The invention relates generally to platform stages, and specifically to a multi-purpose portable platform stage.
Currently there are a number of solutions for stages. At least one of these solutions attempts to build a stationary stage, but this solution fails to meet the needs of the market because the stage is not portable. At least one other solution attempts to provide a single height platform, but this solution is similarly unable to meet the needs of the market because, depending on the level of the ground surface, the platform may need to be raised to be visible to the audience. Still another solution seeks to provide a stage that requires assembly, but this solution also fails to meet market needs because the equipment to assemble the stage can be too heavy for one person to transport, and the time to assemble the stage can be undesirably excessive.
It would be advantageous to have a stage that is lightweight for portability, yet produced from sturdy material. Further, it would also be advantageous to have a stage that folds and locks for portability. Still further, it would be advantageous to have a stage that can be set up quickly and easily. Still further, it would be advantageous to have a stage that can adjust to different heights and different types of terrains (for example, even, uneven, solid, pliable, soft, shifting, etc.). Therefore, there currently exists a need in the market for an apparatus that is a multi-purpose portable platform stage.
The invention advantageously fills the aforementioned deficiencies by providing a multi-purpose portable platform stage, which provides an alternative to stationary stages.
In preferred embodiments, the stage is for elevating a platform of the stage over a surface on which the stage is placed.
Preferably, the stage is configurable into an operational configuration and a portable configuration.
Preferably, in the operational configuration, a platform of the stage can be occupied by one or more persons simultaneously, and one or more legs of the stage support the platform. For example, in the operational configuration, one or more persons can sit, stand, move and otherwise operate on the platform without the platform or other stage components collapsing or otherwise failing at their support functions, and one or more objects can be placed and used on the platform, by or without such persons, without the platform or other stage components collapsing or otherwise failing at their support functions. Preferably, the operational configuration provides a platform that is elevated off the surface on which the stage is placed. Preferably, the platform has a top surface, which is expected to be occupied by the one or more persons, that includes one or more comfort features (for example, the surface preferably is padded) and/or one or more safety features (for example, the surface preferably has non-slip features).
Preferably, in the portable configuration, the stage can be carried by a single person individually without assistance. As used herein, the concept of a person undertaking a task “individually without assistance” can mean to undertake the task without help from any other person and without any assisting devices. Accordingly, for example, in the portable configuration, a single person, such as, for example, one of the persons who had occupied or will occupy the platform, can carry the stage without help from another person and without any assisting devices.
Preferably, the stage includes at least one panel, and more preferably two panels, and at least one leg, and more preferably at least two legs, connected to the panel (or panels). Preferably, in the operational configuration, the panel is in a platform configuration (for example, an open configuration) in which the panel provides the platform, and the leg is in a support configuration in which the leg extends from the platform. Preferably, in the portable configuration, the panel is in a closed configuration in which the panel does not provide the platform, and the leg is in a stowed configuration in which the leg does not extend from the platform.
For example, in certain embodiments, the stage is comprised of two panels (each preferably having at least one dimension substantially similar to that of the other, and more preferably having substantially the same platform surface area, and length and wide dimensions, as that of the other) that can be folded toward one another (for example, preferably they can be folded toward one another until their bottom sides face one another) and releasably locked in such a folded configuration (for example, a closed configuration) (for example, for carrying by a single person individually without assistance), and unfolded away from one another (for example, preferably they can be unfolded away from one another until their top surfaces form a combined platform) and releasably locked in such an unfolded configuration (for example, an open configuration) (for example, for use to elevate persons and/or objects positioned on the platform, over a surface on which the stage is placed).
Further in this regard, for example, in certain embodiments of the stage with multiple panels, when the stage is in the portable configuration, preferably the panels are folded toward one another with their bottom sides substantially flush against one another in a closed configuration. For example, this aspect of the invention is made possible in certain embodiments preferably by one or more of the legs of the stage being fully stowable into (for example, folded against) the bottom side of one or more of the panels. Additionally or alternatively, for example, this aspect of the invention is made possible in certain embodiments preferably by one or more of the legs being positioned on the bottom sides of the panels so as to avoid one or more other legs when the legs are in a stowed configuration and the panels are in the closed configuration.
It should be understood that although the stage is illustrated and discussed herein in certain embodiments as having a square platform of certain length and width dimensions, the platform can have any desired shape, including shapes having no corners and shapes having one or more curved edges, and further, such shapes can be of any desired dimensions.
Preferably, the stage includes at least one leg, and preferably a plurality of legs, that extend downwardly from the platform when the stage is in an operational configuration, and preferably downwardly from a bottom side of the platform when the stage is in an operational configuration, so as to elevate the platform above a surface when the stage is placed on the surface.
Preferably, the legs are positioned to provide stability to the platform when the stage is in the operational configuration and one or more persons or objects are on the platform. Preferably, in embodiments in which the platform has a shape with at least one corner, at least one leg is positioned under the corner. Preferably, in embodiments in which the platform has a shape with a plurality of corners, at least one leg is positioned under each corner. Preferably, in embodiments in which the platform has a shape with four corners, the stage has at least four legs, and each one is positioned under a respective corner.
Preferably, the legs are directed to provide stability to the platform when the stage is in an operational configuration and one or more persons or objects are on the platform. Preferably in this regard, one or more of the legs are angled with respect to the platform, outwardly laterally away from the platform and outwardly laterally away from one another, so as to provide enhanced stability to the platform when the stage is in an operational configuration. For example, the angle of each leg is preferably between approximately 60 degrees and approximately 75 degrees from the bottom side of the panel to which it is attached, and more preferably approximately 68 degrees from the bottom side of the panel to which it is attached.
