The present disclosure relates to a multi-pressure gas compressor having simultaneous running and charging systems.
U.S. Pat. No. 4,474,539 discloses a dual pressure gas compressor having two gas compressors and a two-compartment tank. A first one of the gas compressors provides pressurized gas of a first (low) pressure to a first compartment of the tank, while the other one of the gas compressors provides pressurized gas of a second (higher) pressure to a second compartment of the tank. A conduit connects the first compartment of the tank to the input of the second compressor. Both compressors are operated by a single motor.
U.S. Patent Application Publication No. 2010/0913054 discloses a portable compressor having a permanently mounted first tank and a second tank that can be removed from the remainder of the portable compressor.
There remains a need in the art for a multi-pressure gas compressor having simultaneous running and charging systems.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
In one form, the present teachings provide a multi-pressure compressor that includes a roll-cage frame, a first compressor assembly, a second compressor assembly, a tank coupler, a bracket and at least one controller. The first compressor assembly is mounted inside the roll-cage frame and has a first compressor driven by a first motor. The first compressor is configured to output compressed gas at a first pressure. The second compressor assembly is mounted inside the roll-cage frame and has a second compressor driven by a second motor. The second compressor has an inlet that is in fluid communication with the first compressor. The second compressor is configured to output compressed gas at a second pressure that is higher than the first pressure. The tank coupler is in fluid communication with the second compressor and is configured to be coupled to an auxiliary tank that is rated for an internal pressure in excess of 2500 psi. The bracket is coupled to the roll-cage frame and is configured to receive the auxiliary tank therein. The controller(s) is/are coupled to the first and second motors. The controller(s) is/are configured to operate the first motor to thereby drive the first compressor when there is a demand for compressed gas at the first pressure, and is/are configured to operate the second motor to thereby drive the second compressor when the controller(s) determine(s) that there is a demand for compressed gas at the second pressure and the first motor is operating.
In another form, the present teachings provide a multi-pressure compressor having a first compressor assembly, a primary tank, a second compressor assembly, a frame, a tank coupler, a bracket and at least one controller. The first compressor assembly has a first compressor driven by a first motor and is configured to output compressed gas at a first pressure. The primary tank is in fluid communication with an outlet of the first compressor. The second compressor assembly has a second compressor driven by a second motor. The second compressor has an inlet that is in fluid communication with at least one of the first compressor and the primary tank. The second compressor is configured to output compressed gas at a second pressure that is higher than the first pressure. The first compressor assembly, the second compressor assembly and the primary tank are mounted to the frame. The frame includes a plurality of structural members that cooperate to enclose the first compressor and the second compressor. The tank coupler is in fluid communication with the second compressor and is configured to be coupled to an auxiliary tank that is rated for an internal pressure in excess of 2500 psi. The bracket is coupled to the frame and is configured to receive the auxiliary tank therein. The controller(s) is/are coupled to the first and second motors. The controller(s) is/are configured to operate the first motor to thereby drive the first compressor when there is a demand for compressed gas at the first pressure. The controller(s) is/are configured to operate the first and second motors to thereby drive the first and second compressors when the at least one controller determines that there is a demand for compressed gas at the first and second pressures.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
With reference to
The frame assembly 12 can comprise a frame 40, a mounting platform 42, a pair of wheels 44, a first handle 46 and a second handle 48. The frame 40 can define a roll-cage structure into which the first and second compressor assemblies 20 and 34 can be received. The frame 40 can have a plurality of structural members (e.g., tubes 50) that can be fixedly coupled to one another, e.g., via welding, and which can cooperate to enclose the first and second compressor assemblies 20 and 34 on all sides. The mounting platform 42 can be fixed to the frame 40 and can be a platform onto which the first and second compressor assemblies 20 and 34 can be mounted. The wheels 44 can be coupled to the frame 40 in a manner that permits wheels to support the weight of the multi-pressure compressor 10 when the frame 40 is tilted into a transport position. The first and second handles 46 and 48 can be coupled to the frame 40 in any desired manner. For example, the first handle 46 can be fixedly coupled to the primary tank 22, which in turn can be fixedly coupled to the tubes 50 so as to shroud a portion of the interior of the frame 40. The second handle 48 can be slidably (telescopically) received into a portion of the frame 40. It will be appreciated that the second handle 48 can be collapsed (telescoped) into the frame 40 when the second handle 48 is not needed and can be positioned into an extended position (i.e., telescoped out of the frame 40) when the multi-pressure compressor 10 is to be rolled on the wheels 44.
