Multi-Pulse Ignition Circuit For A Gas Discharge Lamp

Abstract
An ignition circuit for igniting a gas discharge lamp generates a high voltage gas breakdown pulse by building up a current through a primary winding of a transformer. After a predetermined period and thus when a predetermined current flows through the primary winding, a capacitance is switched in series with said primary winding, thereby generating said high voltage gas breakdown pulse in a secondary winding of said transformer. After generating the high voltage pulse, the capacitance is short-circuited in order to preserve energy in the primary winding. The preserved energy is employed to build up energy again for a next high voltage pulse in a short time. At a high repetition rate and high voltage of the generated pulses, the ignition circuit according to the present invention is also suitable for driving the gas discharge lamp during a take-over period following the gas breakdown of the lamp for heating the lamp electrodes.
Description

The annexed drawings show non-limiting exemplary embodiments, wherein



FIG. 1 schematically shows an ignition circuit according to the present invention;



FIG. 2 shows a diagram of an embodiment of the ignition circuit according to the present invention;



FIG. 3A shows a drain voltage, a gate voltage, an ignition voltage and a drain current in the embodiment of FIG. 2; and



FIG. 3B shows an enlarged view of the voltages and current shown in FIG. 3A.



FIG. 4 shows a diagram of another embodiment of the ignition circuit according to the present invention.





In the drawings, identical reference numerals indicate similar components or components with a similar function.



FIG. 1 shows an ignition circuit 10 comprising a primary winding 121 of a transformer 12, a capacitor 14 and a switch 16. The ignition circuit 10 is coupled to a voltage source 18. A secondary winding 122 of the transformer 12 is coupled to a gas discharge lamp circuit 20. The gas discharge lamp circuit 20 comprises a gas discharge lamp and possibly one or more other components.


In the exemplary embodiment shown in FIG. 2 the switch is embodied in a transistor 161 and a switch driving circuit 162. The transistor 161 is a MOSFET transistor having a body diode. From the description of the functioning of the ignition circuit 10 below, it will be apparent to the person skilled in the art that any circuit or component suitable for high frequency switching of a current may embody the switch. Below, the functioning of the ignition circuit 10 according to the present invention is elucidated with reference to FIGS. 2, 3A and 3B.


In FIGS. 3A and 3B, four graphs Ch1, Ch2, Ch3, and Ch4 are shown. The upper graph Ch1 shows a drain voltage, the graph Ch2 shows a gate voltage, the graph Ch3 shows an ignition voltage and the lower graph Ch4 shows a drain current of the circuit shown in FIG. 2. The graphs Ch1, Ch2, Ch3, and Ch4 are shown as a function of time. In FIG. 3B, a time scale enlarged with respect to FIG. 3A is used, thereby giving an enlarged view of the voltages and the current shown in FIG. 3A.


Referring to FIGS. 3A and 3B, the graph Ch2 shows the gate voltage generated by the switch driving circuit 162 of FIG. 2. The gate voltage generally has a high voltage level, switching the transistor 161 in a conducting state. At a high frequency of 32.6 kHz, short, low voltage pulses are generated by the switch driving circuit 162, switching the transistor 161 in a non-conducting state during a short period at said high frequency.


When the gate voltage Ch2 is high, the transistor 161 is switched in a conducting state, and thus there is no voltage drop over the transistor 161 (source-drain). The drain voltage Ch1 indeed shows a low voltage level, when the gate voltage Ch2 is high.


Basically, when the drain voltage Ch1 is low, there is no voltage over the capacitor 14, thereby effectively reducing the circuit to a circuit of the primary winding 121 and the voltage source 18. In said circuit a current may be built up depending on the inductance of the primary winding 121. This is illustrated in graph Ch4, wherein the drain current Ch4 increases over time.


The current through the primary winding 121 comprises an amount of energy due to the inductance of the primary winding 121.


When the switch driving circuit 162 generates a low voltage pulse, thereby switching off the transistor 161 and reducing the drain current Ch4 to substantially zero, a resonant circuit is formed, since the capacitor 14 is added to the effective circuit. The current through the primary winding 121 rapidly flows towards the capacitor 14, thereby generating a high voltage pulse in the primary winding 121, as may be seen in the drain voltage Ch1. A peak voltage and a duration of the pulse is dependent on i.e. the combination of the inductance of the primary winding 121 and the capacitance of the capacitor 14, and therefore may be selected by selecting specific values of said inductance and said capacitance.


