This invention relates in general to patient lifting and transferring. In particular, the invention relates to a device for lifting a disabled person from a sitting to a standing position and permitting the person to be readily moved.
It is often desirable to assist a disabled person in standing. This is particularly useful when the disabled person lacks strength or coordination to lift himself or herself. To assist these patients, it is common to have a patient lift, which can function as a lift or a stand assist device. An attendant may be required to assist the patient in using the device.
A lift typically includes a sling for supporting a patient. The sling may be lifted by a movable arm. In a lift, the patient is typically completely supported from an overhead position and has no active role in supporting him or herself or assisting in being lifted. A lift is commonly used to temporarily raise a patient or transport the patient without discomfort.
A stand assist device is used to lift a patient from a sitting position to a generally standing position. The device may include an upright member and an arm or support member movable by an actuator. When supported by the device, the patient may stand at an angle on a foot plate and hold the support member. With the support member lowered to a comfortable level to be used as a handle and with the foot plate removed, the device may be used to assist the patient in walking.
A sling may be used with a stand assist device to assist in supporting the patient. The sling may pass behind the patient's back and under the patient's arms and be suspended from the support member. With the sling in place, the patient can be lifted to a generally erect position.
A stand assist device may also be used with a sling to lift and suspend a patient. Once the patient is suspended, the stand may be moved to transport the patient or the patient may remain supported during patient care, such as while changing the patient's clothes or permitting the patient to use a toilet.
This invention relates to a patient lift comprising a base, a mast assembly mounted on the base at the lower end, a boom pivotally mounted at one end on the mast assembly. An actuator is mounted on the boom and configured to move between a retracted position and an extended position to pivot the boom relative to the mast assembly between a lowered position and a raised position. A support member including a sling attachment is pivotally mounted on the outer end of the boom. A locking mechanism is configured to fix the support member relative to the boom when the locking mechanism is engaged and further configured to allow pivotal movement of the support member relative to the boom when the locking mechanism is released.
This invention also relates to a patient lift comprising a base extending in a forward direction and a mast mounted on the base. The mast assembly includes a hinge mechanism configured to allow the mast assembly to be moved between an upright operative position and a folded position, wherein when the mast assembly is in the folded position the mast assembly is substantially parallel to the base and extends in the forward direction. A knee pad is attached to the mast assembly by a knee pad mounting assembly, the knee pad mounting assembly configured to allow the knee pad to be moved substantially vertically relative to the mast when the mast is in the upright operative position through an operating range, the knee pad mounting assembly further configured to allow the knee pad to be moved to a storage position,
wherein the knee pad is vertically higher when in the storage position than when in the operating range when the mast is in the upright operative position. The base, mast assembly, knee pad and knee pad attachment assembly are configured so that the knee pad does not interfere with the base when the knee pad is in the storage position and the mast is moved into the folded position.
This invention also relates to a patient lift comprising a base extending in a forward direction, a foot plate attached to the base and a mast assembly mounted on the base. The mast assembly includes a hinge mechanism configured to allow the mast assembly to be moved between an upright operative position and a folded position, wherein when the mast assembly is in the folded position the mast assembly is substantially parallel to the base and extends in the forward direction. A knee pad is attached to the mast assembly by a knee pad mounting assembly that is configured to allow the knee pad to be moved substantially vertically relative to the mast through an operating range when the mast is in the upright operative position. The knee pad mounting assembly is further configured to allow the knee pad to be moved to a storage position, wherein the knee pad is vertically higher when in the storage position than when in the operating range when the mast is in the upright operative position. The base, foot plate, mast assembly, knee pad and knee pad attachment assembly are configured so that the knee pad does not interfere with the base and the foot plate when the knee pad is in the storage position and the mast is moved into the folded position.
Various aspects of this invention will become apparent to those skilled in the art from the following detailed description of the preferred embodiment, when read in light of the accompanying drawings.
Referring now to the drawings, there is illustrated in
The illustrated base assembly 12 includes a base 16. The base assembly 12 also includes a pair of legs 18. The legs 18 extend in a forward direction 19. The illustrated legs 18 are mounted for pivotal movement relative to the base 16. The illustrated legs 18 are configured to rotate about separate hinges having substantially vertical axes. This allows an operator to spread the legs 18 apart or move the legs 18 closer together. The legs 18 can be configured to be moved by foot pedals (not shown) or any other suitable means.
The illustrated base assembly 12 includes two front castors 20 and two rear castors 22. The illustrated rear castors 22 are braked castors, but it should be appreciated that this is not required. The casters 20 and 22 are configured to support and allow rolling movement of the patient lift 10.
