The annexed drawings show non-limiting exemplary embodiments, wherein
In the drawings, identical reference numerals indicate similar components or components with a similar function.
In the exemplary embodiment shown in
In
Referring to
When the gate voltage Ch2 is high, the transistor 161 is switched in a conducting state, and thus there is no voltage drop over the transistor 161 (source-drain). The drain voltage Ch1 indeed shows a low voltage level, when the gate voltage Ch2 is high.
Basically, when the drain voltage Ch1 is low, there is no voltage over the capacitor 14, thereby effectively reducing the circuit to a circuit of the primary winding 121 and the voltage source 18. In said circuit a current may be built up depending on the inductance of the primary winding 121. This is illustrated in graph Ch4, wherein the drain current Ch4 increases over time.
The current through the primary winding 121 comprises an amount of energy due to the inductance of the primary winding 121.
When the switch driving circuit 162 generates a low voltage pulse, thereby switching off the transistor 161 and reducing the drain current Ch4 to substantially zero, a resonant circuit is formed, since the capacitor 14 is added to the effective circuit. The current through the primary winding 121 rapidly flows towards the capacitor 14, thereby generating a high voltage pulse in the primary winding 121, as may be seen in the drain voltage Ch1. A peak voltage and a duration of the pulse is dependent on i.e. the combination of the inductance of the primary winding 121 and the capacitance of the capacitor 14, and therefore may be selected by selecting specific values of said inductance and said capacitance.
The high voltage pulse in the primary winding 121 generates a high voltage pulse in the secondary winding 122, which is coupled to the gas discharge lamp. Said high voltage pulse in the secondary winding 122 may thus breakdown the gas in the gas discharge lamp. Due to a high repetition rate and the generated peak voltage in the secondary winding 122, the ignition circuit according to the present invention is also suitable for driving the gas discharge lamp during the take-over period following the gas breakdown of the gas discharge lamp.
As mentioned above, the current through the primary winding 121 has to be built up over a certain period of time, thereby storing an amount of energy. To enable a high repetition rate of ignition pulses, the transistor 161 may be rapidly switched to a conducting state again after the ignition pulse has been generated, thereby preserving as much of said energy in the ignition circuit 10 as possible.
When the transistor 161 is switched to a conducting state again by the gate voltage Ch2, the drain current Ch4 flows through the body diode of the transistor 161, while the capacitor 14 unloads. Thus, any preserved energy is returned in the circuit and the current through the primary winding 121 is built up again, until a low voltage pulse is generated in the gate voltage Ch2.
The switch driving circuit 22 is provided with a voltage detection circuit. The voltage detection circuit determines a voltage over the winding 120. The switch driving circuit 22 opens the switch 16 and a high voltage pulse is generated in said winding 120 as described above in relation to
The present invention is not limited to the illustrated and described embodiment and it will be apparent to those skilled in the art how the above embodiment may be altered without departing from the scope of the invention.
In the above description as well as in the appended claims, ‘comprising’ is to be understood as not excluding other elements or steps and ‘a’ or ‘an’ does not exclude a plurality. Further, any reference signs in the claims shall not be construed as limiting the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
04103475.2 | Jul 2004 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB05/52347 | 7/14/2005 | WO | 00 | 1/17/2007 |