Preferably, the span of each panel of the platform is supported by the legs. Preferably in this regard, one or more legs are positioned under one or more panel spans. Preferably, in embodiments with two panels, at least one centrally located leg (for example, a middle leg) supports one or both panels at or near a rotational (for example, universal, folding, or hinged) connection between the panels, so as to provide structural support to the central area (for example, middle area) of the platform when the stage is in an operational configuration.
Preferably, the stage can be adjusted in elevation to a plurality of heights, and adjusted to accommodate even and uneven surfaces. Preferably in this regard, the stage can be adjusted in elevation to accommodate a plurality of different heights of an uneven surface on which it is placed. Preferably in this regard, one or more legs are independently and/or individually extendable and retractable in length within a desired length range, and can be locked at desired length increments, to accommodate different desired platform heights and the stable placement of the stage on uneven terrain (or other uneven surfaces, or spanning different types of surfaces). Preferably, a button (or other activation mechanism) on (or in association with) the leg, when pressed (or otherwise activated), unlocks the leg to enable length adjustment and when subsequently held in the pressed (or otherwise activated) position (or the position is otherwise maintained) enables the free movement of an extendable leg portion of the leg along its longitudinal axis to a desired length setting, and when subsequently released (or otherwise deactivated), locks the extendable leg portion of the leg at the desired length setting for the leg. Preferably, each outer leg (for example, corner leg) is adjustable in length by approximately 7 inches (180 mm), and each central leg (for example, middle leg) is adjustable in length by approximately 6.5 inches (166.5 mm).
Preferably, wobble and/or other instability aspects of the stage are limited, and preferably prevented, when the stage is locked in an operational configuration. Preferably in this regard, tolerances and/or clearances of moveable and/or adjustable components of the stage, including but not limited to the leg rotation lock, leg extension lock, and leg extension features, are minimized to limit, and preferably prevent, movement of such components relative to one another, to provide enhanced stability to the platform.
Preferably, each leg has a foot, and preferably the feet of the legs facilitate traction and/or stability on a variety of types of surfaces. Preferably, this facilitation is accomplished by the legs having removably attachable and/or interchangeable foot pads of various sizes, materials, and surface textures (for example, solid, pliable, soft, shifting, etc.). Preferably, the angle of the foot pad in relation to the longitudinal axis of the leg to which it is attached is flexible and/or otherwise can be adjusted, to enable the bottom of the foot pad to automatically align with (or otherwise align or be aligned with) the surface on which the foot pad is placed. Preferably in this regard, each foot pad is attached to the leg by a rotational connection (for example, a universal, flexible, or hinged connection) that enables the bottom of the foot pad to automatically align with (or otherwise align or be aligned with) a surface that is angled relative to the distal end of the leg. Preferably, the alignment of the foot pad in this regard can be locked (or is auto-locking), to provide enhanced stability. Preferably, one or more additional pads (for example, rigid or semi-rigid pads) of one or more of a variety of materials (for example, rubber, plastic, cloth, felt, etc.) can be added to and removed from the bottom of the foot pads to facilitate desired types of traction and/or surface engagement. Preferably, the legs of the stage can accommodate different types of surfaces at the same time (for example, one or more legs on one type of surface and one or more other legs on another type of surface).
Preferably, the stage can also be configured into a collapsed operational configuration. Preferably, in the collapsed operational configuration, the panel (or panels) is in the platform configuration (for example, the open configuration) and the leg (or legs) is in the stowed configuration. Preferably, the collapsed operational configuration provides a platform that is low to the surface on which the stage is placed. For example, in certain embodiments, in the collapsed operational configuration the panels of the stage are in the unfolded configuration (for example, the open configuration) but the legs are in the stowed configuration. Preferably, the stage includes one or more supports that facilitate the use of the stage in the collapsed operational configuration, as a low set platform. More particularly, the supports preferably extend downwardly from the bottom side of the platform past the bottom edge of the platform, so as to support the platform, when the panels are in the open configuration but the legs are in the stowed configuration, by providing clearance between the platform and the surface on which the stage is placed. Preferably, the dimensions of each support are such that the supports do not prevent the bottom sides of the panels that form the platform from folding flush against one another when the panels are folded into the closed configuration, and staying flush against one another when the panels are in the closed configuration. Preferably, the supports are located adjacent or near the bases of the legs of the stage.
Preferably, the stage is convertible from the operational configuration to the collapsed operational configuration to the portable configuration by a single person individually without assistance, and from the portable configuration to the collapsed operational configuration to the operational configuration by a single person individually without assistance. Further preferably, the stage is convertible to and from either and/or both of the operational configuration and the portable configuration by a single person individually without assistance. For example, a single person, such as, for example, one of the persons who had occupied or will occupy the platform, can convert the stage without help from another person and without any assisting devices.
Preferably, the stage can be locked in each of the configurations for use and unlocked from each of the configurations to facilitate conversion from one configuration to another. Preferably, processes of converting the stage between the operational configuration, the collapsed operational configuration, and the portable configuration, and therebetween and thereamong, have minimal steps, each of which preferably can be accomplished by a single person individually without assistance. Preferably, the ease of conversion is enabled by, for example, lightweight, quick-release, and/or one-handed operation locking, unlocking, and/or adjustment mechanisms or the like.
Preferably, these features of the invention, individually and/or collectively in various permutations, are made possible due to preferred physical characteristics of the stage and preferred design characteristics of the stage.
As to the ability of the stage to be carried by a single person individually without assistance and to support a plurality of persons occupying the platform simultaneously, the stage has preferred physical characteristics, such as, for example, preferred weight characteristics and preferred size characteristics. Preferably, the weight and size of each component of the stage are minimized to the extent possible while retaining sufficient functionality for the stage's intended uses. It should be understood that while the present disclosure primarily discusses a multi-purpose stage, other embodiments, such as stages that are designed for specific purposes, are contemplated by the invention, and in such embodiments, the stage need accommodate and support only the size and weight requirements needed for its specific purpose, and therefore the sizes and weights of the stage components can be set at the lowest possible specifications that still facilitate the use of the stage for such specific purpose.
