Multi-primary display with spectrally adapted back-illumination

Information

  • Patent Grant
  • 9430974
  • Patent Number
    9,430,974
  • Date Filed
    Thursday, May 6, 2010
    14 years ago
  • Date Issued
    Tuesday, August 30, 2016
    8 years ago
Abstract
Some embodiments of the invention provide a device, system and method for displaying a color image. According to some exemplary embodiments of the invention a device for displaying a color image may include an illumination source including a plurality of light-producing elements able to produce light of each of m different wavelength spectra, wherein m is equal to or greater than three. The device may also include an array of attenuating elements able to spatially selectively attenuate the light produced by the illumination source according to an attenuation pattern corresponding to a gray-level representation of the color image, and an array of color sub-pixel filter elements able to receive selectively attenuated light from the array of attenuating elements, each sub-pixel filter element able to transmit light of one of n different primary colors, wherein n is equal to or greater than four.
Description
FIELD OF THE INVENTION

The invention relates generally to color display devices, systems and methods and, more particularly, to display devices, systems and methods having improved color image reproduction capability.


BACKGROUND OF THE INVENTION

Standard computer monitors and TV displays are typically based on reproduction of three, additive, primary colors (“primaries”), for example, red, green, and blue, collectively referred to as RGB. Unfortunately, these monitors cannot display many colors perceived by humans, since they are limited in the range of color they are capable of displaying. FIG. 1 schematically illustrates a chromaticity diagram as is known in the art. The closed area in the shape of a horseshoe represents the chromaticity range of colors that can be seen by humans. However, chromaticity alone does not fully represent all visible color variations. For example, each chromaticity value on the two-dimensional chromaticity plane of FIG. 1 may be reproduced at various different brightness levels. Thus, a full representation of the visible color space requires a three dimensional space including, for example, two coordinates representing chromaticity and a third coordinate representing brightness. Other three dimensional space representations may also be defined. The points at the border of the horseshoe diagram in FIG. 1, commonly referred to as “spectrum locus”, correspond to monochromatic excitations at wavelengths ranging, for example, from 400 nm to 780 nm. The straight line “closing” the bottom of the horseshoe, between the extreme monochromatic excitation at the longest and shortest wavelengths, is commonly referred to as “the purple line”. The range of colors discernible by the human eye, represented by the area of the horseshoe diagram above the purple line, at varying brightness levels, is commonly referred to as the color gamut of the eye. The dotted triangular area of FIG. 1 represents the range of colors that are reproducible by a standard RGB monitor.


There are many known types of RGB monitors, using various display technologies, including but not limited to CRT, Light Emitting Diode (LED), plasma, projection displays, LCD devices and others. Over the past few years, the use of color LCD devices has been increasing steadily. A typical color LCD device is schematically illustrated in FIG. 2A. Such a device includes a light source 202, an array of liquid crystal (LC) elements (cells) 204, for example, an LC array using Thin Film Transistor (TFT) active-matrix technology, as is known in the art. The device further includes electronic circuits 210 for driving the LC array cells, e.g., by active-matrix addressing, as is known in the art, and a tri-color filter array, e.g., a RGB filter array 206, juxtaposed the LC array. In existing LCD devices, each full-color pixel of the displayed image is reproduced by three sub-pixels, each sub-pixel corresponding to a different primary color, e.g., each pixel is reproduced by driving a respective set of R, G and B sub-pixels. For each sub-pixel there is a corresponding cell in the LC array. Back-illumination source 202 provides the light needed to produce the color images. The transmittance of each of the sub-pixels is controlled by the voltage applied to the corresponding LC cell, based on the RGB data input for the corresponding pixel. A controller 208 receives the input RGB data, scales it to the required size and resolution, and transmits data representing the magnitude of the signal to be delivered by the different drivers based on the input data for each pixel. The intensity of white light provided by the back-illumination source is spatially modulated by the LC array, selectively attenuating the light for each sub pixel according to the desired intensity of the sub-pixel. The selectively attenuated light passes through the RGB color filter array, wherein each LC cell is in registry with a corresponding color sub-pixel, producing the desired color sub-pixel combinations. The human vision system spatially integrates the light filtered through the different color sub-pixels to perceive a color image.


LCDs are used in various applications. LCDs are particularly common in portable devices, for example, the small size displays of PDA devices, game consoles and mobile telephones, and the medium size displays of laptop (“notebook”) computers. These applications require thin and miniaturized designs and low power consumption. However, LCD technology is also used in non-portable devices, generally requiring larger display sizes, for example, desktop computer displays and TV sets. Different LCD applications may require different LCD designs to achieve optimal results. The more “traditional” markets for LCD devices, e.g., the markets of battery-operated devices (e.g., PDA, cellular phones and laptop computers) require LCDs with high brightness efficiency, which leads to reduced power consumption. In desktop computer displays, high resolution, image quality and color richness are the primary considerations, and low power consumption is only a secondary consideration. Laptop computer displays require both high resolution and low power consumption; however, picture quality and color richness are compromised in many such devices. In TV display applications, picture quality and color richness are generally the most important considerations; power consumption and high resolution are secondary considerations in such devices.


Typically, the light source providing back-illumination to LCD devices is a Cold Cathode Fluorescent Light (CCFL). FIG. 3A schematically illustrates typical spectra of a CCFL, as is known in the art. As illustrated in FIG. 3A, the light source spectra include three, relatively narrow, dominant wavelength ranges, corresponding to red, green and blue light, respectively. Other suitable light sources, as are known in the art, may alternatively be used. The RGB filters in the filter sub-pixel array may be designed to reproduced a wide color gamut (e.g., as close as possible to the color gamut of a corresponding CRT monitor), but also to maximize the display efficiency, e.g., by selecting filters whose transmission curves generally overlap the CCFL spectra peaks in. FIG. 3A. In general, for a given source brightness, filters with narrower transmission spectra provide a wider color gamut but a reduced display brightness, and vice versa. For example, in applications where power efficiency is a critical consideration, color gamut width may often be sacrificed. In certain TV applications, brightness is an important consideration; however, dull colors are not acceptable.



FIG. 4A schematically illustrates typical RGB filter spectra of existing laptop computer displays. FIG. 4B schematically illustrates a chromaticity diagram representing the reproducible color gamut of the typical laptop spectra (dashed-triangular area in FIG. 4B), as compared with an ideal NTSC color gamut (dotted triangular area in FIG. 4B). As shown in FIG. 4B, the NTSC color gamut is significantly wider than the color gamut of the typical laptop computer display and therefore, many color combinations included in the NTSC gamut are not reproducible by the typical color laptop computer display.


