Multi-purpose gas turbine seal support and assembly

Information

  • Patent Grant
  • 10053998
  • Patent Number
    10,053,998
  • Date Filed
    Monday, December 23, 2013
    10 years ago
  • Date Issued
    Tuesday, August 21, 2018
    6 years ago
Abstract
A gas turbine engine assembly includes a first module, a second module rotatable about a center line of the gas turbine engine and fluidly coupled with the first module, and a multi-purpose seal support. The multi-purpose seal support includes an aft end secured to the first module, and a forward end disposed proximate the second module. The forward end has a discourager portion, a seal portion, and a meshing portion.
Description
BACKGROUND

The described subject matter relates to gas turbine engines, and more particularly to seals within gas turbine engines.


Gas turbine engines operate according to a continuous-flow, Brayton cycle. A compressor section pressurizes an ambient air stream, fuel is added and the mixture is burned in a central combustor section. The combustion products expand through a turbine section where bladed rotors convert thermal energy from the combustion products into mechanical energy for rotating one or more centrally mounted shafts. The shafts, in turn, drive the forward compressor section, thus continuing the cycle. Gas turbine engines are compact and powerful power plants, making them suitable for powering aircraft, heavy equipment, ships and electrical power generators. In power generating applications, the combustion products can also drive a separate power turbine attached to an electrical generator.


Seals are required in many locations within a gas turbine engine to regulate air flow to various portions of the engine. From time to time these seals may become damaged, fail or provide for inadequate sealing. This can result in the undesirable heating of engine components.


Flow management often requires a seal on one side of the module to prevent the hot air from the flow path entering and heating the steel frame. Furthermore, a seal land is also required nearby to provide sealing between a rotating disk and an adjacent cavity. A structural part is also useful to transfer meshing loads from the rotating disk to the frame in case of shaft failure. All these functional requirements normally would require multiple pieces of hardware with attendant complexity, leakage, and space considerations.


SUMMARY

A gas turbine engine assembly comprises a first module, a second module rotatable about a center line of the gas turbine engine and fluidly coupled with the first module, and a multi-purpose seal support. The multi-purpose seal support includes an aft end secured to the second module, and a forward end disposed proximate the first module. The forward end has a discourager portion, a seal portion, and a meshing portion.


A turbine exhaust case (TEC) assembly comprises a frame, a fairing, and a multi-purpose seal support. The fairing defines a main gas flow passage generally axially through the frame. The multi-purpose seal support includes an aft end secured to the inner hub. A forward end has a discourager, a seal, and a meshing recess.


A multi-purpose seal support element for a gas turbine engine comprises a ring-shaped body, a flow inhibitor portion, a seal, and a bridging portion. The body includes an axially forward end and an axially aft end. The flow inhibitor portion is formed at the forward end of the body. The seal includes at least one seal land formed proximate the flow inhibitor portion. The bridge portion is disposed proximate the seal and includes at least one U-shaped recess.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 schematically depicts an example gas turbine engine.



FIG. 2 is a detailed view of a turbine assembly portion of the engine shown in FIG. 1.



FIG. 3 isometrically shows a turbine exhaust case with a multi-purpose seal support.



FIG. 4A shows the example seal assembly and multi-purpose seal support depicted in FIG. 2.



FIG. 4B is an isometric view of the region shown in FIG. 4A.



FIG. 5A isometrically shows a first example embodiment of a multi-purpose seal support element.



FIG. 5B is a sectional view of the seal support shown in FIG. 5A.



FIG. 6 is a sectional view of a second example embodiment of a multi-purpose seal support.





DETAILED DESCRIPTION

A multi-purpose seal support element for a turbine exhaust case (TEC) assembly or other gas turbine module can incorporate at least three features or functions which have not previously been combined in a single component. (1) A discourager is positioned adjacent a corresponding recess on the hot gas path wall or fairing to maintain a tortuous path for hot working/combustion ingestion into a cavity defined in part between the fairing and the multi-purpose seal support. (2) A seal portion engages or receives a corresponding seal portion of an adjacent module to prevent leakage of working or combustion gas into an inner cavity. (3) A fail safe meshing portion can be formed between seal lands or incorporated with one or more fishmouth seals to engage a rotor and bridge the upstream module with the TEC assembly in the event of failure. The axially extending portion of the support assembly transfers failure loads axially through the support ring into the TEC frame. A mounting end of the multi-purpose seal support can be fastened directly to the completed TEC assembly or other module. The combination simplifies assembly of the engine, reduces leakage, and improves maintainability.