As to preferred weight characteristics, preferably, the stage weighs no more than a weight that can be lifted with one arm by a person of average strength. More preferably, the stage weighs no more than a weight that can be lifted with one arm by a person of below average strength. Preferably, the stage weighs no more than a weight that can be supported by hanging from one shoulder by a person of average strength. More preferably, the stage weighs no more than a weight that can be supported by hanging from one shoulder by a person of below average strength. Preferably, the stage weighs no more than 40 pounds. More preferably, the stage weighs no more than 20 pounds.
Preferably, the preferred weights of the stage are made possible due to the use and configuration of preferred materials. Such materials can include, but are not limited to, lightweight metal, lightweight plastic, carbon fiber and composite materials. For example, the stage can be comprised of lightweight materials for each component. In this regard, in certain embodiments, the panels are preferably formed from aluminum, the legs are preferably formed from steel and/or plastic, and the top surface of the panels is preferably formed from rubber.
Further preferably, the size of each component and/or the amount of material used in each component is minimized to the extent possible to retain sufficient functionality while minimizing weight. For example, the panels can in some embodiments have a rib structure, lattice structure, or other structure that provides sufficient support while minimizing material. Further, for example, the panels of the stage can be structurally reinforced for stability by corner braces (and/or corner panels) utilizing minimal material, and one or more outer legs can be attached to the underside of the panels by attachment to the corner braces and/or corner panels to minimize the number of components of the stage and leverage the stability of the corner braces and/or corner panels.
As to additional preferred size characteristics, preferably, in the portable configuration, the stage can be comfortably carried at the side of a person of average height under the person's arm. For example, in the portable configuration, preferably the stage can be comfortably carried in the common manner of a shoulder bag. Preferably, the vertical dimension of the stage in such an orientation and placement is no greater than 3 feet. More preferably, the vertical dimension of the stage in such an orientation and placement is no greater than 2 feet.
Further as to the ability of the stage to be carried by a single person individually without assistance and also support a plurality of persons occupying the platform simultaneously, the stage has preferred design characteristics. Preferably in this regard, when the stage is in the operational configurations, the platform is of suitable surface area, and the supporting components are strong enough, to permit desired activities by one or more persons, with and without objects that may normally accompany or be used in such activities. Such activities can be, for example, practicing yoga, exercising, public speaking, magical or theatrical performances, and musical performances. For example, in order to sufficiently support a plurality of persons occupying the platform simultaneously, the platform has a surface area of at least 16 square feet. Further preferably, in the operational configuration, the stage supports a weight load on the platform of at least 500 pounds (and preferably more) and/or at least 31.25 pounds per square foot (and preferably more).
Preferably, in order to facilitate the ability of the stage to be carried as described herein, the platform can be folded or otherwise made compact. For example, in certain embodiments, the stage is comprised of one or more panels that form the platform, and preferably two panels that when fully opened (for example, placed in the open configuration) form the platform, and when fully closed against one another (for example, in the closed configuration) have a combined form that permits comfortable carrying by a single person. For example, when the stage is in the portable configuration, the stage preferably is approximately 2 feet (0.6 meters) wide, approximately 4 feet (1.2 meters) long, and approximately 4.72 inches (0.12 meters) deep (or thick).
Preferably in this regard, the panel (or panels) that provides the platform includes first and second sections (preferably, two halves, or, first and second panels) that are foldably connected (for example, by one or more rotational connections or hinges) to one another at a central area (preferably a midline) of the sections such that they are foldable toward one another and unfoldable away from one another. Preferably, in the platform configuration (for example, the open configuration), the sections are fully unfolded, and in the closed configuration the sections are fully folded. Preferably, when the stage is in the operational configuration, the leg (or legs) supports the platform. Preferably, the stage includes includes five legs, and when the stage is in the operational configuration, one of the legs (for example, a central leg or middle leg) supports a central area (for example, a middle area) of the platform and each of the remaining legs supports a respective corner area (for example, an edge area) of the platform.
Preferably, in order to further facilitate the ability of the stage to be carried as described herein, the leg (or legs) can be stowed (or otherwise stored against or with other components of the stage). More particularly, when the stage is in the portable configuration, the leg (or legs) preferably are fully enclosed by the sections (for example, the panels).
Further preferably, in order to facilitate the platform dimensions and portable configuration dimensions described herein, the platform is rectangular. More preferably in this regard, the platform is square.
For example, the platform preferably is comprised of two sections that each provide half of the platform. Each section is preferably a panel that is approximately 2 feet (0.6 meters) wide and approximately 4 feet (1.2 meters) long, such that when the panels are in an unfolded or open configuration, they form a platform that is approximately 4 feet (1.2 meters) wide and approximately 4 feet (1.2 meters) long, and such that when they are in a folded or closed configuration, they form a box that has a vertical dimension of approximately 2 feet (0.6 meters), a horizontal dimension of approximately 4 feet (1.2 meters), and a width that is double the thickness of each section.
Preferably, in order to further facilitate the ability of the stage to be carried as described herein, the stage preferably includes a carrying feature such as, for example, a handle or strap, and when the stage is in the portable configuration, the stage can be carried by a single person individually without assistance by use of the carrying feature.