A LCD display using three color LED backlighting is described in “High performance LCD backlighting using high intensity red, green and blue light emitting diodes” by G. Harbers and C. Hoelen, SID Digest; LP-2, page 702 (2001).


SUMMARY OF EMBODIMENTS OF THE INVENTION

Many colors seen by humans are not discernible on standard red-green-blue (RGB) monitors. By using a display device with more than three primary colors, the reproducible color gamut of the display is expanded. Additionally or alternatively, the brightness level produced by the display may be significantly increased. Embodiments of the present invention provide systems and methods of displaying color images on a display device, for example, a thin profile display device, such as a liquid crystal display (LCD) device, using more than three primary colors.


Exemplary embodiments of the invention provide improved multi-primary display devices using more than three sub-pixels of different colors to create each pixel. In embodiments of this aspect of the invention, the use of a back-illumination source including an array of at least four light producing elements, e.g., Light Emitting Diodes (LEDs), having at least four different colors, and the use of four or more different color sub-pixels, per pixel, allows for a wider color gamut and/or higher luminous efficiency. In some embodiments, the number and/or spectra of the LEDs, the number of sub-pixels per pixel, and /or the color spectra of the different sub-pixels may be optimized to obtain a desired combination of a sufficiently wide color gamut and/or sufficiently high brightness.


In some embodiments of the invention, the use of more than three primary colors may expand the reproducible color gamut of the display by enabling the use of relatively narrow wavelength ranges for some of the primary colors, e.g., red, green and blue, thus increasing the saturation of those primary colors. To compensate for a potentially reduced brightness level from such narrower ranges, in some embodiments of the invention, broad wavelength range primary colors, e.g., specifically designed yellow and/or cyan, may be used in addition to the narrow wavelength range colors, thus increasing the overall brightness of the display.


According to embodiments of the invention, the light emitted by each single LED in the LED array may have a pre-defined, narrow, wavelength spectrum corresponding to a desired color. For example, in some exemplary embodiments of the invention, different LEDs in the LED array may emit two spectra of blue, a cyan spectrum, a green spectrum, a yellow spectrum, and two red spectra. According to some embodiments of the invention, a combination of LEDs having different wavelength spectra may be used to produce any desired wavelength spectral combination. A wavelength spectra combination provided by a combination of LEDs in accordance with embodiments of the invention may span a wider range of relevant colors compared to the light spectrum provided by a Cold Cathode Fluorescent Light (CCFL). Further, the wavelength spectral combination provided by a combination of LEDs according to embodiments of the invention may yield improved separation of wavelengths compared to the light spectrum provided by a CCFL. Using a LED array according to embodiments of the invention as a back-illumination source may enable reproduction of colors corresponding to a set of pre-selected narrow wavelength spectra. Therefore, when used in conjunction with appropriate color filer combinations, as described below, the LED back-illumination according to embodiments of the invention may enable more refined control in reproducing a desired color gamut and/or brightness levels.


According to some embodiments of the invention the number of different color LEDs, m, may be higher than the number of primary colors, n. According to these embodiments, the aggregated illumination from two or more different color LEDs may be substantially equivalent, for viewing purposes, to a given primary color. Thus, embodiments of the invention enable reproduction of any desired primary color, for example, a certain shade of blue, which may not be readily reproduced by a single LED, for example, due to unavailability or inefficiency of LEDs of certain wavelengths.


The color gamut and other attributes of a more-than-three primary color LCD device in accordance with embodiments of the invention may be controlled by controlling the combination of the LEDs back-illumination as well as the spectral transmission characteristics of the different primary color sub-pixel filter elements used by the device. Selection of LED combinations and primary color sub-pixel filter elements for a more-than-three primary color LCD device in accordance with the invention may be based on various criteria, for example, establishing sufficient coverage of a desired color gamut, maximizing the brightness level that may be produced by the display, and/or adjusting the relative intensities of the primary colors according to a desired chromaticity standard.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanied drawings in which:



FIG. 1 is a schematic illustration of a chromaticity diagram representing a prior art RGB color gamut, superimposed with a chromaticity diagram of the color gamut of a human vision system, as is known in the art;



FIG. 2A is a schematic block diagram illustrating a prior art 3-primary LCD system;



FIG. 2B is a schematic block diagram illustrating an n-primary LCD system with Light Emitting Diode (LED) back-illumination in accordance with an embodiment of the invention;



FIG. 3A is a schematic graph illustrating typical spectra of a prior art Cold Cathode Fluorescent Light (CCFL) source;



FIG. 3B is a schematic graph illustrating normalized spectra of a set of seven LEDs which may be used as a back-illumination source, in accordance with exemplary embodiments of the invention;



FIG. 3C is a schematic graph illustrating transmition curves of a six-primary filter array, in accordance with an exemplary embodiment of the invention;



FIG. 4A is a schematic graph illustrating a typical RGB filter spectra of a prior art laptop computer display;



FIG. 4B is a schematic illustration of a chromaticity diagram representing the color gamut reproduced by the RGB filter spectra of FIG. 4A, superimposed with an ideal prior art NTSC color gamut;



FIG. 5 is a schematic block-diagram illustration of a method for selecting a LED array and filter array, in accordance with exemplary embodiments of the invention;



FIG. 6A is a schematic graph illustrating a spectrum of a prior art back-illumination source including a LED combination of a blue LED, a green LED and a red LED;



FIG. 6B is a schematic illustration of a chromaticity diagram representing a color gamut reproduced by the LED combination of FIG. 6A;



FIG. 7A is a schematic graph illustrating a spectrum of a back-illumination source including a LED combination of six LEDs in accordance with exemplary embodiments of the invention.



FIG. 7B is a schematic graph illustrating transmition curves of a filter array used in conjunction with the LED combination of FIG. 7A to provide a five-primary display, in accordance with an exemplary embodiment of the invention;



FIG. 7C is a schematically graph illustrating a sub-pixel spectrum of five RGBCY primaries obtained by the LED combination of FIG. 7A in conjunction with the filter array of FIG. 7B; and



FIG. 7D is a schematic illustration of a chromaticity diagram representing the color gamut reproduced by the LED combination of FIG. 7A in conjunction with the filter array of FIG. 7B.





It will be appreciated that for simplicity and clarity of illustration, elements shown in the drawings have not necessarily been drawn accurately or to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity or several physical components included in one functional block or element. Further, where considered appropriate, reference numerals may be repeated among the drawings to indicate corresponding or analogous elements. Moreover, some of the blocks depicted in the drawings may be combined into a single function.


DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION

In the following description, various aspects of the invention are described, with reference to specific embodiments that provide a thorough understanding of the invention; however, it will be apparent to one skilled in the art that the present invention is not limited to the specific embodiments and examples described herein. Further, to the extent that certain details of the devices, systems and methods described herein are related to known aspects of color display devices, systems and methods, such details may have been omitted or simplified for clarity.


Embodiments of monitors and display devices with more than three primaries, in accordance with exemplary embodiments of the invention, are described in International Application PCT/IL02/00452, filed Jun. 11, 2002, entitled “Device, System and Method For Color Display” and published Dec. 19, 2002 as PCT Publication WO02/101644, and in International Application PCT/IL03/00307, filed Apr. 13, 2003, entitled “Color Display Devices and Methods with Enhanced Attributes”, and published Oct. 23, 2003 as PCT publication WO03/088203, the disclosures of all of which applications and publications are incorporated herein by reference.


While, in embodiments of the present invention, methods and systems disclosed in the above referenced patent applications may be used, for example, methods of converting source data to primary data, or methods of creating primary color materials or filters; in alternate embodiments, the system and method of the present invention may be used with any other suitable n-primary display technology using m light-producing element, e.g., Light Emitting Diodes (LEDs), as a back-illumination source, wherein n is equal to or greater than four and m is equal to or greater than three. Certain embodiments described in these applications are based on rear or front projection devices, LCD devices, or other types of display devices. While the following description focuses mainly on n-primaries flat panel display devices using an array of LEDs as a back-illumination source in accordance with exemplary embodiments of the invention, it should be appreciated that, in alternate embodiments, the systems, methods and devices of the present invention may also be used in conjunction with other types of display and modulation techniques. For example, the systems, methods and/or devices of the present invention may be used in conjunction with n-primary projection display devices, e.g., as described in International Application PCT/IL01/00527, filed Jun. 7, 2001, entitled “Device, System and Method For Electronic True Color Display”, and published as PCT publication WO 01/95544, the disclosures of which is incorporated herein by reference.



FIG. 2B schematically illustrates a more-than-three primary color display system in accordance with an embodiment of the invention. The system may include a back-illumination source including an array of light-producing elements, e.g., LEDs 212 including a LED combination of m different color LEDs, wherein m is equal to or greater than three. The system may additionally include a light-guiding optics unit 222, which may include, for example, a diffuser and/or one or more optical elements, e.g., light-guides, lenses and/or mirrors, or any other element to provide uniform back-illumination from LEDs 212, as is known in the art. According to some exemplary embodiments of the invention, LEDs may be activated simultaneously to produce aggregated light including m different wavelength spectra, as described below. The system may also include an array of liquid crystal (LC) elements (cells) 214, for example, an LC array using Thin Film Transistor (TFT) active-matrix technology, as is known in the art. The device further includes electronic circuits 220 for driving the LC array cells, e.g., by active-matrix addressing, as is known in the art, and an n-primary color filter array 216, including n different color sub-pixel filters, wherein n is greater than three, juxtaposed the LC array.


In some embodiments of the invention, the number of different color LEDs, m, may be equal to the number of primary colors, n. In these embodiments, each of the m color LEDs and a corresponding color sub-pixel filter element may have the same narrow spectrum, which may substantially correspond to one of the n primary colors, as described below.


In other embodiments of the invention, the number of different color LEDs, m, may be greater than the number of primary colors, n. According to these embodiments, two or more different color LEDs may be utilized to provide an aggregated illumination corresponding to one primary color. This may provide back-illumination effectively equivalent to a desired primary color, for example, a specific shade of blue, whose wavelength range may not be readily produced by a single type of LED, for example, due to unavailability or inefficiency of LEDs of certain wavelengths. In these embodiments, the narrow emission spectra of two or more of the m color LEDs, which may cover slightly different ranges in spectra vicinity of the desired primary color, may all be included in the transmission spectrum of one of the n color filters, as described below.


In exemplary embodiments of the LCD devices of the invention, each full-color pixel of the displayed image is reproduced by more than three sub-pixels, each sub-pixel corresponding to a different primary color, e.g., each pixel is reproduced by driving a corresponding set of four or more sub-pixels. For each sub-pixel there is a corresponding cell in LC array 214. LED array 212 provides the light needed to produce the color images. Light-guiding optics unit 222 combines and conforms the different light spectrums emitted by each of the LEDs of LED array 212 to provide substantially uniform, substantially white-light, aggregated illumination on LC array 214, in accordance with the combined spectra of LEDs 212. The LEDs may be arranged in the LED array in an arrangement that provides a substantially uniform, color distribution, and an aggregated light having a substantially uniform degree of brightness. For example, the LEDs may be arranged in an arrangement that minimizes the variance in distance between each color LED and the closest LEDs of all other colors. The transmittance of each of the sub-pixels is controlled by the voltage applied to a corresponding LC cell of array 214, based on the image data input for the corresponding pixel. An n-primaries controller 218 receives the input data, e.g., in RGB or YCC format, optionally scales the data to a desired size and resolution, and transmits data representing the magnitude of the signals to be delivered by the different drivers based on the input data for each pixel. The intensity of the aggregated perceived-white illumination provided by light-guiding optics unit 222 may be spatially modulated by elements of the LC array, which selectively controls the illumination of each sub-pixel according to the image data for the sub-pixel. The selectively attenuated light of each sub-pixel passes through a corresponding color filter of color filter array 216, thereby producing desired color sub-pixel combinations. The human vision system spatially integrates the light filtered through the different color sub-pixels to perceive a color image.


The color gamut and other attributes of LCD devices in accordance with embodiments of the invention may be controlled by a number of parameters. These parameters may include the spectra and efficiency of LEDs 212, the spectral transmission of the LC cells in the LC array, and the spectral transmission of the color filters. According to embodiments of the invention, LEDs 212 and/or color filters 216 may be selected to provide a desired level of each of these parameters, as described below.



FIG. 3B is a schematic illustrates a graph of normalized spectra of a set of seven LEDs, for example, the Luxeon™ Emitter Blue, Royal Blue, Cyan, Green, Amber, Red-Orange and Red LEDs, available from Lumileds Lighting Ltd, USA, in accordance with an exemplary embodiment of the invention.


