This invention relates to power tools, such as power fastener drivers, saws, drills, and other hand-held power tools typically used on construction sites, in factories, shops or other locations. More specifically, the present invention relates to a hook assembly for such tools.
In the construction industry, tradesmen frequently use power tools in a variety of locations. Often, it is necessary to have the tool operator's hands free for another task in places where there is no convenient surface on which to place the tool. Carpenters, for example, while using a power nailer or powered fastener-driving tool to frame a building, may need to correctly position the next stud before nailing it into place. While working on roof joists, rafters or on ladders, the ability to secure the tool in a convenient location, such as a rafter or a user's belt, facilitates the performance of those tasks. Tradesmen will also save time and money by keeping their tools close by and within reach.
Hook assemblies for power tools have been disclosed in the prior art, such as U.S. Pat. No. 4,406,064 to Goss. This reference teaches a hook that is secured to the tool handle and housing through the holes that mount the handle to the housing. To stabilize the tool, the hanger extends along and covers a portion of the handle. In some tools, it is disadvantageous to cover a portion of the handle with the hanger. Also, power tools vary considerably in their shape, the position of the handle and the distribution of the tool's weight.
Mounting of a hook on the top of a tool near the handle also may result in decreased visibility for the user. Many tools are designed to have the user look over the tool to the workpiece in order to direct its movement. In most cases, this requires looking past or near the handle of the tool. When deployed in a position to hold the tool, conventional hooks often obscure the user's field of vision. Although the prior art devices are adjustable to a position close to the body of the tool, it is inconvenient to keep moving the hook from one position to another each time the tool is used, then set aside.
Another design factor of such tools, especially fastener-driving tools, is that, during use, a battery may become loose or in some cases can even fall out of the battery housing due to the operational vibrations of the tool. If the battery becomes loose, the operation of the tool is disrupted due to poor electrical contacts. Such operational inefficiency may deter operators from using such tools.
Further, known hook assemblies for such power tools typically have only two positions, one when the hook is in use, and a second for stowing the hook out of the way while the tool is operated. In some circumstances, neither of these is a good option. In situations when the operator desires to place the tool on his belt, the position of the hook is not suitable for belt support.
There is a need for an improved hook assembly for a power tool that addresses the above-listed issues of conventional tools.
The above-listed needs are met or exceeded by the present improved multi-position hook assembly for a tool that mounts directly to the tool housing. The present hook assembly allows the user to hang the power tool in a variety locations, including on fixed structures such as ladders or rafters, as well as on a user's belt. In addition, the present hook assembly can be placed in a position that secures the battery in place during tool use.
More specifically, the present multi-position hook assembly for use in a tool includes a hook having a free leg and a mounting leg joined by a top span. In addition, a holding block is configured for rotatably receiving the mounting leg of the hook and for releasably locking the hook in a plurality of positions.
When the present hook is in a first position, it permits the power tool to be hung on framing members, rafters, trusses, ladders, handrails, bracings or plywood sheets. When the hook is rotated and releasably locked into a second position, the power tool can be hung from the user's belt. Furthermore, users will be able to releasably lock the hook into a third position, in which the hook secures the battery in the housing. This latter feature is advantageous because, as those skilled in the art will appreciate, batteries for such tools often become loose and may fall out of the housing due to the vibrations when the power tool is in use.
Referring now to
Referring now to
The hook 24 is generally “U”-shaped and preferably constructed from a single length of formed wire. However, other materials and fabrication techniques are contemplated. As seen in
Referring again to
Now referring to
As shown in
In the preferred embodiment, the hook 24 can be rotated and releasably locked into three different positions. Referring to
Now referring to
Referring again to
Now referring to
The hook assembly 22 further includes a biasing element 72 for releasably biasing the hook 24 in one or more positions. Furthermore, the hook assembly 22 also includes a biasing element chamber 74 defined by a counterbore 76 (shown hidden) in the nose end 50 of the holding block 32, and the cavity 66 of the stop button 44 for retaining the biasing element 72. In the preferred embodiment, the biasing element 72 is a compression spring, but any suitable biasing element can be used in the present invention. Upon assembly of the present hook assembly 22, the biasing element 72 is substantially enclosed when it is inside of the biasing element chamber 74. One portion of the biasing element 72 is enclosed in the nose end counterbore 76, and another, opposite portion of the biasing element is enclosed in the cavity 66 of the stop button 44. Finally, when the stop button 44 is depressed, the force of the biasing element 72 is overcome, and the hook 24 is rotatable and releasably lockable into one or more selected positions as described above.
While a particular embodiment of the present multi-position hook assembly for a power tool has been described herein, it will be appreciated by those skilled in the art that changes and modifications may be made thereto without departing from the invention in its broader aspects and as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
2803048 | Fernberg | Aug 1957 | A |
3797229 | Rueff et al. | Mar 1974 | A |
4372468 | Harvey | Feb 1983 | A |
4406064 | Goss | Sep 1983 | A |
4457462 | Taormina | Jul 1984 | A |
4787145 | Klicker et al. | Nov 1988 | A |
5743451 | Kahn | Apr 1998 | A |
5930903 | Hurn et al. | Aug 1999 | A |
6199736 | Musarella et al. | Mar 2001 | B1 |
6230367 | Riedl | May 2001 | B1 |
6325577 | Anderson | Dec 2001 | B1 |
6454147 | Marks | Sep 2002 | B1 |
6679406 | Sakai et al. | Jan 2004 | B2 |
6722549 | Shkolnikov et al. | Apr 2004 | B2 |
20020179659 | Shaw | Dec 2002 | A1 |
20040050888 | Warner | Mar 2004 | A1 |
20040178240 | Bauer | Sep 2004 | A1 |
Number | Date | Country |
---|---|---|
2001 162566 | Jul 2001 | JP |
Number | Date | Country | |
---|---|---|---|
20060070761 A1 | Apr 2006 | US |