Present invention relates generally to accessing a subterranean zone from the surface for production and/or injection of gas or other fluids, and more particularly to multi-purpose well bores and method for accessing a subterranean zone from the surface.
Subterranean deposits of coal, shale and other formations often contain substantial quantities of methane gas. Vertical wells and vertical well patterns have been used to access coal and shale formations to produce the methane gas. More recently, horizontal patterns and interconnected well bores have also been used to produce methane gas from coal and shale formations and/or to sequester carbon dioxide.
Multi-purpose well bores and method for accessing a subterranean zone from the surface are provided. In a particular embodiment, a set of multi-purpose well bores is provided that each extend from a surface to a subterranean zone, is coupled to a subterranean pattern in the zone formed at least substantially through another one of the multi-purpose well bores, and is used to at least substantially form a subterranean pattern in the zone for another one of the multi-purpose well bores.
In accordance with one embodiment of the present invention, a well system includes at least two well bores extending from a surface to a subterranean zone. Each of the two well bores is used to form a well bore pattern for the subterranean zone that intersects the other well bore and transports fluid from the subterranean zone to the other well bore for production to the surface. In addition, each of the two well bores is operable to collect fluids transported to the well bore by the well bore pattern formed through the other well bore for production to the surface.
Technical advantages of one or more embodiments may include providing a well system with two or more multi-purpose well bores. Each multi-purpose well bore may be used to produce gas and other fluids collected by a subterranean pattern that is coupled to the multi-purpose well bore as well to form a disparate subterranean pattern that is coupled to another multi-purpose well bore and has collected fluids produced by the other multi-purpose well bore. In a particular embodiment, a pair of dual purpose well bores are each used to form a substantially horizontal drainage pattern in a subterranean zone for the other dual purpose well bore and to produce gas and other fluids collected by a disparate substantially horizontal drainage pattern connected to the dual purpose well bore. Utilizing the wells for multiple purposes may reduce or limit wells needed for a project and accordingly reduce drilling costs and time. As a result, use of capital per field may be reduced. In addition, an accelerated rate of return may be provided for a given investment in a field.
The above and elsewhere describe technical advantages may be provided and/or evidenced by some, all or none of the various embodiments. In addition, other technical advantages may be readily apparent from the following figures, descriptions, and claims.
Referring to
The first and second well bores 12 and 32 may be logged either during or after drilling in order to closely approximate and/or locate the exact vertical depth of the coal seam 15. As a result, the coal seam 15 is not missed in subsequent drilling operations. In addition, techniques used to locate the coal seam 15 while drilling may be omitted. The coal seam 15 may be otherwise suitably located.
A first cavity 20 is formed in the first well bore 12 in or otherwise proximate to the coal seam 15. A second cavity 34 is formed in the second well bore 32 in or otherwise proximate to the coal seam 15. As described in more detail below, the cavities 20 and 34 are enlarged areas of the bore holes and may provide a point for intersection of each of the first and second well bores 12 and 32 by distinct articulated well bores used to form an associated well bore pattern in the coal seam 15. The enlarged cavities 20 and 34 may also provide a collection point for fluids drained from the coal seam 15 during production operations and may additionally function as a down hole gas/water separator and/or a surge chamber. In other embodiments, the cavities 20 and 34 may be omitted.
The cavities 20 and 34 may have any suitable configuration. In one embodiment, the cavities 20 and 34 each have an enlarged radius of approximately eight feet and a vertical dimension that equals or exceeds the vertical dimension of the coal seam 15. In another embodiment, the cavities 20 and 34 may have an enlarged substantially rectangular cross section for intersection by an articulated well bore and a narrow width through which the articulated well bore passes. In these embodiments, the cavities 20 and 34 may be formed using suitable under-reaming techniques and equipment such as a dual blade tool using centrifugal force, ratcheting or a piston for actuation, a pantograph and the like. The cavities 20 and 34 may be otherwise formed by suitable fracing and the like. A portion of the first well bore 12 may continue below the cavity 20 to form a sump 22 for the cavity 20. A portion of the second well bore 32 may likewise continue below the cavity 34 to form a sump 36 for the cavity 34.
In the embodiment illustrated in
A first articulated well bore 40 is kicked-off the second well bore 32 above to cavity 34 and/or coal seam 15. A packer or plug 38 may be positioned in the second well bore 12 to prevent drilling fluid and debris from entering the cavity 34. In one embodiment, the first articulated well bore 40 is drilled using a drill string 50 that includes a suitable down-hole motor and bit 52. A measurement while drilling (MWD) device 54 may be included in the articulated drill string 50 for controlling the orientation and direction of the well bore drilled by the motor and bit 52. The articulated well bore 40 may be kicked off the second well bore 32 with a whipstock 42, other tool or drilling technique.