According to embodiments of the invention, the light emitted by each single LED in LED array 212 may have a pre-defined narrow light spectrum corresponding with a pre-defined wavelength as illustrated in FIG. 3B. For example, LED spectra 301 to 307 correspond to wavelengths of two spectra of blue, a cyan spectrum, a green spectrum, a yellow spectrum, and two red spectra, respectively. According to some embodiments of the invention, a combination of LEDs having different wavelength spectra may be used to produce any desired wavelength spectra combination. A wavelength spectra combination provided by a combination of LEDs may include a wider range of relevant wavelengths corresponding to a wider range of colors, as illustrated, for example, in FIG. 3B, in comparison to the light spectrum provided by a CCFL, as illustrated, for example, in FIG. 3A. A wavelength spectra combination provided by a combination of LEDs according to embodiments of the invention may further include improved separation of wavelengths compared to the light spectrum provided by a CCFL. Therefore, using LED array 212 (FIG. 2B) as a back-illumination source, in accordance with an embodiment of the invention, may enable production of a spectra combination corresponding to a set of pre-selected narrow wavelength spectra. Thus, when used in conjunction with a corresponding array of color filers 216 (FIG. 2B), LED array 212 (FIG. 2B) may enable more refined control in reproducing a desired color gamut and/or brightness levels, as described in detail below. FIG. 3C schematically illustrates transmition curves of a six-primary filter array in accordance with an exemplary embodiment of the invention. According to embodiments of the invention, filter array 216 (FIG. 2B) may be used in conjunction with LED array 212 in order to provide a set of sub-pixels each corresponding to a different required primary color as described in detail below.


For a multi-primary display with more than three primary colors, in accordance with embodiments of the invention, an infinite number of LEDs and/or filter combinations may be selected to substantially overlap a required color gamut. Therefore, the LED and/or filter selection method of the invention may include optimizing the LED and/or filter selection according to at least one of the following requirements: establishing sufficient coverage of a desired two-dimensional color gamut, for example, the NTSC standard gamut (e.g., for wide-gamut applications) and/or a “conventional” 3-color LCD gamut (e.g., for higher brightness applications); maximizing the brightness level of a balanced white point that can be obtained from combining all the primary colors; and adjusting the relative intensities of the primary colors in accordance with a desired illumination standard, e.g., the D65 white point chromaticity standard of High Definition TV (HDTV) systems.


Embodiments of the present invention provide systems and methods of displaying color images on a display device, for example, a thin profile display device, such as a liquid crystal display (LCD) device, using an array of LEDs producing a plurality of m different wavelengths as a back-illumination source, and an array of filters providing a plurality of n primary colors, wherein m is equal to or greater than three and n is greater than three. This arrangement has several advantages in comparison, for example, to display devices using a back-illumination source including only three RGB LEDs. First, the n-primary display device including an array of m color LEDs as a backlight element, in accordance with the invention, enables expansion of the color gamut covered by the display, as described below. Second, a better match between the spectra of the LEDs and the spectra of the filters may be achieved, as described below. In this case, a maximum level of light emitted from each of the LEDs may be efficiently transferred through a corresponding color filter. Thus, the device in accordance with the invention enables a significant increase in the luminous efficiency of the display in comparison, for example, with a display using a RGB LED back-illumination source covering a similar color gamut. This feature of the invention is particularly advantageous for portable (e.g., battery-operated) display devices, because increased luminous efficiency may extend the usable time of a battery after each recharging and/or reduce the overall weight of the device by using a lighter battery.


In some multi-primary display devices in accordance with embodiments of the invention, more than three sub-pixels of different colors are used to create each pixel. In embodiments of the invention, the use of more than three different color sub-pixels, per pixel, allows for a wider color gamut and/or higher luminous efficiency. In some embodiments, the number of sub-pixels per pixel; the number and wavelength spectrum of each one of the LEDs in the LED array; and the transmittance spectrum of the different sub-pixel filters may be optimized to obtain a desired combination of a sufficiently wide color gamut and/or sufficiently high brightness, as described below.


For example, the use of an array of LEDs as a back-illumination source combined with the use of more than three primary color filters, in accordance with an embodiment of the invention, may enable expansion of the reproducible color gamut by enabling the use of filters with narrower transmission curves (e.g., narrower effective transmission ranges) for the R, G and B color filters and, thus, increasing the saturation of the R, G and B sub-pixels. To compensate for such narrower ranges, in some embodiments of the invention, broader wavelength spectrum sub-pixel filters may be used in addition to the RGB saturated colors, thus increasing the overall brightness of the display. The use of the array of LEDs as a back-illumination source, in accordance with embodiments of the invention, may allow more efficient use, as described above, of the color filter attributes to enable a wider gamut and/or a higher brightness level. In accordance with embodiments of the invention, an optimal combination of color gamut width and over-all picture brightness may be achieved, to meet the requirements of a given system, by appropriately selecting the LEDs and color filters. According to some of these embodiments, the selection may include at least two different color LEDs corresponding to one color filter in order to provide substantially one primary color. These LEDs and color filter may be selected such that the combined wavelengths of the two or more LEDs produce a viewed color effectively corresponding to a desired primary color. The transmission spectrum of the corresponding color filter may be designed to accommodate the wavelengths of the two or more LEDs.


Reference is now made to FIG. 5, which schematically illustrates a block-diagram of a trial and error method for selecting a LED array and filter array, in accordance with exemplary embodiments of the invention.


According to embodiments of the invention, the LED array may include a plurality of, e.g., lm, LEDs of each of m different LED colors. The LEDs may be located in the array in an arrangement that provides substantially uniform aggregated illumination of substantially white light.


According to these embodiments, the trial and error method of FIG. 5 may be used for selecting an optimal number of LEDs of each color, lm, and an optimal selection and arrangement of filter elements in the array of filters used in conjunction with the LEDs to achieve desired display attributes, for example, a desired color gamut and/or white point.


According to embodiments of the invention, the method of FIG. 5 may include calculating an absolute luminous spectral output, sm, for each of the LED colors, as indicated at block 502. This may be performed, for example, using LED specification, e.g., normalized spectra and output (e.g., in Lumens) per unit of supplied electric power (e.g., Watt), and assuming each of the LEDs is supplied with substantially equal electrical power (Watt).


The method may also include selecting a combination of LEDs including lm LEDs of each different color, m, and a compatible array of filter elements, as indicated at block 504.


As indicated at block 506, a total output spectrum, Ts, of the LED array may be evaluated, e.g., by the following equation:










T
s

=



m



(



l
m




m



l
m





s
m


)






(
1
)







As indicated at block 508, a color point of each of the primary colors may be calculated, e.g., using Ts and the filter array transmission spectra. The calculated color points may be used to define a corresponding color gamut that may be reproduced using these parameters.