For example, in certain embodiments, the stage, in its portable configuration, is preferably dimensioned and featured (for example, with a handle or graspable area or feature) so that it can be carried by a person holding a top part (preferably, a top edge) of the folded (or compacted) stage using the person's hand (preferably, the stage is configured with a handle or other graspable area or feature to facilitate holding), with the person's arm extended down by the person's side and the stage hanging from the person's hand and substantially parallel to the person's side. This is preferably accomplished by the panels of the stage being approximately 2 feet (0.6 meters) (preferably 3 feet (0.91 meters) or less) in the dimension extending down by the person's side when held in such a position. Such preferred dimension results, for embodiments having a square platform, in a platform of approximately 4 feet (1.2 meters) wide and approximately 4 feet (1.2 meters) long when the stage is in its unfolded configuration (for example, its operational configuration).
Additionally or alternatively, for example, in certain embodiments, the stage, in its portable configuration, is dimensioned and/or outfitted so that it can be carried by a person using the person's shoulder as the primary point of support. For example, this can be achieved by the stage having a carrying strap (or other flexible or semi-flexible feature) and by a person having the carrying strap across the person's shoulder and allowing the stage to hang substantially parallel to the person's side. More preferably in this regard, the panel (or panels) that provides the platform has first and second sides, and the carrying strap is a shoulder strap that extends from the first side to the second side, such that a single person can carry the stage with the shoulder strap over the person's shoulder and the stage hanging from the strap by the person's side under the person's arm. This is preferably accomplished by the panels of the stage being approximately 2 feet (0.6 meters) (preferably 3 feet (0.91 meters) or less) in the dimension extending down by the person's side when held in such a carried position. Such preferred dimensions result, for a stage having a square platform, in a platform approximately 4 feet (1.2 meters) wide and approximately 4 feet (1.2 meters) long when the stage is in the operational configuration.
With regard to the configurations of the stage, certain embodiments of the stage preferably include first and second panels that are movable relative to one another into an open configuration and a closed configuration. For example, the panels are preferably unfoldable away from one another into the open configuration and foldable toward one another into the closed configuration.
Preferably, one or more unfolding locks are operable to lock the panels to one another in the open configuration. Examples of suitable unfolding locks include but are not limited to locks with a component on the bottom side of one panel and a component on the bottom side of the other panel, that cooperate or otherwise engage one another to lock the panels to one another in the open configuration. In some embodiments, the unfolding lock is a sliding lock bar that slides from the bottom side of one panel to straddle the midline between the panels to block the panels from closing toward one another. In other embodiments, the unfolding lock is a slider lock at or near the rotational connection (for example, hinge) between the panels that uses a bar to span the midline between the panels to block the panels from closing toward one another. Other examples of suitable unfolding locks include but are not limited to locks with a component that moves within the frames of the panels. In some embodiments, the unfolding lock is a locking slide beam that moves, within the frames of the panels at the sides of the panels, from being fully within one frame (for example, in the unlocked position) to being partially within one frame and partially within the other frame and straddling the midline between the sides of the panels (for example, in the locked position), to block the panels from closing toward one another.
Preferably, one or more folding locks are operable to lock the panels to one another in the closed configuration. Examples of suitable folding locks include but are not limited to locks with a component on the bottom side of one panel and a component on the bottom side of the other panel, that cooperate or otherwise engage one another to lock the panels to one another in the closed configuration. Preferably, the folding lock uses a magnetic force for such cooperation or engagement.
Further, the stage preferably includes first and second legs that are movable relative to the panels into a support configuration and a stowed configuration. Further preferably, each of the panels has a recess. Further preferably, each of the panels has a stowing location for the leg or legs. More preferably, each recess is such a stowing location.
Further preferably, in the open configuration, the panels define the platform and in the closed configuration the recesses define an enclosure. Further preferably, in the support configuration, when the stage is on a surface, the legs extend from the recesses to the surface.
For example, one or more legs can be folded (or otherwise positioned) substantially against the bottom side of the panels, and locked in such a stowed configuration. Preferably, when the panels are in the closed configuration, the legs stowed against one panel do not interfere with the legs stowed against the other panel, so that when the panels are in the closed configuration, the stowed legs do not prevent the panels from being folded flush against one another. Such non-interference can be effected, for example, by each leg size (for example, thickness) being thinner than the depth of the panel against which it is folded, by the legs being positioned on the panels to avoid one another when the legs are in the stowed configuration and the panels are in the closed configuration, and/or by some other sizing, positioning, or physical avoidance solution.
In this regard, in certain preferred embodiments, in the stowed configuration, the legs fit fully within the recesses on the bottom sides of the panels. This, for example, enables non-interference of the stowed legs with one another when the panels are in the closed configuration. In other preferred embodiments, in the stowed configuration, the legs fit within the recesses on the bottom sides of the panels except for minority portions of each leg that remain outside the recesses. Preferably, in such embodiments, when the panels are in the closed configuration and the legs are in the stowed configuration, the legs fit fully within the enclosure but neither leg fits fully within either recess. This, for example, in combination with an asymmetrical positioning of the legs as described herein, enables the use of larger (for example, thicker) legs without interference of the legs with one another when the panels are in the closed configuration.
Accordingly, preferably, the operational configuration of the stage discussed herein is established in these and other embodiments by the placement of the panels in the open configuration and the legs in the support configuration, and the portable configuration of the stage discussed herein is established in these and other embodiments by the placement of the panels in the closed configuration and the legs in the stowed configuration.
As to the collapsed operational configuration of the stage discussed herein, preferably, the collapsed operational configuration is established in these and other embodiments by the placement of the panels in the open configuration and the legs in the stowed configuration.
More particularly, preferably, each leg minority portion (for example, that remains outside the recesses when the legs are in the stowed configuration) includes at least a portion of a support, and accordingly, when the panels are in the open configuration and the legs are in the stowed configuration, the supports elevate the platform over the surface when the stage is on the surface.
