This invention relates to improved methods and apparatus concerning the training of military personnel.
The military utilizes pyrotechnic devices in its training to simulate target hits. Blank ammunition is used during this training. Known pyrotechnic devices for simulating military target hits are provided with a magazine for receiving a plurality of pyrotechnic devices. Electrical ignition devices are usually achieved by a contact ohmically contacting each device on a selective basis. The drawbacks of these devices are the time consuming process of properly accommodating the correct position of the pyrotechnic, and possibly of misfiring or other impediments to the proper operation of the device due to the environmental conditions present during a given training exercise.
The present invention in one or more embodiments provides a device for simulating weapons firing/hit indications for military training which uses pyrotechnic devices to simulate target hits and hostile fire. The device in accordance with an embodiment of the present invention can be used with blank ammunition. The combination of the device and the blank ammunition can offer both audio and visual indication of a hit in battlefield conditions and also simulate hostile fire.
The present invention in one or more embodiments can be used for the training of military personnel. The present invention in one or more embodiments can provide visible and audible feedback to trainees. It can simulate hostile fire in which case the trainee must recognize the hostile fire and must be able to return fire. If a target is hit the present invention in one or more embodiments will fire the appropriate pyrotechnics to simulate a hit. If a target is hit a multiple of times the present invention in one or more embodiments will fire the appropriate pyrotechnics to simulate a kill.
A front control panel 50 is located at the front of the electronic housing 70. A latch assembly 60 is located on the right side of the electronic housing 70. The magazine 20 has a plurality of bores or openings 23, which includes bores 23a, 23b, and 23c. Each of bores 23 may have located therein a pyrotechnic cartridge, such as the pyrotechnic cartridge 80 located in the bore 23c.
The magazine 20 and the electronic housing 70 can be considered the main components of the apparatus 10. The magazine 20 is used to hold the pyrotechnic ammunition or “rounds” of ammunition, such as the M30 or M31 rounds. The electronic housing 70 as shown in
The magazine 20 may be comprised of the thirty bored holes 23 to accommodate the rounds. Four detent standoff pins 24a, 24b, 26a, and 26b shown in
The top plate 30 may be comprised of thirty bored through holes, such as through hole 31a shown in part in
Thirty peripheral conductive discs, such as 304a, which have a fifteen-degree angle on the outside diameter together act as a lock when inserted into the top plate 30. The peripheral discs make contact with the outside pin 406 of a pyrotechnic round 80 of
The electronic housing 70 may be a housing made of an aluminum box milled from a solid with a ½″ wall around five sides inverted so the closed end is up and the open end is down. The electronic housing 70 may have thirty through holes 71, such as 71a, in the top (closed end) 70a, shown by
The latch assemblies 60 and 61 may be rotary latches which are connected to sides 70b and 70c, respectively, of the electronic housing 70. The latch assemblies 60 and 61 may be used to pull down and secure the magazine 20 to the top plate 30.
Various tapped holes may be provided in the electronic housing 70, such as 75 to bolt the top plate 30 to the housing 70, the base plate 40 to the electronic housing 70, the three connectors 51, 55, and 56, to the housing 70, the latches 60 and 62 to the housing 70, the handles 21 and 22 to the magazine 20, and some tapped holes (not shown) on the inside of the electronic housing 70 can be provided and used to secure the interface printed circuit board (PCB) identify by number (not shown) in the electronic housing 70 and the main printed circuit board (not shown) to the electronic housing 70.
The stainless steel transfer posts, such as 308a or contacts may be made of stainless steel. The base plate 40 shown in
The present invention, in one or more embodiments, satisfies a need for a pyrotechnic ignition system capable of firing the existing low cost M30 and M31 Type Classified Rounds, such as 80 of
The device of an embodiment of the present invention typically has a magazine, such as magazine 20 which is bored in a manner to accommodate the dimensions of the Type Classified Rounds. The bottom, of each of the thirty receptacles in the magazine 20, such as receptacles 23 in magazine 20 shown in
An embodiment in accordance with the present invention also assists to secure the Type Classified Round, such as 80 or 81, to the magazine 20 when loading. The magazine 20 may include two U-shaped alignment slots, such as alignment slots 27a and 27b of
Three contact points, 28 can be also located on the magazine 20 to complete the circuitry with their respective contact pads 90 on the top plate 30 required for arming the apparatus 10. In addition, four detent standoff pins 24a, 24b, 26a, and 26b are also located on the horizontal axis of the magazine 20 underside 20b and may protrude approximately 1/16th of an inch. The object of this design is to provide a cushion to guard against any potential damage to the apparatus 10 as a result of inadvertently slamming the magazine 20 on to the top plate 30. The detent standoff pins 24a, 24b, 26a, and 26b, will also avoid any premature arming of the apparatus 10 since the three contact points 28 on the magazine 20 will be precluded from contacting their respective contact pads 90 on the top plate 30.