As indicated at block 510, a reproducible white point spectrum and reproducible white color coordinates may be calculated, e.g., as known in the art.


As indicated at block 512, the reproducible white point spectrum and coordinates and the reproducible color gamut may be compared with the required color gamut and the required white point spectrum and coordinates, respectively.


If the reproducible values substantially differ from the required values of block 512, the method may include returning to block 506 after adjusting the entry of lm accordingly. For example, if the reproducible light spectrum is “too blue”, the number of blue LEDs may be reduced and/or the number of yellow LEDs may be increased, as indicated at block 514.


If the reproducible values substantially match the required values, the method may include calculating the display efficiency, Deff, as indicated at block 516.



FIG. 6A schematically illustrates an effective spectrum of a prior art back-illumination source including a combination of blue, green and red LEDs, having wavelength spectra 301, 304 and 307 (FIG. 3B), respectively. The LED combination of FIG. 6A, may be used to provide a color gamut as illustrated schematically in FIG. 613.



FIG. 7A is a schematic illustration of a combined spectrum of a back-illumination source having a combination of LEDs including two shades of blue LEDs, a cyan LED, a green LED, a yellow LED, and a red spectrum LED, having wavelength spectra 301, 302, 303, 304, 305 and 307 (FIG. 3B), respectively, in accordance with exemplary embodiments of the invention.



FIG. 7B is a schematic graph illustrating transmition curves of a filter array used in conjunction with the LED combination of FIG. 7A to provide a five-primary display, in accordance with an exemplary embodiment of the invention; In accordance with an embodiment of the invention, the LED combination of FIG. 7A may be used in conjunction with the filter array of FIG. 7B, to create a five primary RGBCY display. According to embodiments of the invention, the back-illumination of FIG. 7A may be used in conjunction with the filter array of FIG. 7B, to create a sub-pixel spectrum as schematically illustrated in FIG. 7C. The sub-pixel spectrum illustrated in FIG. 7C may include a blue sub-pixel spectrum 701, a cyan sub-pixel spectrum 702, a green sub-pixel spectrum 703, a yellow sub-pixel spectrum 704, and a red sub-pixel spectrum 705.


According to an embodiment of the invention, the LED combination of FIG. 7A in conjunction with the filter array of FIG. 7B, may provide a color gamut as illustrated schematically in FIG. 7D. As known in the art, the normalized over-all brightness level of a conventional 3-color LCD may be calculated as follows:

Y(3-colors)=(Y(color1)+Y(color2)+Y(color3))/3  (2)


Analogously, the normalized brightness level of a 5-color LCD device in accordance with an embodiment of the present invention may be calculated as follows:

Y(5-colors)=(Y(color1)+Y(color2)+Y(color3)+Y(color4)+Y(color5))/5  (3)

wherein Y(colori) denotes the brightness level of the i′th primary color for a constant input electrical power (e.g., constant current), for example, according to the LEDs manufacturer's specification, and Y(n-colors) denotes the over-all, normalized, brightness level of the n-primaries display.


Each one of the LED elements included in LED array 212 (FIG. 2), according to an embodiment of the invention, may have a narrow wavelength spectrum, as described above. Therefore, the brightness level Y(colori) of each individual i′th sub-pixel may be substantially proportional to the intensity I(LED) of the LEDs whose wavelengths are transmitted through the filter element used to reproduce the i'th sub-pixel.


Therefore, a normalized brightness level of a three color RGB LCD with the LED array backlight of FIG. 6A may be calculated as follows:

Y(3 LED)=[I(LEDred)+I(LEDgreen)+I(LEDblue)]/3  (4)


According to an embodiment of the invention, when the combination illustrated in FIGS. 7A and 7B is used, the cyan filter may fully transmit the blue, cyan and green LEDs, whereas the yellow filter may fully transmit the red and yellow LEDs and partially transmit the green LED. Therefore, the normalized brightness level of a LCD device including the LED combination of FIG. 7A and the filter array of FIG. 7B may be calculated as follows:










Y


(

5

LED

)


=

[



2
*



I


(

LED
red

)



+


2.5
*



I


(

LED
green

)



+






2
*



I


(

LED
blue

)



+






+
I



(

LED
cyan

)


+

I


(

LED
yellow

)



]

/
5







(
5
)







According to exemplary embodiments of the invention, the brightness level of the LED array may be calculated, for example, by substituting the manufacturer's specification values of the LEDs included in the LED array into equation (5). Although, in some embodiments, the color gamut illustrated in FIG. 7D may be comparable to that of the corresponding 3-color LED backlight LCD device of FIG. 6B, the brightness level that can be obtained using the LED combination of FIG. 7A in conjunction with the filter array of FIG. 7B is about 40% higher than that of the corresponding 3-color LED backlight LCD. The higher brightness levels achieved in this embodiment may be attributed, for example, to the addition of yellow (Y) and cyan (C) color sub-pixels, which are specifically designed to have broad transmission regions and, thus, transmit more of the LED-array back-illumination than the RGB filters.