FIG. 1 shows industrial gas turbine engine 10, one example of a gas turbine engine. Engine 10 is circumferentially disposed about a central, longitudinal axis, or engine centerline axis 12, and includes in series order, low pressure compressor section 16, high pressure compressor section 18, combustor section 20, high pressure turbine section 22, and low pressure turbine section 24. In some examples, a free turbine section 26 is disposed aft of the low pressure turbine 24. Free turbine section 26 is often described as a “power turbine” and may rotationally drive one or more generators, centrifugal pumps, or other apparatus.


As is well known in the art of gas turbines, incoming ambient air 30 becomes pressurized air 32 in compressors 16, 18. Fuel mixes with pressurized air 32 in combustor section 20, where it is burned. Once burned, combustion gases 34 expand through turbine sections 22, 24 and power turbine 26. Turbine sections 22 and 24 drive high and low pressure rotor shafts 36 and 38 respectively, which rotate in response to the combustion products and thus the attached compressor sections 18, 16. Free turbine section 26 may, for example, drive an electrical generator, pump, or gearbox (not shown). Turbine exhaust case (TEC) assembly 42 is also shown in FIG. 1, disposed axially between low pressure turbine section 24 and power turbine 26. TEC assembly 42 is described in more detail below.



FIG. 1 provides a basic understanding and overview of the various sections and the basic operation of an industrial gas turbine engine. Although illustrated with reference to an industrial gas turbine engine, the described subject matter also extends to aero engines having a fan with or without a fan speed reduction gearbox, as well as those engines with more or fewer sections than illustrated. It will become apparent to those skilled in the art that the present application is applicable to all types of gas turbine engines, including those in aerospace applications. In this example, the subject matter is described with respect to TEC assembly 42 between turbine sections 24, 26 configured in a sequential flow arrangement for an industrial gas turbine engine. However, it will be appreciated that the teachings can be readily adapted to other turbine applications with fluidly coupled modules, such as but not limited to a mid-turbine frame, an interstage turbine frame, and/or a turbine exhaust case for an aircraft engine. In other alternative embodiments, TEC assembly 42 can be adapted into a case assembly or module for portions of compressor sections 16 and/or 18.



FIG. 2 shows engine assembly 40, and also includes TEC assembly 42, second module 44, and seal assembly 66 therebetween.


As described above, this illustrative example will be described with reference to turbine exhaust case (TEC) assembly 42 as a first turbine module, but the described subject matter can be readily adapted for several other gas turbine modules. TEC assembly 42 may be interconnected with a second upstream module 44 such as a low-pressure turbine module. TEC assembly 40 may also be connected to a downstream module 45 such as a power turbine module.


As seen in FIG. 2, TEC assembly 42 includes frame 46. Fairing assembly 48 extends generally axially through frame 46 to define main gas flow passage 51 for working/combustion gases 34 to flow during operation. The upstream module (e.g., low-pressure turbine 24 shown in FIG. 1) can include other components such as rotor blade 52 and/or an exit guide vane (not shown). These components are disposed upstream of frame 46 and fairing assembly 48 with respect to a conventional flow direction of working/combustion gases 34 through a conventional industrial gas turbine (IGT) system. The downstream module (e.g., power turbine 26 shown in FIG. 1) can include other components (not shown) such as a stator vane and rotor blade, which are disposed downstream of frame 46 and fairing assembly 48 with respect to the conventional flow direction of working/combustion gases 34.


Frame 46 includes outer case 54, inner hub 56, and a circumferentially distributed plurality of struts 58 (only one shown in FIG. 2) extending radially between outer case 54 and inner hub 56. Second module 44 is connected to first module (e.g., TEC assembly) 42 via fasteners 47 such that modules 42 and 44 abut along outer cases 54 and 55.


In this example, fairing assembly 48 includes outer fairing platform 60, inner fairing platform 62, and strut liners 64. In the embodiment shown, fairing assembly 48 is secured over annular surfaces of frame 46. In this example, fairing assembly 48 is adapted to have outer fairing platform 60 disposed radially inward of outer case 54 while inner fairing platform 62 may be disposed radially outward of inner frame hub 56. Strut liners 64 can also be adapted to be disposed around frame struts 58. Outer fairing platform 60 has a generally conical shape. Similarly, inner fairing platform 62 has a generally conical shape. Inner fairing platform 62 is spaced from outer platform 60 by strut liners 64. When assembled, outer fairing platform 60, inner fairing platform 62, and fairing strut liners 64 define a portion of main gas flow passage 51 for combustion gases 34 to pass through TEC assembly 42 during engine operation.


