The field of the invention relates to completion techniques involving fracturing and more particularly the ability to gravel pack and fracture discrete segments of a formation in a desired order through dedicated valved ports followed by configuring another valve for screened sand control duty to let production begin. A crossover tool and a separate run for sand control screens after the fracturing operation is not required.
Typical completion sequences in the past involve running in an assembly of screens with a crossover tool and an isolation packer above the crossover tool. The crossover tool has a squeeze position where it eliminates a return path to allow fluid pumped down a work string and through the packer to cross over to the annulus outside the screen sections and into the formation through, for example, a cemented and perforated casing or in open hole. Alternatively, the casing could have telescoping members that are extendable into the formation and the tubular from which they extend could be cemented or not cemented. The fracture fluid, in any event, would go into the annular space outside the screens and get squeezed into the formation that is isolated by the packer above the crossover tool and another downhole packer or the bottom of the hole. When a particular portion of a zone was fractured in this manner the crossover tool would be repositioned to allow a return path, usually through the annular space above the isolation packer and outside the work string so that a gravel packing operation could then begin. In the gravel packing operation, the gravel exits the crossover tool to the annular space outside the screens. Carrier fluid goes through the screens and back into the crossover tool to get through the packer above and into the annular space outside the work string and back to the surface.
This entire procedure is repeated if another zone in the well needs to be fractured and gravel packed before it can be produced. Once a given zone was gravel packed, the production string is tagged into the packer and the zone is produced.
There are many issues with this technique and foremost among them is the rig time for running in the hole and conducting the discrete operations. Other issues relate to the erosive qualities of the gravel slurry during deposition of gravel in the gravel packing procedure. Portions of the crossover tool could wear away during the fracking operation or the subsequent gravel packing operation, if the zone was particularly long. If more than a single zone needs to be fractured and gravel packed, it means additional trips in the hole with more screens coupled to a crossover tool and an isolation packer and a repeating of the process. The order of operations using this technique was generally limited to working the hole from the bottom up. Alternatively, one trip multi-zone systems have been developed that require a large volume of proppant slurry through the crossover tool and that increases the erosion risk.
What the present invention addresses are ways to optimize the operation to reduce rig time and enhance the choices available for the sequence of locations where fracturing can occur. Furthermore, through a unique valve system, fracturing can occur in a plurality of zones in any desired order followed by operating another valve to place filter media in position of ports so that production could commence with a production string without having to run screens or a crossover tool into the well. These and other advantages of the present invention will be more readily apparent to those skilled in the art from the description of the various embodiments that are discussed below along with their associated drawings, while recognizing that the claims define the full scope of the invention.
A completion tubular is placed in position adjacent the zone or zones to be fractured and produced. It features preferably sliding sleeve valves one series of which can be put in the wide open position after run in for gravel packing and fracturing zones one at a time or in any desired order. These valves are then closed and another series of valves can be opened wide but with a screen material juxtaposed in the flow passage to selectively produce from one or more fractured zones. An annular path behind the gravel is provided by an offset screen to promote flow to the screened production port. The path can be a closed annulus that comes short of the production port or goes over it. For short runs an exterior screen or shroud is eliminated for a sliding sleeve with multiple screened ports that can be opened in tandem.
The string 16 for the interval 22 that is illustrated has a frac valve 24 that is preferably a sliding sleeve shown in the closed position in
At this point the production valve 26 which is preferably a sliding sleeve with a screen material 38 in or over its ports is brought into alignment with ports 40 and production from the formation 14 begins. Alternatively, the screen material 38 can be fixed to either side of the string 16. In short, the open position of production valve 26 results in the production flow being screened regardless of screen position and screen type. Flow can take a path of less resistance through the flow area 34 to reach the port 40. While such flow avoids most of the gravel pack 28 by design, the presence of passage 34 allows a greater flow to reach the ports 40 so as not to impede production. The presence of a screen material 38 at ports 40 serves to exclude solids that may have gotten into passage 34 through the coarse openings in shroud 29. The screen material 38 can be of a variety of designs such as a weave, conjoined spheres, porous sintered metal or equivalent designs that perform the function of a screen to keep gravel 28 out of the flow passage through string 16.
It should be noted that while only a single port 25 and 40 are shown that there can be multiple ports that are respectively exposed by operation of valves 24 and 26. While valves 24 and 26 are preferably longitudinally shiftable sliding sleeves that can be operated with a shifting tool, hydraulic or pneumatic pressure or a variety of motor drivers, other styles of valves can be used. For example, the valves can be a sleeve that rotates rather than shifts axially. While a single valve assembly in an interval between barriers 18 and 20 is illustrated for valves 24 and 26 and their associated ports, multiple assemblies can be used with either discrete sleeves for a given row of associated openings or longer sleeves that can service multiple rows of associated openings that are axially displaced.
In both designs the length of shroud 29 can span many pipe joints and can exceed hundreds if not thousands of feet depending on the length of the interval 22. Those skilled in the art will appreciate that short jumper sections can be used to cover the connections after assembly so that the passage 34 winds up being continuous.
Optionally, the shroud 29 of from the other embodiments can be combined into the
The above description is illustrative of the preferred embodiment and many modifications may be made by those skilled in the art without departing from the invention whose scope is to be determined from the literal and equivalent scope of the claims below.
This application is a divisional of U.S. patent application Ser. No. 11/949,403, filed on Dec. 3, 2007.
Number | Name | Date | Kind |
---|---|---|---|
4969524 | Whiteley | Nov 1990 | A |
5413176 | Restarick | May 1995 | A |
5875852 | Floyd et al. | Mar 1999 | A |
5971070 | Ross et al. | Oct 1999 | A |
6176307 | Danos et al. | Jan 2001 | B1 |
6978840 | Henderson | Dec 2005 | B2 |
7013979 | Richard | Mar 2006 | B2 |
7066265 | Surjaatmadja | Jun 2006 | B2 |
7185703 | Jannise et al. | Mar 2007 | B2 |
7316274 | Xu et al. | Jan 2008 | B2 |
7401648 | Richard | Jul 2008 | B2 |
7461699 | Richard et al. | Dec 2008 | B2 |
7520335 | Richard et al. | Apr 2009 | B2 |
7575062 | East, Jr. | Aug 2009 | B2 |
20030230406 | Lund | Dec 2003 | A1 |
20060124310 | Lopez de Cardenas et al. | Jun 2006 | A1 |
20090044944 | Murray et al. | Feb 2009 | A1 |
20090078408 | Richard et al. | Mar 2009 | A1 |
20090084553 | Rytlewski et al. | Apr 2009 | A1 |
20090101355 | Peterson et al. | Apr 2009 | A1 |
20090223678 | Richard et al. | Sep 2009 | A1 |
20090255686 | Richard et al. | Oct 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20120080188 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11949403 | Dec 2007 | US |
Child | 13324450 | US |