After the first cavity 20 of the first well bore 12 has been intersected by the first articulated well bore 40, drilling of the articulated well bore 40 is continued through the cavity 20 with drill string 50 to provide a first subterranean well bore pattern 60 in the coal seam 15 that is connected or otherwise coupled to the first well bore 12. In other embodiments, the first well bore 12 and/or cavity 20 may be otherwise positioned relative to the first well bore pattern 60. For example, in one embodiment, the first well bore 12 and cavity 20 may be positioned toward an end of the well bore pattern 60. Thus, the first well bore 12 and/or cavity 20 may be positioned within the pattern 60 at or between sets of laterals. Also, pattern 60 may be otherwise suitably formed or connected to the cavity 20. The first pattern 60 is in the coal seam 15 when a majority, substantially all or other substantial portion, is in the seam such that fluids may be transported from or to the seam by the pattern 60.
The first well bore pattern 60 may be substantially horizontal corresponding to the geometric characteristics of the coal seam 15. The well bore pattern 60 may include sloped, undulating, or other inclinations of the coal seam 15 or other subterranean zone. During formation of the well bore pattern 60, gamma ray logging tools and conventional MWD devices may be employed to control and direct the orientation of the drill bit 52 to retain the well bore pattern 60 within the confines of the coal seam 15 and to provide substantially uniform coverage of a desired area within the coal seam 15.
In one embodiment, as described in more detail below, the drainage pattern 60 may be an omni-directional well bore pattern operable to intersect a substantial or other suitable number of fractures in the area of the coal seam 15 covered by the pattern 60. The drainage pattern 60 may intersect a significant number of fractures of the coal seam 15 when it intersects a majority of the fractures in the coverage area and plane of the pattern 60. In other embodiments, the drainage pattern 60 may intersect a minority percentage of the fractures or a super majority percentage of the fractures in the coverage area and plane of the pattern 60. The coverage area may be the area between the well bores of the pattern 60.
The first subterranean pattern 60 may be a pinnate pattern, other suitable multi-lateral or multi-branching pattern, other pattern having a lateral or other network of bores or other patterns of one or more bores with a significant percentage of the total footage of the bores having disparate orientations. The percentage of the bores having disparate orientations is significant when twenty-five to seventy-five percent of the bores have an orientation at least twenty degrees offset from other bores of the pattern. In a particular embodiment, the well bores of the pattern 60 may have three or more main orientations each including at least 10 percent of the total footage of the bores. For a pinnate pattern, the lateral bores may become successively shorter as the pattern progresses out from the cavity or well that is intersected. In addition, the distance from the intersected well bore to the distal end of each lateral through the lateral and main bore may be substantially equal.
During the process of drilling the well bore pattern 60, drilling fluid or “mud” may be pumped down the drill string 50 and circulated out of the drill string 50 in the vicinity of the bit 52, where it is used to scour the formation and to remove formation cuttings. The cuttings are then entrained in the drilling fluid which circulates up through the annulus between the drill string 50 and the walls of first articulated well bore 40 and the second well bore 32 until it reaches the surface 14, where the cuttings are removed from the drilling fluid and the fluid is then recirculated. To prevent over-balance drilling conditions during formation of the well bore pattern 60, air compressors 62 may be provided at the surface 14 to circulate compressed air down the first well bore 12 and back up through the first articulated well bore 40. The circulated air will admix with the drilling fluids in the annulus around the drill string 50 and create bubbles throughout the column of drilling fluid. This has the effect of lightening the hydrostatic pressure of the drilling fluid and reducing the down-hole pressure sufficiently that drilling conditions do not become over-balanced. Aeration of the drilling fluid reduces down-hole pressure to less than the pressure of the hydrostatic column. For example, in some formations, down-hole pressure may be reduced to approximately 150–200 pounds per square inch (psi). Accordingly, low pressure coal seams and other subterranean resources can be drilled without substantial loss of drilling fluid and contamination of the resource by the drilling fluid.
Foam, which may be compressed air mixed with water or other suitable fluid, may also be circulated down through the drill string 50 along with the drilling mud in order to aerate the drilling fluid in the annulus as the first articulated well bore 40 is being drilled and, if desired, as the well bore pattern 60 is being drilled. Drilling of the well bore pattern 60 with the use of an air hammer bit or an air-powered down-hole motor will also supply compressed air or foam to the drilling fluid. In this case, the compressed air or foam which is used to power the down-hole motor and bit 52 and exits the drill string 50 in the vicinity of the drill bit 52. However, the larger volume of air which can be circulated down the first well bore 12 permits greater aeration of the drilling fluid than generally is possible by air supplied through the drill string 50.