The base assembly 12 also includes an optional foot plate 24. The foot plate 24 includes a step area 26. The step area 26 is configured to support the feet of a patient using the patient lift 10. The illustrated foot plate 24 is configured to be removable from the patient lift 10. This allows the foot plate 24 to be moved so that the patient lift 10 can be used, as a walking device, for instance, without the patient's using the foot plate 24 or the step area 26. The foot plate 24 could also be mounted for pivotal movement relative to the base 16.
In the illustrated patient lift 10, the mast assembly 14 is attached to the base 16. As can be best seen in
The patient lift 10 includes a knee pad 36. The knee pad 36 provides support for the patient using the patient lift 10. The illustrated knee pad 36 includes optional resilient padding as a cushion for the patient's comfort. As is best shown in
The combination of the buckles 46 and the horn 48 allow the strap 40 to be used to secure the patient's legs to the knee pad 36 in a number of positions based on the individual patient requirements. For instance, when each buckle tongue 42 is attached to a buckle 46 and the central loop 44 is attached to the horn 48, the most secure engagement with the patient is provided as each of the patient's legs is individually secured. When each buckle tongue 42 is attached to a buckle 46 but the central loop 44 is not attached to the horn 48, the patient is held in engagement with the knee pad 36, but the patient can be released by releasing either buckle 46. This provides greater convenience to an attendant using the patient lift 10. The central loop 44 is attached to the horn 48 and only one of the buckle tongues 42 is attached to a buckle 46 when only one leg is secured to the knee pad 36. This is useful when the patient is missing the lower part of one leg. The central loop 44 is attached to the horn 48 and neither buckle tongue 42 is attached to the buckles 46 for storage of the strap 40. The strap 40 does not secure the patient to the knee pad 36 when the strap 40 is stored like this, but the strap 40 remains secured to the patient lift 10 and is less likely to be misplaced.
A knee pad mounting assembly, indicated generally at 50, attaches the illustrated knee pad 36 to the mast 30. The illustrated knee pad mounting assembly 50 is adjustable to allow the position of the knee pad 36 to be changed for the convenience and comfort of the patient. The knee pad mounting assembly 50 includes a mounting bracket 52. The mounting bracket 52 is attached to a fixed position on the mast 30. The mounting bracket 52 releasably grips a guide tube 54 of the knee pad mounting assembly 50. The height of the knee pad 36 can be adjusted by releasing the mounting bracket 52, sliding the guide tube 54 up or down relative to the mounting bracket 52, then engaging the mounting bracket 52 in order to grip the guide tube 54. The knee pad 36 is shown in a low position in
The illustrated knee pad mounting assembly 50 is configured to provide substantially linear movement of the knee pad 36 through the operating range and to the most raised position. It should be appreciated that this is not necessary, and the knee pad 36 could be configured for some other type of movement. Additionally, the most raised position of the illustrated knee pad 36 is outside the operating range. It should be appreciated that this is not necessary. Movement of the knee pad 36 could be limited to the operating range, for instance.
The illustrated patient lift 10 includes an optional steering handle 56. The illustrated steering handle 56 is mounted on the mast 30. The steering handle 56 is provided to assist the attendant in moving and maneuvering the patient lift 10.
The patient lift 10 includes a boom 58. An inner end of the boom 58 is pivotally attached to the upper end of the mast 30 by a boom hinge 60. The illustrated boom hinge 60 has a substantially horizontal axis. The boom 58 also includes an actuator pivot 62. The illustrated actuator pivot 62 is attached to the upper end of an arm or actuator 64. The actuator 64 may be an electronic ball screw actuator or other suitable actuator. The illustrated actuator 64 is attached to a motor 66. The illustrated motor 66 is also mounted to the mast 30. The motor 66 is configured to extend or retract the actuator 64. By driving the actuator 64, the motor is able to cause the boom 58 to pivot about the boom hinge 60. Pivoting the boom 58 about the boom hinge 60 will either raise or lower an outer end 68 of the boom 58. The illustrated motor 66 is an electric motor, and is powered by a power supply 70. The illustrated power supply 70 is attached to the mast 30. It should be appreciated that any other suitable mechanism may be used to move the boom 58.