Main gas flow passage 51 can also be sealed between adjacent gas turbine modules, such as around the edges of fairing assembly 48, to prevent leakage and unwanted heating of frame 46 in TEC assembly 42. In one example, seal assembly 66 is secured to TEC assembly 42 and is adapted to perform multiple sealing and support functions at the interconnection between TEC assembly 42 and second module 44.


Similar to first module/TEC assembly 42, second module 44 includes various components such as rotor blade 52, outer radial case 55, blade platform 57, and rotor disk 70. Blade platform 57 is a rotating component which forms an inner radial edge of main engine gas flow passage 51. Seal assembly 66 is disposed generally radially inward from inner fairing platform 62, and axially between frame inner hub 56 and upstream rotor disk 70. Rotor disk 70 is disposed radially inward of main gas flow passage 51 and interfaces with adjacent portions of assembly 66 and multi-purpose seal support 68. As will be discussed subsequently, multi-purpose seal support 68 includes a discourager portion, a seal portion, and a meshing portion.



FIG. 3 shows an isometric view of turbine exhaust case assembly 42 with multi-purpose seal support 68 secured thereto. TEC assembly 42 includes aft case flange 72A and forward case flange 72B for interconnecting TEC assembly 42 with other modules into engine 10 (shown in FIG. 1). Multi-purpose seal support 68 includes ring shaped body 74 with aft end 76 (shown in FIGS. 4A-4B) secured to a forward facing side of TEC assembly 42, and forward end 78 adjacent to and facing an aft side of upstream module 44 (FIG. 2). As was also shown in FIG. 2, seal assembly 66 can be mounted to a forward recessed portion of inner frame hub 56 (not visible in FIG. 3).



FIG. 4A depicts a detailed sectional view of the area in and around seal assembly 66. FIG. 4B is an isometric view of the area shown in FIG. 4A.


Assembly 66 interacts with forward end 80 of inner fairing platform 62 to minimize leakage from main engine gas flow passage 51. Multi-purpose seal support 68 is disposed between first cavity 82 and second cavity 84. During combustion, seal assembly 66 acts to limit a hot leakage gas flow L from entering first cavity 82 and second cavity 84, either of which would result in excessive heating of frame inner hub 56. Similarly, seal assembly 66 allows for purging of first cavity 82 prior to or during an engine warmup cycle. Assembly 66 can also limit secondary flow between first cavity 82 and second cavity 84. Additionally, assembly 66 limits damage to the engine in case an upstream rotor becomes damaged or loses functionality. Seal assembly 66 can provide all of these functions in a single piece which is more durable and cost effective than other solutions known in the art.


Multi-purpose seal support forward end 78 generally includes discourager portion 86, seal portions 88, and meshing portion 90. Discourager portion 86 can be a flow inhibiting flange or other structure adapted to engage with recess 94 formed in a surface of inner fairing platform 62. This has the effect of preventing ingestion into cavity 82. Here, recess 94 is machined out of fairing Y-junction 96, which connects fairing platform wall 98 and fairing wall 100. This allows for thermal growth and contraction of fairing assembly 48, with a thermal barrier between fairing platform wall 98 and frame inner hub 56. Discourager gap 102, which can include axial gap 104A and radial gap 104R, is defined between inner fairing platform 62 and seal support discourager portion 80. First (seal support) cavity 82 can be defined annularly by Y-junction 96, fairing mounting wall 100, fairing mounting flange 106, and seal support element body 74. Second (rotor) cavity 84 can be defined radially inward of multi-purpose seal support 68. Fairing mounting flange 106 can also serve as a backing ring for heat shield segment 108 which operates as a thermal radiation barrier for fairing mounting wall 100 and fairing mounting flange 106.