Claims
  • 1. A device for displaying a color image comprising: an illumination source comprising a plurality of color light sources, each able to produce respective light of each of m different wavelength spectra, wherein m is equal to or greater than three, wherein each of said plurality of color light sources comprises one or more light emitting diodes;an array of attenuating elements, each able to selectively attenuate the light produced by said plurality of color light sources of said illumination source according to an attenuation pattern corresponding to a gray-level representation of said color image; andan array of color sub-pixel filter elements able to receive selectively attenuated light from said array of attenuating elements, each sub-pixel filter element able to transmit light of one of n different non-white colors, wherein n is equal to or greater than four.
  • 2. The device of claim 1, wherein said array of filter elements is juxtaposed and in registry with said array of attenuating elements such that each color sub-pixel filter element is able to receive light from one of said attenuating elements.
  • 3. The device of claim 1 comprising driving circuitry adapted to receive input data representing said color image and to selectively activate said attenuating elements to produce said attenuation pattern.
  • 4. The device of claim 1, wherein said array of attenuating elements comprises an array of Liquid Crystal (LC) elements.
  • 5. The device of claim 1, wherein at least one of said sub-pixel filter elements is able to fully transmit substantially the entire spectrum of at least two of said m wavelength spectra.
  • 6. The device of claim 1, wherein sub-pixel filter elements of two of said n different colors are able to fully transmit substantially the entire spectrum of at least one of said m wavelength spectra.
  • 7. The device of claim 1, wherein sub-pixel filter elements of a first color of said n different colors are able to transmit light of a first, narrow spectrum, and wherein sub-pixel filter elements of a second color of said n different colors are able to transmit light of a second spectrum broader than and including said narrow spectrum.
  • 8. The device of claim 1, wherein at least one of said n colors is reproducible by a combination of two or more of said m wavelength spectra.
  • 9. The device of claim 1, wherein m equals six.
  • 10. The device of claim 9, wherein said m wavelength spectra comprise two spectra of blue, a cyan spectrum, a green spectrum, a yellow spectrum and a red spectrum.
  • 11. The device of claim 1, wherein said n colors comprise red, green, blue, and yellow.
  • 12. The device of claim 1, wherein n equals five.
  • 13. The device of claim 12, wherein said n colors comprise red, green, blue, cyan and yellow.
  • 14. The device of claim 1, wherein at least one of a number of said color light sources, an arrangement of said color light sources, and one or more of said wavelength spectra is selected based on at least one desired display attribute.
  • 15. The device of claim 14, wherein said at least one display attribute comprises at least one attribute selected from the group consisting of a brightness level, a color gamut, and a relative intensity of said colors.
  • 16. The device of claim 14, wherein the arrangement of said color light sources is selected to provide a substantially spatially uniform distribution of illumination of said m spectra produced by said illumination source.
  • 17. A system for displaying a color image comprising: an illumination source comprising a plurality of color light sources, each able to produce respective light of each of m different wavelength spectra, wherein m is equal to or greater than three, wherein each of said plurality of color light sources comprises one or more light emitting diodes;a converter to convert three-primary-color input data representing said color image into converted image data representing said color image in terms of n colors;an array of attenuating elements, each able to selectively attenuate the light produced by said plurality of color light sources of said illumination source according to an attenuation pattern corresponding to a gray-level representation of said converted image data; andan array of color sub-pixel filter elements able to receive selectively attenuated light from said array of attenuating elements, each sub-pixel filter element able to transmit light of one of n different non-white colors, wherein n is equal to or greater than four.
  • 18. The system of claim 17, wherein said array of filter elements is juxtaposed and in registry with said array of attenuating elements such that each color sub-pixel filter element is able to receive light from one of said attenuating elements.
  • 19. The system of claim 17 comprising driving circuitry adapted to receive said converted image data and to selectively activate said attenuating elements to produce said attenuation pattern.
  • 20. The system of claim 17, wherein said array of attenuating elements comprises an array of Liquid Crystal (LC) elements.
  • 21. The system of claim 17, wherein at least one of said sub-pixel filter elements is able to fully transmit substantially the entire spectrum of at least two of said m wavelength spectra.
  • 22. The system of claim 17, wherein sub-pixel filter elements of two of said n different colors are able to fully transmit substantially the entire spectrum of at least one of said m wavelength spectra.
  • 23. The system of claim 17, wherein sub-pixel filter elements of a first color of said n different colors are able to transmit light of a first, narrow spectrum, and wherein sub-pixel filter elements of a second color of said n different colors are able to transmit light of a second spectrum broader than and including said narrow spectrum.
  • 24. The system of claim 17, wherein at least one of a number of said color light sources, an arrangement of said color light sources, and one or more of said wavelength spectra is selected based on at least one desired display attribute.
  • 25. The system of claim 24, wherein said at least one display attribute comprises at least one attribute selected from the group consisting of a brightness level, a color gamut, and a relative intensity of said colors.
  • 26. The system of claim 24, wherein the arrangement of said color light sources is selected to provide a substantially spatially uniform distribution of illumination of said m spectra produced by said illumination source.
CROSS-REFERENCE TO RELATED APPLICATIONS

This Application is a continuation application of U.S. patent application Ser. No. 10/555,781, filed Nov. 7, 2005 now U.S. Pat. No. 7,714,824, which is a National Phase Application of International Application No. PCT/IL2004/000446, International Filing Date May 24, 2004, which claims priority from U.S. Provisional Patent Application No. 60/473,135, filed May 27, 2003; and is a Continuation In Part application of U.S. patent application Ser. No. 10/480,280, filed Dec. 11, 2003 now U.S. Pat. No. 7,268,757, which is a National Phase Application of International Application No. PCT/IL02/000452, International Filing Date Jun. 11, 2002, which claims priority from U.S. Provisional Patent Application No. 60/296,767, filed Jun. 11, 2001, U.S. Provisional Patent Application No. 60/318,626, filed Sep. 13, 2001, and U.S. Provisional Patent Application No. 60/371,419, filed Apr. 11, 2002, all of which are incorporated herein by reference in their entirety.