With reference to
The first compressor 62 can comprise a first outlet 70 that can be coupled in fluid communication to an inlet 72 of the primary tank 22 and an inlet 74 of the second compressor 66. A first pressure switch 78 can sense a pressure of the compressed gas in the primary tank 22 and can generate a first sensor signal when the pressure of the compressed gas in the primary tank 22 exceeds a first predetermined threshold. The second compressor 66 can comprise a second outlet 80 that can be coupled in fluid communication to the tank coupler 36. The tank coupler 36 can comprise any means for coupling an auxiliary tank 84 in fluid communication with the second outlet 80. In the particular example provided, the tank coupler 36 comprises a commercially available high-pressure female quick connect fitting. A second pressure switch 86 can sense a pressure of the compressed gas in a fluid conduit 90 between the second outlet 80 and the tank coupler 36 and can generate a second sensor signal when the pressure of the compressed gas in the fluid conduit exceeds a second predetermined threshold. If desired, a bracket 94 (
At least one controller 100 can be coupled to the first and second pressure switches 78 and 86 and the first and second motors 60 and 64 and can be configured to control operation of the first and second compressor assemblies 20 and 34. The at least one controller 100 can be configured to: a) operate the first motor 60 to thereby drive the first compressor 62 when there is a demand for compressed gas at the first pressure; b) operate the second motor 64 to thereby drive the second compressor 66 when the at least one controller 100 determines that there is a demand for compressed gas at the second pressure and the first motor 60 is operating. The occurrence of a demand for compressed gas at the first pressure can occur when the at least one controller 100 receives the first sensor signal or when the at least one controller 100 receives the second sensor signal. The occurrence of a demand for compressed gas at the second pressure can occur when the at least one controller 100 receives the second sensor signal or when the at least one controller 100 receives the second sensor signal and the first motor 60 is operating.
With reference to
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application claims the benefit of U.S. Provisional Application No. 61/584,535, filed on Jan. 9, 2012, the disclosure of which is incorporated by reference as if fully set forth in detail herein.
Number | Name | Date | Kind |
---|---|---|---|
4474539 | Wolf | Oct 1984 | A |
5396885 | Nelson | Mar 1995 | A |
6393802 | Bowser et al. | May 2002 | B1 |
6446630 | Todd, Jr. | Sep 2002 | B1 |
6537039 | Mann | Mar 2003 | B2 |
6551066 | Saylor et al. | Apr 2003 | B2 |
6582201 | Lucchi | Jun 2003 | B2 |
6655925 | Robenalt et al. | Dec 2003 | B1 |
6904913 | Aylsworth et al. | Jun 2005 | B2 |
6932128 | Turan, Jr. | Aug 2005 | B2 |
7150280 | Aylsworth et al. | Dec 2006 | B2 |
7163382 | Stilwell et al. | Jan 2007 | B1 |
7258140 | Acree | Aug 2007 | B2 |
7887303 | Sadkowski et al. | Feb 2011 | B2 |
8282363 | Ohi et al. | Oct 2012 | B2 |
20030180156 | Brashears et al. | Sep 2003 | A1 |
20050210895 | Horton | Sep 2005 | A1 |
20060093489 | Hernandez et al. | May 2006 | A1 |
20070212236 | Turan | Sep 2007 | A1 |
20080003111 | Turan | Jan 2008 | A1 |
20080240933 | Hill et al. | Oct 2008 | A1 |
20080273994 | Sadkowski et al. | Nov 2008 | A1 |
20090097989 | Santa Ana | Apr 2009 | A1 |
20090230685 | McCall | Sep 2009 | A1 |
20100193054 | Hernandez et al. | Aug 2010 | A1 |
20100290929 | Ohi et al. | Nov 2010 | A1 |
Number | Date | Country |
---|---|---|
10159748 | Jun 1998 | JP |
2009008065 | Jan 2009 | JP |
Number | Date | Country | |
---|---|---|---|
20130177452 A1 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
61584535 | Jan 2012 | US |