Further preferably in this regard, each leg includes a proximal end and a base thereat having a point of rotation of the leg, the first leg support is attached to the first leg base, and the second leg support is attached to the second leg base. This, for example, enables the platform to be supported (and elevated) by the supports at the leg bases when the panels are in the open configuration and the legs are in the stowed configuration.
Further preferably in this regard, each leg includes a distal end and a foot thereat, the first leg support is spaced from the first leg foot, the second leg support is spaced from the second leg foot, and when the legs are in the stowed configuration, the first leg foot fits fully within the first panel recess and the second leg foot fits fully within the second panel recess. In such embodiments, for example, the platform can be supported (and elevated) by the supports, which may be at locations on the legs other than at the leg bases, when the panels are in the open configuration and the legs are in the stowed configuration.
Further in this regard, for example, it should be understood that in embodiments in which the supports do not fit fully within the recesses when the legs are in the stowed configuration, the supports are preferably the minority portions of the legs that remain outside the recesses but still fit within the enclosure formed when the panels are in the closed configuration. Accordingly, this, for example, in combination with an asymmetrical positioning of the legs as described herein, enables the inclusion of the supports without interference of the legs with one another when the panels are in the closed configuration.
With regard to the asymmetrical positioning discussed herein, in preferred embodiments, each panel defines a respective half of the platform when the panels are in the open configuration, and each recess defines a respective half of the enclosure when the panels are in the closed configuration.
Further preferably in this regard, the first leg supports an area of the first panel platform half, the second leg supports an area of the second panel platform half, and the areas are substantially similar in size. Further preferably, when the panels are in the open configuration, with respect to a middle of the platform, the areas are symmetrically (for example, not offset with respect to one another) opposite one another on the panels but the legs are positioned asymmetrically (for example, offset with respect to one another) opposite one another in the recesses, and when the panels are in the closed configuration, with respect to a middle of the enclosure, the areas are symmetrically (for example, not offset with respect to one another) opposite one another on the panels but the legs are positioned asymmetrically (for example, offset with respect to one another) opposite one another in the recesses. In such embodiments, for example, there is non-interference of the legs with one another when the legs are in the stowed configuration and the panels are in the closed configuration, even through the legs exceed the size of the recesses, such as, for example, when the legs include the supports.
Preferably, at least one central leg (for example, middle leg) supports one or both panels on or near the rotatable connection between the panels, so as to provide structural support to the platform when the stage is in the operational configuration. Preferably, the central leg in its unfolded configuration (for example, support configuration) spans the seam (for example, midline) between the panels to support a force against the top surface of the panels (for example, caused by gravity when a person or object is on the platform) bearing down at the seam (for example, midline) between the adjacent panels. Preferably, the central leg can be secured in its unfolded configuration (for example, support configuration). More preferably, a quick release clamp releasably secures the central leg in its unfolded configuration (for example, support configuration).
In this regard, in preferred embodiments, the stage includes a third leg (for example, central or middle leg) that is movable relative to the panels into a third leg (for example, central or middle leg) support configuration and a third leg (for example, central or middle leg) stowed configuration. Further preferably, when the panels are in the open configuration and the third leg (for example, central or middle leg) is in the third leg (for example, central or middle leg) support configuration, the third leg (for example, central or middle leg) supports both panels, and in the third leg (for example, central or middle leg) stowed configuration, the third leg (for example, central or middle leg) fits fully within one of the recesses. In certain embodiments, in the third leg (for example, central or middle leg) stowed configuration, the third leg (for example, central or middle leg) exceeds the size of the recess but fits within the enclosure formed when the panels are in the closed configuration. The third leg (for example, central or middle leg) enables additional central support (e.g., middle support) of the platform in embodiments where such support is desired.
Preferably, each panel includes an edge, and the panels are rotationally connected to one another at the edges such that the panels can be unfolded away from one another into the open configuration and folded toward one another into the closed configuration. Rotational connections contemplated can be or include, but are not limited to, folding, hinged, bendable, flexible, angled and/or universal joint connections.
Further preferably, each panel includes a top surface and a bottom side, each top surface provides a respective portion of the platform when the panels are in the open configuration, and each bottom side has a respective one of the edges, at which the panels are connected to one another, and a respective one of the recesses. The location of the rotational connection being at the edges of the bottom sides of the panels, for example, provides support for the platform at the midline (of the platform) defined by the adjacent edges of the panels, because as weight presses down at the midline, the rotational connection, due to its location at the adjacent bottom edges of the panels, is urged to unfold the panels, and this urging causes the panels to press against one another at their adjacent top edges. Given the strength of the opposing forces at the top edges and the strength of the rotational connection, the integrity of the platform at the midline is enhanced.
In this regard, in preferred embodiments, one or more hinges (or other similarly functional connections) connect the two panels that form the platform, to facilitate the folding and unfolding, and preferably are positioned to have a center of rotation at or adjacent the bottom sides of the panels at their point of mutual engagement in the unfolded configuration (for example, the open configuration), such that when the panels are unfolded and a force against the top surface of the panels (for example, caused by gravity when a person or object is on the platform) bears down at the seam (for example, midline) between the adjacent panels, the adjacent sides of the panels press against one another at the top edges of the seam (for example, midline) and the hinges at the bottom edges of the seam (for example, midline) bear the corresponding separating force created thereby at the bottom edges of the panels at their meeting point.
Further with regard to the integrity of the connection between the panels, preferably, the seam (for example, midline) at which the panels of the stage meet when in the unfolded configuration (for example, the open configuration) is reinforced against downward forces, such that vertical translation of the opposing sides of the panels at the seam (for example, midline), relative to one another, is prevented. Preferably, this is enabled by at least one channel formed on one of the sides and at least one protrusion formed on the other side, that fits into at least one of the channels, such that the protrusion crosses over the seam (for example, midline) at which the panels of the stage meet when in the unfolded configuration (for example, the open configuration).