The outer end 68 of the boom 58 supports a pivotally attached support member 72. As best seen in
The locking mechanism 74 releasably grips the support member 72. When the locking member 74 is released, the support member 72 is able to rotate around a substantially horizontal axis. When the locking member 74 is engaged, the support member 72 is fixed relative to the boom 58. The illustrated locking mechanism 74 includes a release handle 80. The release handle 80 is configured to be moved by the attendant in a first direction, as indicated by the arrow 82. In the illustrated embodiment, the first direction 82 is the rearward direction. When the release handle 80 is moved in the first direction, the support member 72 is released for rotation relative to the boom 58. The release handle 80 is spring biased in a second direction, toward the support member 72. In the illustrated embodiment, the second direction is the forward direction 19. When the release handle 80 is moved in the second direction, the support member 72 is no longer able to rotate relative to the boom 58 and the support member 72 is fixed in its current angular position. It should be appreciated that while the illustrated release handle 80 moves in the forward direction 19 in order to lock the support member 72, the locking mechanism 74 can be configured so that the release handle 80 moves in other directions.
Referring to
When the bolt 96 is disposed through the bolt opening 94 and one of the radial openings 92, the bolt 96 prevents rotation of the inner cylinder 88 about the centerline 86. Thus, the bolt 96 locks the position of the inner cylinder 88 relative to the outer cylinder 84 and the bolt 96 also locks the position of the support member 72 relative to the boom 58. Both the bolt 96 and the plate 100 are configured for sliding movement within the boom 58. The release handle 80 can be moved in the first direction (indicated by the arrow 82) by an attendant overcoming the biasing force of the spring 104. When the release handle is moved in the first direction 82, the plate 100 and the bolt 96 are also moved in the first direction 82. The locking mechanism is configured to move the bolt 96 a sufficient distance in the first direction to withdraw the bolt 96 from the radial opening 92. This allows the inner cylinder 88 to rotate about the centerline 86.
It should be appreciated that the weight of the support member 72 will tend to cause rotation of the inner cylinder 88 relative to the outer cylinder 84. In reference to
It should be appreciated that one, non-limiting embodiment of a locking mechanism 74 has been described in detail. However, any suitable locking mechanism 74 can be used with the patient lift 10.
The ability to adjust the support member 72 to various angular positions permits the patient lift 10 to accommodate a greater variety of patients. That is, the shape of the patient lift 10 can be changed, and the attachment points 78 can be repositioned to meet the patient's needs. This also allows more compact folding of the patient lift 10. The support member 72 is shown in a variety of positions in
It should be appreciated that when a load is placed on the support member 72, such as when the patient lift 10 is being used to lift a patient, the force of that load will generate a moment that tends to rotate the inner cylinder 88 about the centerline 86. The bolt 96 will prevent rotation of the inner cylinder 88, and the bolt 96 will be pinched between the inner cylinder 88 and the outer cylinder 84. This will increase the amount of force necessary to move the release handle 80 in the first direction 82. That is, when there is a load on the support member 72, it is more difficult to release the locking mechanism 72 for rotational adjustment of the support member 72. However, the locking mechanism could be configured to prevent release of the locking mechanism 72 when a load above a set amount is placed on the support member 72.
When used as a stand assist, the patient lift 10 is positioned in front of a patient. The legs 18 may be adjusted in width to provide a stable base arrangement. The patient's feet may be situated on the foot plate 24. A sling (not shown) may be suspended from the attachment points 78. The sling is passed behind the patient's back and under the patient's arms. The motor 66 is driven to extend the actuator 64. As the actuator 64 is extended, it pivots the boom 58 about the boom hinge 60, and raises the outer end 68 of the boom 58. This also raises the support member 72, and the attached sling. The support member 72 can be raised until the patient is supported by the foot plate 24 and the support member 72 and the desired height is reached.
When used as a patient lift, the patient lift 10 may be positioned adjacent the patient and stabilized by adjustment in width of the legs 18. A sling (not shown) may be placed under the patient and suspended from the attachment points 78. The motor 66 then drives the actuator 64 to raise the support member 72 in order to lift the patient. The patient may be completely supported by the sling. That is, the patient's weight is supported entirely by the patient lift 10 through the sling. When used as a patient lift, the patient's feet are not supported by the foot plate 24, and the foot plate 24 can be removed from the patient lift 10.
The patient lift 10 may be used as a walking device for the patient. When used as a walking device, the support member 72 is generally lowered to make it comfortable for the patient to use the hand-holds 76 and the foot plate 24 is removed. This helps the patient to comfortably hold either the hand-holds 76 or the support member 72 while walking.
The principle and mode of operation of this invention have been explained and illustrated in its preferred embodiment. However, it must be understood that this invention may be practiced otherwise than as specifically explained and illustrated without departing from its spirit or scope.
This application claims priority from U.S. Provisional Patent Application Ser. No. 61/009,236, filed Dec. 27, 2007, and entitled MULTI-POSITION SUPPORT FOR PATIENT SUPPORT DEVICE.
Number | Date | Country | |
---|---|---|---|
61009236 | Dec 2007 | US |