The magazine 20 and the electronic housing 70 or “Box” are held in tandem by a heavy-duty adjustable locking hinge or latching assemblies 60 and 61. Proper alignment of the magazine 20 to the top plate 30 is achieved by way of four guide bolts 76 of
The present invention in one or more embodiments provides a “button” contact assembly 300a of
The stainless steel transfer posts 308a are flanged and extend from the top plate 30 into the Box 70. Therefore, the second part of the button contact assembly 300a focuses on the Box or electronic housing 70 area. A neoprene washer, such as 310a is placed around the transfer post 308a adjacent to the flanged portion of the transfer post 308a and adjacent to the bottom surface 72a of the counterbore of the box 70. A nylon sleeve, such as 312a shown in
After the latches, such as latches 60 and 61 are engaged, center-to-center alignment of the Type classified round, such as 80 or 81, and button contact 300a are automatically secured by of the aforementioned guide bolts 90. When properly engaged, the magazine 20 is fully locked onto the Box 70. This procedure allows the three safety interlocks 28 located on the underside of the magazine 20 to complete the circuitry in the housing 70 wired for arming, and also created the necessary contact to efficiently contact the electrodes 404 and 406 of each Type classified round, such as round 80, or electrodes 407 and 409 of each Type Classified round, such as round 81, with the corresponding contact pads 302a and 304a respectively.
Printed circuit board assemblies (not shown) and interface printed circuit board (not shown) are hermetically sealed within the Box or electronic housing 70. The design of the circuit board allows the Type classified round 70 to be fired in a given sequence, or in sub-group sequences commonly known as partitioning. An external 12 volts DC power source typically must be provided by the user and power to the apparatus 10 is controlled by an on/off toggle switch 52. The apparatus 10 can also accommodate a 24 volts DC power source if required by the end user.
Upon initially engaging the apparatus 10 and applying power via the toggle switch 52 a predetermined time interval (such as sixty seconds) typically accrues before the apparatus 10 is armed, provided that the magazine 20 is properly latched, prior to type classified round ignition for safety reasons. During the sixty seconds the electronics in the electronic housing 70 perform a self-diagnostics routine and if any shorted output transistors on the control PCB (not shown) within the electronic enclosure 70 are encountered the apparatus 10 will not arm. During this time the unit (apparatus 10) also scans the magazine 20 to determine where there are rounds and if any were previously fired. The locations are placed in memory located on the control PCB in the electronics housing 70 for later use. The purpose for this function is so that when a fire command is given there will always be a detonation until the entire magazine 20 is spent. The apparatus 10 will not attempt to fire a spent round or empty location.
In the preferred embodiments, the apparatus 10 contains both a visible light 53 and audio warning, which is a piezo beeper (not shown) on the control PCB, to indicate arming of the apparatus 10 and to indicate the program mode and any error that is encountered after the self diagnostics is performed. The circuitry may provide for self-testing and will enunciate fault codes to the operator in the event a fire invalidate situation is encountered.
The “P1 Input” connector 55 connects to circuitry to accommodate the external battery power and ignition sequence signals supplied during a given training exercise. The “P2 Output connector” or “Tandem” connector 51 allows the apparatus 10 to be “daisy-chained” to operate other units, each like apparatus 10, in tandem for greater training flexibly and round volume capability. The “P3 Mode” or “program select” connector 56 connects to the required circuitry to allow the operator to pre-program a plurality of firing sequences, such as up to fifteen different firing sequences. In addition, the circuitry in the housing 70 allows the apparatus 10 to be programmed to perform special applications such as anti-personal and anti-tank training, mine dispensing simulation, car or truck simulation, Claymore mine simulation and Military Operations on Urban Terrain or MOUT training. Another unique feature of the circuitry in the housing 70 of apparatus 10, is the ability to fire multiple rounds 80 or 81 with a single fire command giving an even greater audible and visual effect. Any number or all rounds can be fired from a single fire command.
The electrical current required to fire a round, such as round 80 or 81, may be six amps and the duration may be fifty milliseconds. The standby current for the apparatus 10 may be 100 milliamps. That is the current that flows through the apparatus 10 at a no fire condition. The apparatus 10 may have a 12 or 24 Volts DC power source.