US Referenced Citations (143)
Number Name Date Kind
3699244 Cohen et al. Oct 1972 A
3870517 Ota Mar 1975 A
4390893 Russell et al. Jun 1983 A
4751535 Myers Jun 1988 A
4772885 Uehara et al. Sep 1988 A
4800375 Silverstein et al. Jan 1989 A
4843381 Baron Jun 1989 A
4843573 Taylor et al. Jun 1989 A
4892391 Stewart et al. Jan 1990 A
4952972 Someya Aug 1990 A
4953953 Fergason Sep 1990 A
4985853 Taylor et al. Jan 1991 A
4994901 Parulski et al. Feb 1991 A
5042921 Sato et al. Aug 1991 A
5087610 Hed Feb 1992 A
5184114 Brown Feb 1993 A
5191450 Yajima et al. Mar 1993 A
5214418 Fukumura et al. May 1993 A
5233183 Field Aug 1993 A
5233385 Sampsell Aug 1993 A
5243414 Dalrymple et al. Sep 1993 A
5337068 Stewart Aug 1994 A
5375002 Kim Dec 1994 A
5416890 Beretta May 1995 A
5447811 Buhr et al. Sep 1995 A
5455600 Friedman et al. Oct 1995 A
5563621 Silsby Oct 1996 A
5587819 Sunohara et al. Dec 1996 A
5592188 Doherty et al. Jan 1997 A
5614925 Braudaway et al. Mar 1997 A
5631734 Stern et al. May 1997 A
5642176 Abukawa et al. Jun 1997 A
5643176 Persidsky Jul 1997 A
5650942 Granger Jul 1997 A
5657036 Markandey et al. Aug 1997 A
5724062 Hunter Mar 1998 A
5736754 Shi et al. Apr 1998 A
5740334 Lin et al. Apr 1998 A
5751385 Heinze May 1998 A
5784038 Irwin Jul 1998 A
5821913 Mamiya Oct 1998 A
5835099 Marimont Nov 1998 A
5841492 Iwauchi Nov 1998 A
5841494 Hall Nov 1998 A
5844540 Terasaki Dec 1998 A
5844699 Usami et al. Dec 1998 A
5863125 Doany Jan 1999 A
5870530 Balasubramanian Feb 1999 A
5872898 Mahy Feb 1999 A
5892891 Dalal et al. Apr 1999 A
5909227 Silverbrook Jun 1999 A
5929843 Tanioka Jul 1999 A
5936617 Uchino Aug 1999 A
5982347 Shigeta et al. Nov 1999 A
5982541 Li et al. Nov 1999 A
5999153 Lind et al. Dec 1999 A
6018237 Havel Jan 2000 A
6058207 Tuijn et al. May 2000 A
6069601 Lind et al. May 2000 A
6072445 Spitzer et al. Jun 2000 A
6072464 Ozeki Jun 2000 A
6097367 Kuriwaki et al. Aug 2000 A
6100861 Cohen Aug 2000 A
6115016 Yoshihara Sep 2000 A
6144420 Jung Nov 2000 A
6147720 Guerinot et al. Nov 2000 A
6160596 Sylvester Dec 2000 A
6191826 Murakami et al. Feb 2001 B1
6198512 Harris Mar 2001 B1
6220710 Raj et al. Apr 2001 B1
6224216 Parker May 2001 B1
6231190 Dewald May 2001 B1
6236390 Hitchcock May 2001 B1
6236406 Li May 2001 B1
6239783 Hill et al. May 2001 B1
6239787 Sugaya May 2001 B1
6243070 Hill Jun 2001 B1
6246396 Gibson et al. Jun 2001 B1
6256073 Pettitt Jul 2001 B1
6259430 Riddle et al. Jul 2001 B1
6262710 Smith Jul 2001 B1
6262744 Carrein Jul 2001 B1
6280034 Brennesholtz Aug 2001 B1
6304237 Karakawa Oct 2001 B1
6324006 Morgan Nov 2001 B1
6366291 Taniguchi et al. Apr 2002 B1
6380961 Van Der Loop et al. Apr 2002 B1
6384839 Paul May 2002 B1
6388648 Clifton et al. May 2002 B1
6407766 Ramanujan et al. Jun 2002 B1
6456301 Huang Sep 2002 B1
6459425 Holub et al. Oct 2002 B1
6467910 Sato Oct 2002 B1
6498592 Matthies Dec 2002 B1
6538742 Ohsawa Mar 2003 B1
6570584 Cok et al. May 2003 B1
6577291 Hill Jun 2003 B2
6580482 Hiji et al. Jun 2003 B1
6594387 Pettitt et al. Jul 2003 B1
6595648 Woodgate Jul 2003 B1
6633302 Ohsawa et al. Oct 2003 B1
6707516 Johnson Mar 2004 B1
6750992 Holub Jun 2004 B1
6833888 Song Dec 2004 B2
6870523 Ben-David et al. Mar 2005 B1
6882384 Sharp Apr 2005 B1
6897876 Murdoch May 2005 B2
6952194 Yamazaki Oct 2005 B1
6972736 Wada et al. Dec 2005 B1
7129955 Motomura Oct 2006 B2
7136083 Tezuka Nov 2006 B2
7206005 Yamashita Apr 2007 B2
7268757 Ben-David Sep 2007 B2
7352488 Ben-Chorin Apr 2008 B2
7492379 Credelle Feb 2009 B2
7714824 Roth May 2010 B2
7995019 Ben-David Aug 2011 B2
8248440 Ben-David Aug 2012 B2
20010013854 Ogoro Aug 2001 A1
20010035853 Hoelen et al. Nov 2001 A1
20010035922 Park Nov 2001 A1
20020005829 Ouchi Jan 2002 A1
20020015046 Okada Feb 2002 A1
20020024618 Imai Feb 2002 A1
20020051111 Greene May 2002 A1
20020054424 Miles May 2002 A1
20020060689 Iwata May 2002 A1
20020061369 Kunimatsu May 2002 A1
20020070914 Bruning et al. Jun 2002 A1
20020097365 Yang Jul 2002 A1
20020122019 Baba et al. Sep 2002 A1
20020149540 Munder et al. Oct 2002 A1
20020163526 Haseltine et al. Nov 2002 A1
20020167528 Edje Nov 2002 A1
20020186229 Brown Elliott Dec 2002 A1
20020191130 Liang Dec 2002 A1
20030063062 Tsumura Apr 2003 A1
20030085906 Elliott et al. May 2003 A1
20030146891 Poliakine Aug 2003 A1
20040177323 Kaasila Sep 2004 A1
20070001994 Roth Jan 2007 A1
20080024410 Ben-David Jan 2008 A1
20080030447 Ben-David Feb 2008 A1
Foreign Referenced Citations (54)
Number Date Country
0367848 May 1990 EP
0547603 Jun 1993 EP
0653879 May 1995 EP
1087341 Mar 2001 EP
2139393 Nov 1984 GB
59 159131 Sep 1984 JP
60 263122 Dec 1985 JP
62 222774 Sep 1987 JP
01-179913 Jul 1989 JP
01-260135 Oct 1989 JP
02-173783 Jul 1990 JP
03-043698 Feb 1991 JP
03-092888 Apr 1991 JP
07043658 Feb 1995 JP
08-248410 Sep 1996 JP
08-280038 Oct 1996 JP
09-230301 Sep 1997 JP
09-251160 Sep 1997 JP
10-091083 Apr 1998 JP
10-221692 Aug 1998 JP
10-307205 Nov 1998 JP
11-052327 Feb 1999 JP
11-260135 Sep 1999 JP
2000-171799 Jun 2000 JP
2000253263 Sep 2000 JP
2000-321993 Nov 2000 JP
2000-347324 Dec 2000 JP
2000338950 Dec 2000 JP
2001-209047 Aug 2001 JP
2000-116789 Nov 2001 JP
2002-091369 Mar 2002 JP
2002-133932 May 2002 JP
2002-229023 May 2002 JP
2002-244122 Aug 2002 JP
2002-318564 Oct 2002 JP
2003-107472 Apr 2003 JP
2003-315529 Nov 2003 JP
2004-138827 May 2004 JP
2001-306023 Nov 2011 JP
WO 9510160 Apr 1995 WO
WO 9735424 Sep 1997 WO
WO 9740621 Oct 1997 WO
WO 9742770 Nov 1997 WO