Fairing assembly 48 thermally expands and contracts based on engine operating conditions. Thus dimensions of discourager gap 102 range between a first low temperature state in which discourager portion 86 is spaced apart from Y-junction 96, and a second heated state in which discourager portion 86 closely engages or briefly contacts Y-junction 96 of inner fairing platform 62. When closely engaged, leakage flow L must pass through a tortuous path and change directions to reach cavity 82. Dimensions of gap 102 are enlarged because fairing assembly 48 shrinks or contracts toward frame 46. This allows for purging of first seal support cavity 96 when working gases 34 are at an engine idle or cold soak temperature. As the engine approaches full operating temperature, fairing assembly 48 thermally expands such that the dimensions of axial and/or radial gaps 104A, 104R are reduced, forming an effective discourager seal between inner fairing platform 62 and seal support discourager portion 86 to minimize leakage flow L into first cavity 82.


Seal portion 88 of multi-purpose seal support 68 includes at least one axially projecting seal land 110 disposed adjacent to a corresponding seal portion 112 on upstream module 44. Abradable seal pads 118 are secured to each seal land 110 to form a labyrinth seal between main gas flow passage 51 and second (rotor) cavity 84. In the illustrated example, two abradable seal pads 118 each receive knife edges 114, which can be formed on an aft side of upstream rotor disk 70 (e.g., mini-disk 116). A generally U-shaped recess 120 is also formed between adjacent seal lands 110. In alternative embodiments, seal land(s) 110 can be adapted to create an additional or alternative type of seal. For example, FIG. 6 shows a receiving portion of a fishmouth seal in place of the labyrinth seal lands shown in FIGS. 2-4B.


Seal assembly 68 also can include a meshing feature for use as a failsafe feature in the event of an upstream rotor failure. In this example, multi-purpose seal support 68 includes meshing portion 90 in which axial loads from a failure of rotor disk 70 can be transmitted into and through multi-purpose seal support 68. Here, example meshing portion 90 consists of projection 92 with a forward-most surface distal from TEC assembly 42 and facing rotor disk 70. In ordinary operation, projection 92 is spaced axially apart from the first module and from rotor disk 70 as shown. In the event that one or more portions of upstream module 44 (e.g., rotor disk 70) fails, rotor disk 70 will move aftward into, and contact meshing portion 90. This has the effect of bridging rotor disk 70 and TEC assembly 42 so that axial and rotational forces of rotor disk 70 are transmitted into seal support body 74. In turn, forces are absorbed by frame inner hub 56 by way of aft seal support flange 109. In certain embodiments, flow divider ring 124 can be secured between aft seal support flange 109 and frame inner hub 56. Flow divider ring 124 partially defines a boundary for a frame cooling air passage (not shown).



FIGS. 5A and 5B show multi-purpose seal support 68 independent of modules 42, 44. As was shown in FIGS. 4A-4B, multi-purpose seal support 68 includes ring-shaped body 74 extending axially between aft portion 76 and forward portion 78. Aft portion 76 includes aft seal support flange 109, which can be used to fasten multi-purpose seal support 68 to a turbine module (e.g., TEC assembly 42 shown in FIG. 2). Forward portion 78 includes three features integrated into one. Discourager portion 86 adapted to engage with a fairing assembly of a gas turbine engine. Discourager portion 86, for example, can comprise radial projection 130 and axial projection 132, or another shape adapted to engage with a corresponding portion of the fairing assembly. As shown in FIGS. 4A and 4B, a fairing assembly undergoes thermal growth and shrinkage depending on the operational state of the engine. Here, ring-shaped body 74 is sized so that axial projection 130 and radial projection 132 are disposed forward of the forward end of the fairing platform. This creates axial and radial discourager gaps 104A, 104R (shown in FIGS. 4A and 4B) so that an effective seal can formed with a fairing Y-junction to prevent leakage flow out of the main working gas flow passage and into a cavity disposed radially outward of multi-purpose seal support 68.


At least one seal land 110 is also incorporated into seal support forward end 78 for engaging a corresponding seal portion of an adjacent rotating gas turbine module. In the example of FIGS. 4A-4B, seal lands 110 may be adapted to receive knife edges formed on a rotor disk, or knife edges formed on a separate rotor attachment such as a mini-disk secured to an aft side of the main rotor disk. Each seal land 110 can have at least one abradable seal pad 118. Forward contact face on seal support body 74 can serve as a meshing portion 90 to contact a face of rotor disk 70 in the event of a rotor failure.