In this regard, in preferred embodiments, the seam (for example, midline) at which the panels of the stage meet when in the unfolded configuration (for example, the open configuration) is reinforced by, as to the sides of the panels that meet one another at the seam (for example, midline), one side having a horizontal channel and the opposing side having a horizontal protrusion that fits into the channel when the sides meet and thereby crosses over the seam (for example, midline), such that a vertical translation of one side in relation to the other is prevented.
Preferably, the stage has a modular design, such that a plurality of the stages can be positioned adjacent one another and preferably locked to one another (for example, by removably attachable clamps, or clamp and pin features, slot and tab features, and/or other corresponding connection features at the meeting sides of the platforms) to form a platform larger than the platform provided by only one of the stages. Preferably, stages of different platform dimensions can be positioned adjacent one another. Preferably, when multiple stages are positioned adjacent one another, any angled legs of any of the plurality of stages do not interfere with any angled legs of any other of the plurality of stages. Preferably, in this regard, the angles of angled legs of the stages, and the positioning of the bases of the legs on the bottom side of the panels of the stages, are configured to effect such non-interference.
In this regard, in preferred embodiments, to provide for larger platform sizes, multiple stages of the invention can be grouped together to form a combined larger platform.
Preferably, to form a combined platform larger than a single stage's platform, multiple stages can be positioned adjacent one another, in operational configurations (or collapsed operational configurations), substantially side to side. In preferred embodiments, in the operational configuration, the legs avoid interference with nearby legs from other stages. This is preferably accomplished by one or more legs being positioned, at their points of connection to the bottom side of the panels (for example, at their bases), in an asymmetrical (for example, staggered or offset) configuration relative to one another, such that when the stage is in an operational configuration, and multiple stages are positioned adjacent one another substantially side to side, legs from one stage do not interfere with nearby legs from another stage, regardless of the length to which the legs are extended beyond the platform side boundaries of the one stage and underneath the platform of the adjacent other stage. This is further preferably accomplished by one or more legs being angled such that when the stage is in an operational configuration, and multiple stages are positioned adjacent one another substantially side to side, legs from one stage do not interfere with adjacent legs from another stage, regardless of the length to which the legs are extended beyond the platform side boundaries of the one stage and underneath the platform of the adjacent other stage. Further preferably, when multiple stages are positioned adjacent to one another to form a combined platform larger than a single stage's platform, connection features on one side corresponding to connection features on an adjacent side can be secured to one another to cause the sides to remain flush against one another during use of the stages. Additionally or alternatively, one or more removably attachable clamps can be used to hold the edges against one another during use of the stages.
While any combination of any number of stages is contemplated by the invention, an example of a group of two stages will be described below and an example of a group of four stages will be described below.
Further with regard to a group of at least two stages, a preferred embodiment includes a first stage having a platform defining a plane, the first stage platform having an edge defining an intersection of the first stage plane and a boundary perpendicular to the first stage plane, the first stage having a leg extending from the first stage platform such that a distal portion of the first stage leg crosses the first stage boundary. For example, the boundary being described is the planar area perpendicular to the plane of the platform and to the edge of the platform. Stated alternatively, the boundary being described is an imaginary vertical plane at the edge of the first stage platform, that extends above and below the first stage plane.
This example preferred embodiment further includes a second stage having a platform defining a plane, the second stage platform having an edge defining an intersection of the second stage plane and a boundary perpendicular to the second stage plane, the second stage having a leg extending from the second stage platform such that a distal portion of the second stage leg crosses the second stage boundary. For example, the boundary being described is the planar area perpendicular to the plane of the platform and to the edge of the platform. Stated alternatively, the second stage boundary being described is an imaginary vertical plane at the edge of the second stage platform, that extends both above and below the second stage plane.
In this example preferred embodiment, when the edges are aligned, the first stage leg crosses the second stage boundary without interfering with the second stage leg, the second stage leg crosses the first stage boundary without interfering with the first stage leg, and the two platforms define the combined platform, or performance area. Stated alternatively, for example, when the edges of the stages are adjacent one another and the legs of the stages are extended, the first stage legs extend from the bottom sides of the first stage platform past the first stage boundary and cross over the second stage boundary and underneath the second stage platform, and the second stage legs extend from the bottom sides of the second stage platform past the second stage boundary and cross over the first stage boundary and underneath the first stage platform, but the first stage legs do not interfere with the second stage legs, and the second stage legs do not interfere with the first stage legs.
Preferably, this is enabled by an asymmetrical positioning of the legs relative to one another with reference to the platform areas they support. Preferably in this regard, the first stage leg supports an area of the first stage platform, the second stage leg supports an area of the second stage platform, and the areas are substantially similar in size. Further preferably, the alignment of the edges defines a line between the platforms, and with respect to the line, the areas are symmetrically opposite one another on the platforms and the legs are positioned asymmetrically opposite one another under the platforms, and the asymmetrical positioning of the legs causes the non-interference of the legs.
Stated alternatively, although each leg of the first stage on one side of the line between the platforms supports a certain area of the first stage platform, and each leg of the second stage on the other side of the line between the platforms supports a certain similarly sized area on the second stage platform that is symmetrically opposite the first stage platform area, the first stage leg location under the first stage platform is asymmetrical with respect to the second stage leg location under the second stage platform. This, for example, enables the non-interference of the legs when the stages are in their operational configurations and adjacent one another.