An electrical signal generated by a remote radio frequency controller may control the operation of the apparatus 10. A radio frequency controller may receive the signal to fire and may pass it along to the apparatus 10 via the input connector 55. An existing known radio frequency controller used as military equipment may be used for this purpose. An operator in a control tower may send a fire signal to the apparatus 10 located adjacent to a fake tank for example via radio control and may tell the fake tank to hostile fire at the trainee. The simulated hostile fire is achieved through the use of apparatus 10 which is positioned on or near the ground next to the fake tank. The trainee in turn must be able to recognize hostile fire and take action and fire at the fake tank target with either life ammunition or simulated ammunition. If the fake tank target is hit by the trainee the apparatus 10 next to the fake tank target is given another fire command to fire and simulate that the target was hit. Multiple hits to the target by the trainee would be simulated by another fire command given to the apparatus 10 which in turn signifies to the trainee that the fake tank target was killed and is inoperable and no longer a hostile threat. The capacity of the apparatus 10 may be thirty rounds of M30 and/or M31 Type classified rounds.
In one embodiment of the present invention if a fire command is given the apparatus 10 will fire rounds one through thirty in that order. If however a hit/kill command is given (at any time before the twentieth round is fired) the apparatus 10 will automatically partition itself into two zones first through twentieth and twenty-first through thirtieth and fire the first of the twenty-first through thirtieth zone. When the apparatus 10 is partitioned in this manner any time a fire command is given the next available round in the first through twentieth zone will fire and any time a hit/kill command is given the apparatus 10 will fire the next available round in the twenty-first through thirtieth zone. The purpose for this is so a fake tank target can hostile fire and also smoke to show a kill when the target is hit by the trainee.
Sometimes at great distances (probably over 5 Km) a single round may not produce a sufficient signature to be seen so the present invention in one or more embodiments provides the capability to fire two or more rounds at once to give a greater effect.
The LEDs 53 and 54 may blink when the apparatus is armed or arming respectively. The term “arm” means that the apparatus 10 has gone through self-diagnostics, through the round scan, and timed out for sixty seconds, so it is ready to fire. The term “armed” means “Stay away”!. The operator may have control of the device via an ON/OFF Switch 52. There may be fault codes which may be visually indicated by a blinking LED and an audible alarm to annunciate the fault code via series of beeps which are produced by the piezo beeper on the control PCB inside the box 70. Smoke from the apparatus 10 after firing a round may be see for 3,000 meters with the unaided eye. The Audio-bang or sound from firing the apparatus 10 may be 135 dB average at 2 meters away from the apparatus 10.
The apparatus 10 can be programmed to perform special applications such as; anti-Personnel and anti-tank mine dispensing simulation, car or truck bomb simulations, Claymore Simulation and, Urban MOUT Military Operations on Urban Terrain. Two or more devices, like apparatus 10, may be operated in tandem. The apparatus 10 may be compatible with current ATKS/GUFS Armored Tank Kill Simulator/Gun Fire Simulator future NGATS New Generation Armored Tank Simulator and I-NGATS Improved-New Generation Armored Tank Simulator.
Inside each round, such as round 80 in
When multiple rounds are fired by the apparatus 10, apparatus 10 typically fires one at a time but in a very rapid fire sequence. This is done because the battery used with apparatus 10 can only produce so much energy at once. The time between firing may be typically approximately thirty milliseconds so that to human eyes and ears it looks and sounds like one bigger explosion. Since the apparatus 10 typically fires with such a short interval in between shots it is able to create enough electrical energy to ignite the match but not enough to burn out the bridgewire. The bridgewire typically remains intact. The bridgewire typically needs a longer sustained amount of energy to burn out, such as a slow blow fuse. If inadvertently some previously fired rounds with the bridgewire intact are left in their chambers and the apparatus 10 is re-initialized (power turned off and back on again to force a chamber scan) the apparatus 10 would think that there were unfired rounds in those positions and attempt to fire the already fired rounds when given the fire command and obviously nothing would happen, i.e. a misfire. A misfire of any type is not acceptable. A solution to this problem is as follows. There is approximately a two second interval after a round or a number of rounds are fired that the apparatus 10 cannot fire again. This is part of the design criteria and is used to prevent false firing. So what is done in one embodiment of the present invention is to use that two second interval or timeout to go back to whatever chambers were previously fired and apply enough electrical energy to burn out the bridgewire. Since the particular rounds were already fired there is no explosion just the bridgewire is burned out which produces no visual or audible feedback. This may be called the “afterburn circuit”.