Referring to
The second articulated well 80 may be substantially similar to the first articulated well 40 and include a curved or radiused portion and a substantially horizontal portion. The substantially horizontal portion, in one embodiment, intersects the second cavity 34 of the second well bore 32. As described in connection with a first articulated well bore 40, the substantially horizontal portion of the second articulated well bore 80 may be formed to any suitable angle relative to the surface 14 and the curved or radiused portion may directly intersect the cavity 34. The curved or radiused portion of the second articulated well bore 80 may in one embodiment have the same or similar radius to that of the first articulated well bore 40.
The second articulated well bore 80 may be drilled using the drill string 50 that includes the down-hole motor and bit 52 as well as the MWD device 54 described in connection with formation of the first articulated well bore 40. After the second cavity 34 of the second well bore 32 has been intersected by the second articulated well bore 80, drilling is continued through the cavity 32 with the drill string 50 to provide a second subterranean well bore pattern 90 in the coal seam 15. In other embodiments, the second well bore 32 and/or cavity 34 may be otherwise positioned relative to the second well bore pattern 90 and the second articulated well 80.
The second well bore pattern 90 may be substantially horizontal corresponding to the geometric characteristics of the coal seam 15. The second well bore pattern 90 may be drilled in and under-balanced or other suitable state as described in connection with the first well bore pattern 60. The second well bore pattern 90 may be a pinnate pattern, other suitable multi-lateral or multi-branching pattern or other pattern having a lateral or other network of bores, or other pattern of one or more bores with a significant percentage of the total footage of the bores having disparate orientations.
Referring to
At the surface 14, one or more air compressors 104 are connected to each tubing string 100. Air compressed by the compressors 104 is pumped down each tubing string 100 and exits into the corresponding cavity 20 and 34 at the port 102. The air used for gas lift and/or for the previously described under balanced drilling may be ambient air at the site or may be or include any other suitable gas. For example, produced gas may be returned to the cavity and used for gas lift. In the cavities 20 and 34, the compressed air expands and suspends liquid droplets within its volume and lifts them to the surface. In one embodiment, for shallow coal beds 15 at or around one thousand feet, air may be compressed to three hundred to three hundred fifty psi and provided at a rate of nine hundred cubic feet per minute (CFM). At this rate and pressure, the gas lift system may lift up to three thousand, four thousand or five thousand barrels a day of water to the surface.
At the surface, air and fluids from each well bore 12 and 32 are fed into a fluid separator 106. Produced gas and lift air may be outlet at air/gas ports 108 and flared while remaining fluids are outlet at fluid ports 110 for transport or other removal, reinjection or surface runoff. It will be understood that water may be otherwise suitably removed from the cavities 20 and 34 and/or patterns 60 and 90 without production to the surface 14. For example, the water may be reinjected into an adjacent or other underground structure by pumping, directing or allowing the flow of the water to the other structure.
During gas lift, the rate and/or pressure of compressed air provided to the cavities 20 and 34 may be adjusted to control the volume of water produced to the surface. In one embodiment, a sufficient rate and/or pressure of compressed air may be provided to the cavities 20 and 34 to lift all or substantially all of the water collected by the cavities from a coal seam 15. This may provide for a rapid pressure drop in the coverage area of the coal seam 15 and allow for kick-off of the wells 12 and 34 to self-sustaining flow within one, two or a few weeks. In other embodiments, the rate and/or pressure of air provided may be controlled to limit water production below the attainable amount due to limitations in disposing of produced water and/or damage to the coal seam 15 or equipment by high rates of production. In a particular embodiment, a turbidity meter may be used at the well head to monitor the presence of particles in the produced water. If the amount of particles is over a specified limit, a controller may adjust a flow control valve to reduce the production rate. The controller may adjust the valve to specific flow rates and/or use feedback from the turbidity meter to adjust the flow control valve to a point where the amount of particles in the water is at a specified amount.
Referring to
The pumping units 120 include an inlet port 122 in each cavity 20 and 34 and may comprise a tubing string 124 with sucker rods 126 extending through the tubing string 124. Each inlet 122 may be positioned at or just above a center height of the corresponding cavity 20 or 34 to avoid gas lock and to avoid debris that collects in the sump. The inlet 122 may be suitably angled with or within the cavity.
The sucker rods 126 are reciprocated by a suitable surface mounted apparatus, such as a powered walking beam 128 to operate the pumping unit 120. In another embodiment, the pumping unit 120 may comprise a Moineau or other suitable pump operable to lift fluids vertically or substantially vertically. The pumping units 120 are used to remove water and entrained coal fines from the coal seam 15 via the well bore patterns 60 and 90. Once the water is removed to the surface 14, it may be treated in gas/water separator 106 for separation of methane which may be dissolved in the water and for removal of entrained fines.