FIG. 6 shows a cross-section of an alternative multi-purpose seal support 168. Multi-purpose seal support 168 operates similarly to multi-purpose seal support 68 shown in FIGS. 2-5. Discourager portion 186 is adapted to define a gap between seal support forward end 178 and a corresponding portion of fairing assembly 148 (shown in phantom). Projection 192 forms a first meshing portion similar to meshing portion 90 shown above. However, seal lands 110 and abradable pads 118 (in FIGS. 2-5) have been replaced with fish mouth recesses 210. Fish mouth recesses 210A, 210B each receive respective legs 214A, 214B (also shown in phantom) projecting from an upstream module (e.g., upstream rotor disk or mini-disk). In this example, in addition to fish mouth recess 210A and optional recess 210B operating as a sealing portion 188, there can be a second meshing portion 190. In the event of failure of the upstream module, one or both legs 214A, 214B would contact the surfaces of respective recesses 210A, 210B to transfer additional meshing loads through body 174 to aft support flange 209.


Multi-purpose seal support 68 and 168 allow three important functions of a gas turbine engine to be incorporated into a relatively small space. The meshing feature can be incorporated adjacent to the sealing portion so that a knife edge, fishmouth leg or other seal projection on the rotor can create a failsafe bridging relationship proximate the seal lands. The forward end of the seal support is also in close proximity to fairings defining the main gas flow passage. Thus a discourager such as a flow inhibiting flange or other projection can be located proximate the sealing and meshing portions.


In addition, multi-purpose seal supports 68,168 are also easily manufacturable and replaceable. They can be mounted directly to a completed gas turbine module (e.g., a turbine exhaust case), simplifying assembly and maintenance of the engine. For example, if one of the features fails or reaches the end of its useful life, a new multi-purpose seal support can be quickly removed and replaced during any maintenance activity requiring separation of the two adjacent modules.


While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.