Further with regard to a group of at least four stages, a preferred embodiment includes the stages of the two stage group, but also includes a third stage having a platform defining a plane, the third stage platform having a first edge defining an intersection of the third stage plane and a first boundary perpendicular to the third stage plane, the third stage platform having a second edge defining an intersection of the third stage plane and a second boundary perpendicular to the third stage plane and to the first third stage boundary, the third stage having a leg extending from the third stage platform such that a distal portion of the third stage leg crosses the first third stage boundary. For example, the boundaries being described are the planar areas perpendicular to the plane of the platform and to the edges of the platform. Stated alternatively, the boundaries being described are imaginary vertical planes at adjacent edges of the third stage platform, that extend above and below the third stage plane.
This example preferred embodiment further includes a fourth stage having a platform defining a plane, the fourth stage platform having a first edge defining an intersection of the fourth stage plane and a first boundary perpendicular to the fourth stage plane, the fourth stage platform having a second edge defining an intersection of the fourth of the fourth stage plane and a second boundary perpendicular to the fourth stage plane and to the first fourth stage boundary, the fourth stage having a leg extending from the fourth stage platform such that a distal portion of the fourth stage leg crosses the first fourth stage boundary. For example, the boundaries being described are the planar areas perpendicular to the plane of the platform and to the edges of the platform. Stated alternatively, the boundaries being described are imaginary vertical planes at adjacent edges of the fourth stage platform, that extend above and below the fourth stage plane.
Further in this example preferred embodiment, the first stage platform edge is a first edge of the first stage platform, and the first stage boundary is a first boundary perpendicular to the first stage plane, and the first stage platform further has a second edge defining an intersection of the first stage plane and a second boundary perpendicular to the first stage plane and to the first first stage boundary. For example, the boundaries being described are the planar areas perpendicular to the plane of the platform and to the edges of the platform. Stated alternatively, the boundaries being described are imaginary vertical planes at adjacent edges of the first stage platform, that extend above and below the first stage plane.
Further in this example preferred embodiment, the second stage platform edge is a first edge of the second stage platform, and the second stage boundary is a first boundary perpendicular to the second stage plane, and the second stage platform further has a second edge defining an intersection of the second stage plane and a second boundary perpendicular to the second stage plane and to the first second stage boundary. For example, the boundaries being described are the planar areas perpendicular to the plane of the platform and to the edges of the platform. Stated alternatively, the boundaries being described are imaginary vertical planes at adjacent edges of the second stage platform, that extend above and below the second stage plane.
In this example preferred embodiment, when the first stage platform first edge is aligned with the second stage platform first edge, and the second stage platform second edge is aligned with the third stage platform second edge, and the third stage platform first edge is aligned with the fourth stage platform first edge, and the fourth stage platform second edge is aligned with the first stage platform second edge, none of the legs interfere with any of the other legs.
Stated alternatively, for example, when the edges of the stages are adjacent one another and the legs of the stages are extended, the legs extending from the bottom side of a platform of a stage extend past that stage's platform side boundary and cross over an adjacent stage's platform side boundary and underneath that adjacent stage's platform, but do not interfere with the legs of the adjacent stage.
Preferably, this is enabled by an asymmetrical positioning of the legs relative to one another with reference to the platform areas they support. Preferably in this regard, the first stage leg supports an area of the first stage platform, the second stage leg supports an area of the second stage platform, the third stage leg supports an area of the third stage platform, the fourth stage leg supports an area of the fourth stage platform, and the areas are substantially similar in size. Further preferably, the alignment of the edges defines a line between the first and second platforms, a line between the second and third platforms, a line between the third and fourth platforms, and a line between the fourth and first platforms. Further preferably, with respect to each line, the areas of the platforms on either side of the respective line are symmetrically opposite one another on the platforms on either side of the respective line and the legs of the stages on either side of the respective line are positioned asymmetrically opposite one another under the platforms on either side of the respective line, and the asymmetrical positioning of the legs causes the non-interference of the legs.
Stated alternatively, although each leg of a stage on one side of a line between adjacent platforms supports a certain area of the stage's platform, and each leg of the opposite stage (on the other side of the line) supports a certain similarly sized area on that opposite stage's platform that is symmetrically opposite the original stage's platform area, the original stage's leg location under the original stage's platform is asymmetrical with respect to the opposing stage's leg location under the opposing stage's platform. This, for example, enables the non-interference of the legs when the four stages are in their operational configurations and adjacent one another.
The invention includes, in addition to the apparatuses described and illustrated herein, the processes of converting a stage of the invention from an operational configuration to a portable configuration, and vice versa, and any and all subprocesses undertaken in such processes.
For example, a preferred process of converting the stage from an operational configuration to a portable configuration, in at least one embodiment, includes one or more of the following: (1) unlocking extended legs for retraction, (2) fully retracting extended legs, (3) unlocking legs for folding, (4) folding legs against the panels, (5) locking legs in folded positions, (6) unlocking panels for folding, (7) folding panels against one another, and (8) locking panels in a folded position.
For example, a preferred process of converting the stage from a portable configuration to an operational configuration, in at least one embodiment, includes one or more of the following: (1) unlocking panels for unfolding, (2) folding panels away from one another until the platform surface is formed, (3) locking panels in an unfolded position, (4) unlocking legs for unfolding, (5) unfolding legs away from the panels, (6) locking legs in unfolded positions, (7) unlocking legs for extension (if desired), (8) extending legs to desired lengths, and (9) locking legs at desired lengths.
The invention further includes, in addition to the apparatuses described and illustrated herein, the processes of converting a stage between and among an operational configuration, a collapsed operational configuration, and a portable configuration, and vice versa, and any and all subprocesses undertaken in such processes.
For example, a preferred process of converting the stage from an operational configuration to a collapsed operational configuration, in at least one embodiment, includes one or more of the following: (1) unlocking extended legs for retraction, (2) fully retracting extended legs, (3) unlocking legs for folding, (4) folding legs against the panels, and (5) locking legs in folded positions.
