that are rendered possible in this case, a comparatively higher number of plug-in contacts 13 can be accommodated within the predefined dimensions of the plug-in connector housing 17.
A special advantage achieved by an angle of at least approximately 90 degrees results from the fact that the sides 31 placed one opposite the other in at least approximately parallel arrangement are the wide sides 31 of the plug-in areas 30 of contact elements 16 arranged one adjacent the other in a contact column plane 14. This provides substantial advantages in terms of electric field distribution, depending on the signals carried through the contact elements 16. Especially, a low stray field is obtained as the field lines mainly occur between the wide sides 31 of two contact elements 16 arranged one adjacent the other in the contact column plane 14. Thus, an especially good screening effect is achieved without any need for special additional screening measures.
By adapting the spacing 71 to the wide side 31 of the plug-in area 30, which exhibits the width 33 at least by sections, or that exhibits the average width 33, at least approximately, it is possible in an especially advantageous way to purposefully influence the surge impedance determined by the conductor arrangement (and the dielectric) formed at least by two contact elements 16 arranged one adjacent the other in the contact column plane 14. Such adaptation is generally performed between the space 71 and the wide side 31 of the plug-in area 30. Specifically, such adaptation may be effected between the spacing 71 and the width 33 of the plug-in area 30, defined at least by sections. It is thereby possible to keep any variation in surge resistance in the area of the plug-in connection as small as possible in order to prevent undesirable line reflections. One thereby obtains good signal quality and/or high signal integrity.
Rotation by the predefined angle 70 leads to increased rigidity of the contact element 16. It is thus possible for the contact element 16 to absorb higher forces during the plugging operation without any risk of bending, especially in the conduction area 18. Especially, an increased torsion moment is obtained without increasing the input of material, compared with the contact elements known from the prior art.
By purposefully predefining the cross-section of the spring legs 35, 36, it is possible to purposefully influence the force to be applied during the plugging operation. Especially, it is envisaged to continuously reduce the cross-section of the spring legs 35, 36, at least by sections, from the connection member 37 in a direction opposite to the plugging direction 40. This minimizes the consumption of material.
According to another feature that aims at influencing the rigidity of the contact element 16, especially in the plug-in area 30, a stepped reduction 42 in cross-section is provided in the area of the spring legs 35, 36.
Number | Date | Country | Kind |
---|---|---|---|
10 2006 036 917.3 | Aug 2006 | DE | national |
Applicant claims priority under 35 U.S.C. 119 German Application No. 10 2006 036 917.3 filed Aug. 4, 2006.