Claims
  • 1. An assembly for a gas turbine engine, comprising: a first module comprising a turbine exhaust case module for a gas turbine engine; the turbine exhaust case module comprising a fairing assembly secured over annular surfaces of a frame, defining a first portion of a main gas flow passage annularly between an inner fairing platform and an outer fairing platform, and around a plurality of frame strut liners;a second module connected immediately upstream of the first module, the second module comprising a low pressure turbine rotor module rotatable about a center line of the gas turbine engine, the low pressure turbine rotor module including a plurality of rotor blades extending radially through a second portion of the main gas flow passage and fluidly coupled with the first module and the first portion of the main gas flow passage; anda multi-purpose seal support secured proximate to the main gas flow passage between the first and second modules, the seal support comprising:a ring-shaped body;an aft end flange securing the seal support to an inner hub of the first module frame; anda forward end disposed extending forward from the ring-shaped body toward the second module, the forward end having a discourager portion, a seal portion, and a meshing portion, wherein:the discourager portion includes at least one flange extending at least axially forward from the ring-shaped body toward a complementary recess formed in an aft end of the second module such that the at least one flange forms at least one discourager gap with the recess, the discourager gap providing a tortuous leakage path for leakage flow from the main gas flow passage,the seal portion includes at least one axially projecting seal land extending toward a cooperating seal portion on the second module, andthe meshing portion includes a projection extending forward from the ring-shaped body toward an aft face of a rotor disk on the second module, the projection having a forwardmost surface spaced adjacent to the rotor disk such that failure of the second module causes the rotor disk to contact the forwardmost surface and transmit forces from the rotor disk through the ring-shaped body into the inner hub.
  • 2. The assembly of claim 1, wherein the complementary recess is formed in an inner fairing platform.
  • 3. The assembly of claim 2, wherein the at least one flange of the discourager portion is spaced apart from the recess such that at least one of axial and radial dimensions of the discourager gap in a first idle or cold soak temperature state is larger than the at least one dimension in a second operating temperature state to form the tortuous leakage path between the fairing and the seal support at the second operating temperature.
  • 4. The assembly of claim 1, wherein the at least one seal land includes at least one labyrinth seal land disposed axially adjacent to a corresponding knife edge of the second module.
  • 5. The assembly of claim 1, wherein the at least one seal land includes at least one fishmouth seal recess receiving a corresponding leg of the second module.
  • 6. The assembly of claim 1, further comprising a U-shaped recess formed between two adjacent seal lands of the first module.
  • 7. The assembly of claim 1, wherein a downstream end of the turbine exhaust case is fluidly coupled with a power turbine assembly.
  • 8. The assembly of claim 1, wherein the at least one flange of the discourager portion has both an axial discourager projection and a radial discourager projection.
  • 9. A turbine exhaust case (TEC) assembly comprising: a frame including an outer case, an inner hub, and a circumferentially distributed plurality of struts extending radially between the outer case and the inner hub;a fairing assembly secured over annular surfaces of the outer case, the inner hub, and the plurality of struts, defining a first portion of a main gas flow passage annularly through the frame between the outer case and the inner hub and around the plurality of struts; anda multi-purpose seal support comprising:a ring-shaped body;an aft end flange securing the seal support to a forward surface of the inner hub, anda forward end extending forward from the ring-shaped body, the forward end having a discourager portion, a seal portion, and a meshing portion, wherein:the discourager portion includes at least one flange extending at least axially forward from the ring-shaped body and configured to engage a complementary recess in an aft end of a low pressure turbine rotor module, forming at least one discourager gap with the complementary recess, the discourager gap providing a tortuous leakage path for leakage flow from the main gas flow passage;the seal portion includes at least one axially projecting seal land and is configured to engage a cooperating labyrinth or fishmouth seal portion on the low pressure turbine rotor module, andthe meshing portion includes a projection extending axially forward from the ring-shaped body, the projection having a forwardmost surface adjacent to the rotor disk, such that the forwardmost surface is spaced from the rotor disk until failure of the second module, upon which the rotor disk contacts the forwardmost surface and transmits forces from the rotor disk through the ring-shaped body into the frame inner hub.