For example, a preferred process of converting the stage from a collapsed operational configuration to a portable configuration, in at least one embodiment, includes one or more of the following: (1) unlocking panels for folding, (2) folding panels against one another, and (3) locking panels in a folded position.
For example, a preferred process of converting the stage from a portable configuration to a collapsed operational configuration, in at least one embodiment, includes one or more of the following: (1) unlocking panels for unfolding, (2) folding panels away from one another until the platform surface is formed, and (3) locking panels in an unfolded position.
For example, a preferred process of converting the stage from a collapsed operational configuration to an operational configuration, in at least one embodiment, includes one or more of the following: (1) unlocking legs for unfolding, (2) unfolding legs away from the panels, (3) locking legs in unfolded positions, (4) unlocking legs for extension (if desired), (5) extending legs to desired lengths, and (6) locking legs at desired lengths.
The invention now will be described more fully hereinafter with reference to the accompanying drawings, which are intended to be read in conjunction with both this summary, the detailed description and any preferred and/or particular embodiments specifically discussed or otherwise disclosed. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided by way of illustration only and so that this disclosure will be thorough, complete and will fully convey the full scope of the invention to those skilled in the art.
Following are detailed descriptions of various related concepts related to, and embodiments of, methods and apparatus according to the present disclosure. It should be appreciated that various aspects of the subject matter introduced above and discussed in greater detail below may be implemented in any of numerous ways, as the subject matter is not limited to any particular manner of implementation. Examples of specific implementations and applications are provided primarily for illustrative purposes.
It should be understood that the same element numbers on the figures identify the same or similar elements (or additional or alternate versions of such elements) that are so numbered on other figures, regardless of whether the numbered elements in a given figure are specifically referred to in the description accompanying that figure.
It should further be understood that the elements described in the detailed description below have, additionally and/or alternatively to the features described in the detailed description below, the features discussed in the summary above with respect to the similarly identified and discussed elements in the summary.
It should further be understood that the preferred embodiments described herein can have, additionally or alternatively, the same or similar elements as the other preferred embodiments described herein, even elements or features of the other preferred embodiments that are not specifically discussed with respect to a given preferred embodiment. The invention contemplates that any one or more of the elements and features described herein can be included in any embodiment, in any number and in any permutations of combinations thereof, without departing from the scope of the invention.
Referring now to
Referring now to
Referring now to
It should be understood that with respect to any and all of the processes described herein for converting the stage 1000 from one configuration to another, the processes shown and described for converting from one configuration to another can be followed in reverse to convert the stage back to the original configuration.
In this embodiment, certain ribs 1117A,B of the frames 1116A,B have a structure that minimizes material while retaining support strength characteristics (for example, the ribs 1117A,B have holes that do not compromise the structural strength of the ribs 1117A,B). In this embodiment, the corner braces 1130A-D are flat and the hinges 1110 are located on the ribs 1117A,B. Also in this embodiment, the central leg hinge 1192 and the central supports 1232A,B are located on support panels 1118 so that, for example, less material is required for the frames 1116A,B.
Also in this embodiment, the panels 1100A,B can be locked in the open configuration 1500 and unlocked to allow conversion of the panels into the closed configuration 1510, by moving locking slide beams 1114, which in an unlocked position (see
The fifth preferred embodiment of the stage 1000 is substantially similar to the fourth preferred embodiment of the stage 1000 with the additional or alternate feature that the central leg 1190 is angled with respect to the platform 1040 rather than perpendicular.
While the invention has been described herein in terms of specific embodiments, it is to be understood that the invention is not limited to these described embodiments. Upon reading the teachings of this disclosure many modifications and other embodiments of the invention will come to mind of those skilled in the art to which this invention pertains, and which are intended to be and are covered by this disclosure, including the accompanying figures and appended claims. It is intended that the scope of the invention should be determined by proper interpretation and construction of this disclosure, the accompanying figures, the appended claims, other possible claims, and the legal equivalents of all of the foregoing, as understood by those of skill in the art relying upon the entirety of this application.
The present application claims priority from the following U.S. Provisional Applications, the entire disclosures of which, including but not limited to any and all cited references, are incorporated herein by reference: U.S. Provisional Application No. 62/738,186 (filed Sep. 28, 2018) and U.S. Provisional Application No. 62/859,364 (filed Jun. 10, 2019).
Number | Name | Date | Kind |
---|---|---|---|
2342591 | McLean | Feb 1944 | A |
2529940 | Higley | Nov 1950 | A |
2699977 | Breslow | Jan 1955 | A |
2707664 | Marsilius | May 1955 | A |
2845316 | Bailey | Jul 1958 | A |
2851311 | Gibbs | Sep 1958 | A |
2991139 | Fihe | Jul 1961 | A |
3208407 | Maskew | Sep 1965 | A |
4041880 | Schankman | Aug 1977 | A |
4043277 | Wallace | Aug 1977 | A |
4494465 | Fick, Jr. | Jan 1985 | A |
5029671 | Larson | Jul 1991 | A |
7370908 | Crowell | May 2008 | B2 |
9848695 | Gauss | Dec 2017 | B1 |
20080092786 | Chen | Apr 2008 | A1 |
20090139151 | Quam | Jun 2009 | A1 |
20190053885 | Flynn | Feb 2019 | A1 |
Number | Date | Country |
---|---|---|
10149432 | Apr 2003 | DE |
202015004007 | Aug 2015 | DE |
372284 | Jun 1990 | EP |
2227716 | Nov 1974 | FR |
2019073255 | Apr 2019 | WO |
Entry |
---|
KR2016130644; abstract and figure; Han (Year: 2016). |
Number | Date | Country | |
---|---|---|---|
20200154877 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
62859364 | Jun 2019 | US | |
62738186 | Sep 2018 | US |