The high voltage pulse in the primary winding 121 generates a high voltage pulse in the secondary winding 122, which is coupled to the gas discharge lamp. Said high voltage pulse in the secondary winding 122 may thus breakdown the gas in the gas discharge lamp. Due to a high repetition rate and the generated peak voltage in the secondary winding 122, the ignition circuit according to the present invention is also suitable for driving the gas discharge lamp during the take-over period following the gas breakdown of the gas discharge lamp.


As mentioned above, the current through the primary winding 121 has to be built up over a certain period of time, thereby storing an amount of energy. To enable a high repetition rate of ignition pulses, the transistor 161 may be rapidly switched to a conducting state again after the ignition pulse has been generated, thereby preserving as much of said energy in the ignition circuit 10 as possible.


When the transistor 161 is switched to a conducting state again by the gate voltage Ch2, the drain current Ch4 flows through the body diode of the transistor 161, while the capacitor 14 unloads. Thus, any preserved energy is returned in the circuit and the current through the primary winding 121 is built up again, until a low voltage pulse is generated in the gate voltage Ch2.



FIG. 4 shows an embodiment, wherein the lamp circuit 20 is connected to a winding 120. The winding 120 is connected in series with the parallel circuit of a capacitor 14 and the switch 16. The switch 16 is controlled by a switch driving circuit 22 that is connected in parallel to the lamp circuit 20 and the winding 120. A voltage is supplied by the voltage source 18. The embodiment of FIG. 4 functions similarly to the embodiment of FIG. 2 except for the switch driving circuit 22.


The switch driving circuit 22 is provided with a voltage detection circuit. The voltage detection circuit determines a voltage over the winding 120. The switch driving circuit 22 opens the switch 16 and a high voltage pulse is generated in said winding 120 as described above in relation to FIGS. 2, 3A and 3B. The voltage detection circuit determines the voltage level over the winding 120. When said voltage drops and reaches zero again, the switch driving circuit 22 closes the switch 16 again. Thus, by closing the switch 16 when the voltage is substantially zero, a minimum amount of energy is dissipated in the circuit.


The present invention is not limited to the illustrated and described embodiment and it will be apparent to those skilled in the art how the above embodiment may be altered without departing from the scope of the invention.


In the above description as well as in the appended claims, ‘comprising’ is to be understood as not excluding other elements or steps and ‘a’ or ‘an’ does not exclude a plurality. Further, any reference signs in the claims shall not be construed as limiting the scope of the invention.

Claims
  • 1. An ignition circuit (10) for a gas discharge lamp, wherein the circuit (10) comprises an inductive element (121) connected in series with a parallel circuit of a switching circuit (16) and a capacitance (14), said gas discharge lamp being coupled to said inductive element (121).
  • 2. The ignition circuit (10) according to claim 1, wherein the switching circuit (16) is configured to open when a current is flowing through said switching circuit (16) and said inductive element (121), thereby generating a high voltage pulse in said inductive element (121), and wherein said switching circuit (16) is configured to close after said high voltage pulse in said inductive element (121) is generated.
  • 3. The ignition circuit (10) according to claim 1, wherein the switching circuit (16) is provided with a voltage detection circuit for determining a voltage over the inductive element, the switching circuit (16) being configured to close when said voltage is substantially zero after said high voltage pulse.
  • 4. The ignition circuit according to claim 1, wherein the inductive element (121) is a primary winding (121) of a transformer (12), a secondary winding (122) of said transformer (12) being connected to said lamp.
  • 5. The ignition circuit according to claim 1, wherein the switching circuit (16) comprises a transistor (161) and a switch driving circuit (162) connected to the gate of said transistor (161).
  • 6. The ignition circuit according to claim 1, wherein the ignition circuit (10) is configured to generate the high voltage pulses at a repetition frequency of at least 10 kHz.
  • 7. An ignition method for a gas discharge lamp, the method comprising: generating a current through an inductive element (121), said inductive element (121) being coupled to said lamp;opening a switching circuit (16) connected in series with said inductive element (121) and connected in parallel with a capacitance (14), thereby generating a high voltage pulse in said inductive element (121); andclosing said switching circuit (16) after generating said high voltage pulse in said inductive element (121).
  • 8. The ignition method according to claim 7, wherein the high voltage pulses are generated at a repetition frequency of at least 10 kHz.
Priority Claims (1)
Number Date Country Kind
04103475.2 Jul 2004 EP regional
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/IB05/52347 7/14/2005 WO 00 1/17/2007