  • 10. The TEC assembly of claim 9, wherein the at least one flange of the discourager portion is shaped to form the discourager seal in cooperation with a recess formed into a Y-junction disposed on a forward side of the fairing assembly proximate the inner hub.
  • 11. The TEC assembly of claim 10, wherein the at least one flange of the discourager portion is spaced apart from the recess such that at least one of axial and radial dimensions of the discourager gap range between a first low temperature state in which the discourager portion is spaced apart from the fairing, and a second high temperature state in which the discourager portion forms the discourager seal with the fairing.
  • 12. The TEC assembly of claim 9, wherein the at least one seal land comprises an abradable pad.
  • 13. The TEC assembly of claim 9, wherein the at least one seal land is a recess adapted to receive a corresponding leg for a fishmouth seal.
  • 14. The TEC assembly of claim 9, wherein the forward-most surface is distal from the remainder of the seal support and the TEC assembly.
  • 15. The assembly of claim 9, wherein the at least one flange of the discourager portion has both an axial discourager projection and a radial discourager projection.
  • 16. A multi-purpose seal support for a gas turbine engine, the assembly comprising: a ring-shaped body including a axially forward end and an axially aft end;an aft support flange at the axially aft end of the body, the aft support flange adapted to secure the seal body to an inner frame hub of a turbine exhaust case frame;a flow inhibitor formed at the forward end of the body, extending at least axially forward from the ring-shaped body, the flow inhibitor including at least one flange adapted to engage a complementary recess in an aft end of a low pressure turbine rotor module, the at least one flange forming at least one discourager gap with the complementary recess, the discourager gap providing a tortuous leakage path for leakage flow from a main gas flow passage extending through the turbine exhaust case frame;a seal portion including at least one axially projecting seal land formed proximate the flow inhibitor, the at least one axially projecting seal land adapted to engage a cooperating seal portion on a low pressure turbine rotor module; anda bridge portion disposed proximate the seal, the bridge portion including a projection extending axially forward from the ring-shaped body, the projection having a forwardmost surface adjacent to a rotor disk of the low pressure turbine rotor module, such that the forwardmost surface is spaced from the rotor disk until failure of the low pressure turbine rotor module, upon which the rotor disk contacts the forwardmost surface and transmits forces from the rotor disk through the ring-shaped body into the inner frame hub.
  • 17. The multi-purpose seal support element of claim 16, wherein the at least one flange of the flow inhibitor has both an axial discourager projection and a radial discourager projection.
  • 18. The multi-purpose seal support element of claim 16, wherein the at least one seal land comprises an abradable seal pad for a labyrinth seal.
  • 19. The multi-purpose seal support element of claim 16, wherein the at least one seal land comprises a recess adapted to receive a corresponding leg for a fishmouth seal.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2013/077397 12/23/2013 WO 00
Publishing Document Publishing Date Country Kind
WO2014/105780 7/3/2014 WO A
US Referenced Citations (156)
Number Name Date Kind
2214108 Grece Jul 1938 A
3576328 Vose Apr 1971 A
3802046 Wachtell et al. Apr 1974 A
3970319 Carroll et al. Jul 1976 A
4009569 Kozlin Mar 1977 A
4044555 McLoughlin et al. Apr 1977 A
4088422 Martin May 1978 A
4114248 Smith et al. Sep 1978 A
4305697 Cohen et al. Dec 1981 A
4321007 Dennison et al. Mar 1982 A
4369016 Dennison Jan 1983 A
4478551 Honeycutt, Jr. et al. Oct 1984 A
4645217 Honeycutt, Jr. et al. Feb 1987 A
4678113 Bridges et al. Jul 1987 A
4738453 Ide Apr 1988 A
4756536 Belcher Jul 1988 A
4793770 Schonewald et al. Dec 1988 A
4883405 Walker Nov 1989 A
4920742 Nash et al. May 1990 A
4987736 Ciokajlo et al. Jan 1991 A
4989406 Vdoviak et al. Feb 1991 A
4993918 Myers et al. Feb 1991 A
5031922 Heydrich Jul 1991 A
5042823 Mackay et al. Aug 1991 A
5071138 Mackay et al. Dec 1991 A
5076049 VonBenken et al. Dec 1991 A
5100158 Gardner Mar 1992 A
5108116 Johnson et al. Apr 1992 A