The following document describes the relevant circuitry of the apparatus 10 inside the electronic housing 70 of the Pacific Coast System LLC MPT-30 and MPT-60 Multi-purpose Pyrotechnic Trainer circuitry in regard to characteristics which are unique to the devices. In at least some respects the function of the circuitry within the electronic housing 70 is not unique since it is compatible with (ATKS/GUFS Army Tank Kill Simulator/Gun Fire Simulator). These are older systems that the apparatus 10 is designed to replace with many enhancements of course one of them being the ability to fire multiple rounds per que (fire command). The apparatus 10 may have automatic chamber scan. This means that upon power up, the apparatus 10 will scan all chambers to determine whether a round is present by testing a bridgewire which is not shown. A bridgewire is typically inside of each pyrotechnic round. The process of sensing the presence of the bridgewire is already being done by other manufacturers' units known in the art.
The apparatus 10 may have “multiple rounds per que (fire command)”. This feature is of utmost importance since the apparatus 10 is the only type of device with this capability. Many users of existing pyrotechnic launchers have expressed disappointment with the M30 or M31 Flash/Bang round due to its' low db and smoke signature. Firing multiple rounds per que (fire command) increases the audible and visual signature. Doing so requires the following:
The “Fire” command must not exceed 30 milliseconds else the multiple firing will not sound simultaneous. Normally, as with the ATKS (Army Tank Kill Simulator), a 200 millisecond command is standard causing a “machine gun” effect.
After firing the M30 or M31 round with a 30 millisecond command pulse, the circuit inside the electronic housing 70 must, after ignition, return power to the round for 500 milliseconds at 6.0 Amperes in order to burn the bridgewire inside of particular round, such as round 80, of the electric match inside the particular round, such as round 80. Should this not be done, the Automatic Chamber Scan feature would not operate properly since 30 milliseconds is enough time to ignite a round, but not to open circuit the bridgewire. This would cause the apparatus 10 to sense a spent round with a continuous (not open) bridgewire as a viable round. This would be a serious flaw.
Whether firing single or multiple rounds per que, the circuit inside the electronic housing 70 will always return to the last round(s) fired and attempt to refire. If a new fire command is received during this time, the new command will have priority before the “refire” begins again. All rounds will be refired for 500 milliseconds at 6.0 Amperes in order to positively “open circuit” the electric match bridgewire.
Although the invention has been described by reference to particular illustrative embodiments thereof, many changes and modifications of the invention may become apparent to those skilled in the art without departing from the spirit and scope of the invention. It is therefore intended to include within this patent all such changes and modifications as may reasonably and properly be included within the scope of the present invention's contribution to the art.
This application claims the priority of provisional patent application Ser. No. 60/439,478, filed on Jan. 13, 2003, inventor Ronald Michael Stria.
Number | Name | Date | Kind |
---|---|---|---|
1370193 | Crocker | Mar 1921 | A |
2396699 | Hayes et al. | Mar 1946 | A |
2421491 | Gearon et al. | Jun 1947 | A |
2526670 | Kissinger et al. | Oct 1950 | A |
2717533 | Wells | Sep 1955 | A |
2962965 | Farnsworth et al. | Dec 1960 | A |
3054870 | Wagoner | Sep 1962 | A |
3336870 | Gunyan et al. | Aug 1967 | A |
3535809 | Hoffmann | Oct 1970 | A |
3721190 | Homza | Mar 1973 | A |
3752082 | Kernan | Aug 1973 | A |
3808940 | Schillreff et al. | May 1974 | A |
4217717 | Canty et al. | Aug 1980 | A |
4245403 | Hipp | Jan 1981 | A |
4307665 | Block et al. | Dec 1981 | A |
4325304 | Ormiston | Apr 1982 | A |
4342556 | Hasse | Aug 1982 | A |
5117731 | Mendenhall | Jun 1992 | A |
5157222 | La Mura et al. | Oct 1992 | A |
5282455 | Adamson et al. | Feb 1994 | A |
5381721 | Holmstrom et al. | Jan 1995 | A |
5559303 | La Mura et al. | Sep 1996 | A |
5688124 | Salzeder | Nov 1997 | A |
5739459 | La Mura et al. | Apr 1998 | A |
5739462 | Poor et al. | Apr 1998 | A |
6318350 | Williams | Nov 2001 | B1 |
6393990 | Fagan | May 2002 | B1 |
6431070 | La Mura | Aug 2002 | B1 |
6502343 | Cheng | Jan 2003 | B2 |
6505558 | La Mura et al. | Jan 2003 | B1 |
6599127 | Hopmeier et al. | Jul 2003 | B1 |
20060123684 | Bunney | Jun 2006 | A1 |
20070015115 | Jones et al. | Jan 2007 | A1 |
20070166667 | Jones et al. | Jul 2007 | A1 |
Number | Date | Country |
---|---|---|
3506412 | Aug 1986 | DE |
Number | Date | Country | |
---|---|---|---|
60439478 | Jan 2003 | US |