WO 0195544 Dec 2001 WO
WO 0211112 Feb 2002 WO
WO 0250763 Jun 2002 WO
WO 02080136 Oct 2002 WO
WO 02091299 Nov 2002 WO
WO 02091348 Nov 2002 WO
WO 02091349 Nov 2002 WO
WO 02099557 Dec 2002 WO
WO 02101644 Dec 2002 WO
WO 03058587 Jul 2003 WO
WO 03088203 Oct 2003 WO
Non-Patent Literature Citations (39)
Entry
International Search Report of Application PCT/IL05/00507 mailed on Jan. 2, 2006.
Supplementary European Search Report for EP 03706857 Date: Sep. 20, 2006.
M. Yamaguchi, T. Teraji, K Ohsawa, T. Uchiyama, H. Motomura, Y. Murakami and N. Ohyama, ‘Color image reproduction based on the multispectral and multi-primary imaging: Experimental evaluation,’ Proc. of SPIE, vol. 4663, pp. 15-26, Jan. 2002.
Yamada et al., “12.1: LED Backlight for LCDs”, IBM Research, Tokyo Research Laboratory, Yamato, Japan, 1998, SID, pp. 1-4.
Keith Jack, “Video Demystified” 3rd Edition, LLH Technology Publishing 2001, pp. 215-219.
Sugiura, T, “11.4: Invited Paper:” EBU color Filter for LCDs, Toppan Printing Co., Japan, SID, 2001, pp. 146-149.
Horbie et al., “High Efficiency and high Visual Quality LCD Backlighting System”, Faculty of Science and Technology, Kelo University, Japan, pp. 1-4.
International Search Report from PCT/IL02/00452, mailed on Dec. 9, 2002.
International Search Report from PCT/IL03/00020, Mailed on Jul. 2, 2003.
Supplementary European Search Report for EP 02 73 3203 Date: Sep. 25, 2005.
Supplementary European Search Report for EP 04 01 1262, mailed on Oct. 25, 2005.
Ken-Ichi Takatori, Hiroshi Imai, Hideki Asada and Masao Imai “Field-Sequential Smectic LCD with TFT Pixel Amplifier”, Functional Devices Research Labs, NEC Corp., Kawasaki, Kanagawa 216-8555, Japan, SID 01 Digest, 2001.
Wyble and Berns, “A critical view of Spectral Models Applied to Binary Color Printing”, Color Research and Application, vol. 25, pp. 4-19, Nov. 28, 1998.
Jeffrey A. Shimizu, “Scrolling Color LCOS for HDTV Rear Projection”, SID 01 Digest, pp. 1072-1075, Jun. 2001.
Francisco H. Imai, Color Science; “Spectral reproduction from scene to hardcopy”, Part 1—Multi-spectral acquisition ans spectral estimation using a Trichromatic Digital Camera System associated with absorbtion filters, Oct. 2000.
Rosen et al., “Spectral Reproduction from Scene to Hardcopy II”, Image Processing. Munsell Color Science Laboratory, RIT-Proceedings of SPIE vol. 4300 (2001).
Pointer, M. R., “The Gamut of Real Surface Colors”, Color Research & Appl. 5(3): 145-155, 1980.
Ajito et al., 'Expanded Color Gamut Reproduced by Six-Primary Projection Display, Proc. SPIE, vol. 2954 (2000) pp. 130-137.
Ajito et al., “Multiprimary Color Display for Liquid Crystal Display Projectors Using Diffraction Granting”, Optical Eng. 38(11) 1883-1888, Apr. 27, 1999.
Ajito et al., “Color Conversion Method for Multiprimary Display Using Matrix Switching”, Optical Review, vol. 9, No. 3 (Dec. 2001), 191-197.
Klompenhouwer et al., “13.4: Subpixel Image Scaling for Color Matrix Displays”, Phillips Research Laboratories, Einhoven, The Netherlands, 2002, SID, pp. 176-179.
Credelle et al., “9-2: MTF of High-Resolution Pen Tile Matrix Displays”, Eurodisplay 2002, pp. 159-162.
Gunter Wyszecki and W.S. Stiles, “Color Science: Concepts and methods”, Quantative Data and Formulae, 2d Ed., 1982, pp. 179-183.
Elliott et al., “13.3: Co-Optimization of Color AMLCD Subpixel Architecture and Rendering Algorithms”, ClairVoyante Laboratories, USA and AMLCD, Semiconductor Business, Korea, pp. 1-4.
Elliott, C., “Active Matrix Display Layout Optimization for Sub-pixel Image Rendering”, ClairVoyante Laboratories, USA, pp. 1-5.
Betrisey et al., “20.4: Displaced Filtering for Patterned Displays”, Microsoft Corporation, Society for Information Display, 2000, SID, pp. 1-4.
Daly, Scott, “47.3: Analysis of Subtriad Addressing Algorithms by Visoal System Models” Center for Displayed Appearance, Sharp Laboratories of America, Camas, WA, USA, 2001, SID, pp. 1200-1203.
Platt, John C., “Optimal Filtering for Patterned Displays,” Microsoft Research, IEEE Signal Processing Letters, 2000, 4 pages.
Hiyama et al., “LN-3: Four-Primary Color 15-in. XGA TFT-LCD with Wide Color Gamut”, Japan, Eurodisplay 2002, pp. 827-830.
Sugiura et al., “P-24: LCD Module Adopting a Color Conversion Circuit”, Japan, SID, 2002, pp. 288-291.
Search Report from PCT/IL03/00307, mailed on Sep. 11, 2003.
“Parameter Values for the HDTV Standards for Production and International Programme Exchange” Rec. ITU-R BT 709-3 (1990-1994-1995-1996), pp. 1-28.
G. Harbers and C. Hoelen “High performance LCD backlighting using high intensity red, green and blue light emitting diodes” SID Digest, LP-2, p. 702 (2001).
International Search Report of Application PCT/IL04/00446 Dated Dec. 8, 2004.
CN Office Action of Application No. 200480014431.8 Dated Aug. 17, 2007.
European Office Action of Application No. 04734593.9, dated Dec. 2, 2008.
US Office Action for U.S. Appl. No. 10/555,781, dated Dec. 23, 2008.
US Office Action for U.S. Appl. No. 10/555,781, dated Jul. 14, 2009.
U.S. Appl. No. 60/255,914, filed Dec. 18, 2000, Ben-david, Ilan.
Related Publications (1)
Number Date Country
20100214311 A1 Aug 2010 US
Provisional Applications (4)
Number Date Country
60473135 May 2003 US
60296767 Jun 2001 US
60318626 Sep 2001 US
60371419 Apr 2002 US
Continuations (1)
Number Date Country
Parent 10555781 US
Child 12775449 US
Continuation in Parts (1)
Number Date Country
Parent 10480280 US
Child 10555781 US