5169159 Pope et al. Dec 1992 A
5174584 Lahrman Dec 1992 A
5188507 Sweeney Feb 1993 A
5211541 Fledderjohn et al. May 1993 A
5224822 Lenahan et al. Jul 1993 A
5236302 Weisgerber et al. Aug 1993 A
5246295 Ide Sep 1993 A
5265807 Steckbeck et al. Nov 1993 A
5269057 Mendham Dec 1993 A
5272869 Dawson et al. Dec 1993 A
5273397 Czachor et al. Dec 1993 A
5292227 Czachor et al. Mar 1994 A
5312227 Grateau et al. May 1994 A
5338154 Meade et al. Aug 1994 A
5357744 Czachor et al. Oct 1994 A
5370402 Gardner et al. Dec 1994 A
5385409 Ide Jan 1995 A
5401036 Basu Mar 1995 A
5438756 Halchak et al. Aug 1995 A
5474305 Flower Dec 1995 A
5483792 Czachor et al. Jan 1996 A
5558341 McNickle et al. Sep 1996 A
5597286 Dawson et al. Jan 1997 A
5605438 Burdgick et al. Feb 1997 A
5609467 Lenhart et al. Mar 1997 A
5632493 Gardner May 1997 A
5634767 Dawson Jun 1997 A
5691279 Tauber et al. Nov 1997 A
5755445 Arora May 1998 A
5851105 Fric et al. Dec 1998 A
5911400 Niethammer et al. Jun 1999 A
6062813 Halliwell et al. May 2000 A
6163959 Arraitz et al. Dec 2000 A
6196550 Arora et al. Mar 2001 B1
6227800 Spring et al. May 2001 B1
6337751 Kimizuka Jan 2002 B1
6343912 Mangeiga et al. Feb 2002 B1
6358001 Bosel et al. Mar 2002 B1
6364316 Arora Apr 2002 B1
6439841 Bosel Aug 2002 B1
6511284 Darnell et al. Jan 2003 B2
6578363 Hashimoto et al. Jun 2003 B2
6601853 Inoue Aug 2003 B2
6612807 Czachor Sep 2003 B2
6619030 Seda et al. Sep 2003 B1
6638013 Nguyen et al. Oct 2003 B2
6652229 Lu Nov 2003 B2
6672833 MacLean et al. Jan 2004 B2
6719524 Nguyen et al. Apr 2004 B2
6736401 Chung et al. May 2004 B2
6792758 Dowman Sep 2004 B2
6796765 Kasel et al. Sep 2004 B2
6805356 Inoue Oct 2004 B2
6811154 Proctor et al. Nov 2004 B2
6935631 Inoue Aug 2005 B2
6969826 Trewiler et al. Nov 2005 B2
6983608 Allen, Jr. et al. Jan 2006 B2
7055305 Baxter et al. Jun 2006 B2
7094026 Coign et al. Aug 2006 B2
7100358 Gekht et al. Sep 2006 B2
7200933 Lundgren et al. Apr 2007 B2
7229249 Durocher et al. Jun 2007 B2
7238008 Bobo et al. Jul 2007 B2
7367567 Farah et al. May 2008 B2
7371044 Nereim May 2008 B2
7389583 Lundgren Jun 2008 B2
7614150 Lundgren Nov 2009 B2
7631879 Diantonio Dec 2009 B2
7673461 Cameriano et al. Mar 2010 B2
7677047 Somanath et al. Mar 2010 B2
7735833 Braun et al. Jun 2010 B2
7798768 Strain et al. Sep 2010 B2
7815417 Somanath et al. Oct 2010 B2
7824152 Morrison Nov 2010 B2
7891165 Bader et al. Feb 2011 B2
7909573 Cameriano et al. Mar 2011 B2
7955446 Dierberger Jun 2011 B2
7959409 Guo et al. Jun 2011 B2
7988799 Dierberger Aug 2011 B2
8069648 Snyder et al. Dec 2011 B2
8083465 Herbst et al. Dec 2011 B2
8091371 Durocher et al. Jan 2012 B2
8092161 Cai et al. Jan 2012 B2
8152451 Manteiga et al. Apr 2012 B2
8162593 Guimbard et al. Apr 2012 B2
8172526 Lescure et al. May 2012 B2
8177488 Manteiga et al. May 2012 B2
8221071 Wojno et al. Jul 2012 B2
8245399 Anantharaman et al. Aug 2012 B2
8245518 Durocher et al. Aug 2012 B2
8282342 Tonks et al. Oct 2012 B2
8371127 Durocher et al. Feb 2013 B2
8371812 Manteiga et al. Feb 2013 B2
20030025274 Allan et al. Feb 2003 A1
20030042682 Inoue Mar 2003 A1
20030062684 Inoue Apr 2003 A1
20030062685 Inoue Apr 2003 A1
20040213666 Gieg et al. Oct 2004 A1
20050046113 Inoue Mar 2005 A1
20060010852 Gekht et al. Jan 2006 A1
20070098545 Alvanos May 2007 A1
20080216300 Anderson et al. Sep 2008 A1
20090142182 Kapustka Jun 2009 A1
20090238683 Alvanos Sep 2009 A1
20100132371 Durocher et al. Jun 2010 A1
20100132374 Manteiga et al. Jun 2010 A1
20100132377 Durocher et al. Jun 2010 A1
20100202872 Weidmann Aug 2010 A1
20100236244 Longardner Sep 2010 A1
20100275572 Durocher et al. Nov 2010 A1
20100275614 Fontaine et al. Nov 2010 A1
20100307165 Wong et al. Dec 2010 A1
20110000223 Russberg Jan 2011 A1
20110005234 Hashimoto et al. Jan 2011 A1
20110061767 Vontell et al. Mar 2011 A1
20110081237 Durocher et al. Apr 2011 A1
20110081239 Durocher Apr 2011 A1
20110081240 Durocher et al. Apr 2011 A1
20110085895 Durocher et al. Apr 2011 A1
20110214433 Feindel et al. Sep 2011 A1
20110262277 Sjoqvist et al. Oct 2011 A1
20110302929 Bruhwiler Dec 2011 A1
20120017594 Kowalskie et al. Jan 2012 A1
20120111023 Sjoqvist et al. May 2012 A1
20120156020 Kottilingam et al. Jun 2012 A1
20120186254 Ito et al. Jul 2012 A1
20120204569 Schubert Aug 2012 A1
20130011242 Beeck et al. Jan 2013 A1
Foreign Referenced Citations (5)
Number Date Country
WO 03020469 Mar 2003 WO
WO 2006007686 Jan 2006 WO
WO 2009157817 Dec 2009 WO
WO 2010002295 Jan 2010 WO
WO 2012158070 Nov 2012 WO
Non-Patent Literature Citations (2)
Entry
Extended European Search Report for European Application No. 13867264.7, dated Jan. 15, 2016, 8 pages.
International Search Report and Written Opinion, dated Apr. 14, 2014, for PCT Application No. PCT/US2013/077397, 14 pages.
Related Publications (1)
Number Date Country
20150330244 A1 Nov 2015 US
Provisional Applications (1)
Number Date Country
61747270 Dec 2012 US