After sufficient water has been removed from the coal seam 15, via gas lift, fluid pumping or other suitable manner, or pressure is otherwise lowered, coal seam gas may flow from the coal seam 15 to the surface 14 through the annulus of the first and second well bores 12 and 32 around the tubing strings and be removed via piping attached to a wellhead apparatus.
The pumping unit 120 may be operated continuously or as needed to remove water drained from the coal seam 15 into the enlarged cavities 20 and 34. In a particular embodiment, gas lift is continued until the wells are kicked-off to a self-sustaining flow at which time the wells are briefly shut-in to allow replacement of the gas lift equipment with the fluid pumping equipment. The wells are then allowed to flow in self-sustaining flow subject to periodic periods of being shut-in for maintenance, lack of demand for gas and the like. After any shut-in, a well may need to be pumped for a few cycles, a few hours, days or weeks, to again initiate self-sustaining flow or other suitable production rate of gas. In a particular embodiment, the rod pumps may each produce approximately eight gallons per minute of water from a corresponding cavity 20 or 34 to the surface. A well is at self sustaining flow when the flow of gas is operable to lift any produced water such that the well may operate for an extended period of six weeks or more without pumping or artificial gas lift. Thus, the well may require periodic pumping between periods of self sustaining flow.
Referring to
One or more secondary lateral bores 154 may be formed off one or more of the primary lateral bores 152. In a particular embodiment, a set of secondary laterals 154 may be formed off the first primary lateral bores 152 of each pattern 60 and 90 closest to the corresponding cavity 20 and 34. The secondary laterals 154 may provide coverage in the area between the primary lateral bores 152 of patterns 60 and 90. In a particular embodiment, a first primary lateral 154 may include a reversed radius section to provide more uniform coverage of the coal seam 15.
The subterranean patterns 60 and 90 with their central bore and generally symmetrically arranged and appropriately spaced auxiliary bores on each side may provide a substantially uniform pattern for draining fluids from a coal seam 15 or other subterranean formation. The number and spacing of the lateral bores may be adjusted depending on the absolute, relative and/or effective permeability of the coal seam and the size of the area covered by the pattern. The area covered by the pattern may be the area drained by the pattern, the area of a spacing unit that the pattern is designed to drain, the area within the distal points or periphery of the pattern and/or the area within the periphery of the pattern as well as the surrounding area out to a periphery intermediate to adjacent or neighboring patterns. The coverage area may also include the depth, or thickness of the coal seam or, for thick coal seams, a portion of the thickness of the seam. Thus, the pattern may include upward or downward extending branches in addition to horizontal branches. The coverage area may be a square, other quadrilateral, or other polygon, circular, oval or other ellipsoid or grid area and may be nested with other patterns of the same or similar type. It will be understood that other suitable well bore patterns may be used.
As previously described, the well bore 150 and the lateral bores 152 and 154 of patterns 60 and 90 are formed by drilling through the corresponding cavity 20 or 34 using the drill string 50 and an appropriate drilling apparatus. During this operation, gamma ray logging tools and conventional MWD technologies may be employed to control the direction and orientation of the drill bit 52 so as to retain the well bore pattern within the confines of the coal seam 15 and to maintain proper spacing and orientation of the well bores 150 and 152. In a particular embodiment, the main well bore 150 of each pattern 60 and 90 is drilled with an incline at each of a plurality of lateral branch points 156. After the main well bore 150 is complete, the drill string 50 is backed up to each successive lateral point 156 from which a primary lateral bore 152 is drilled on each side of the well bore 150. The secondary laterals 154 may be similarly formed. It will be understood that the subterranean patterns 60 and 90 may be otherwise suitably formed.
Referring to
At step 200, in an embodiment in which dual purpose wells are used, a first substantially vertical or other suitable well 12 is drilled from the surface 14 through the coal seam 15. Slant and other suitable well configurations may, for example, instead be used. In a slant well configuration, the drainage patterns may be formed off of a slant well or a slanting portion of a well with a vertical or other section at the surface.
Next, at step 202, down hole logging equipment is utilized to exactly identify the location of the coal seam 15 in the first well bore 12. At step 204, the first enlarged diameter or other cavity 20 is formed in the first well bore 12 at the location of the coal seam 15. As previously discussed, the first cavity 20 may be formed by underreaming and other suitable techniques. For example, the cavity may be formed by fracing.
Next, at step 206, the second substantially vertical or other suitable well 32 is drilled from the surface 14 through the coal seam 15. Slant or other suitable well configurations may instead be used. At step 208, down-hole logging equipment is utilized to exactly identify the location of the coal seam 15 in the second well bore 32. At step 210, the second enlarged diameter or other cavity 34 is formed in the second well bore 32 at the location of the coal seam 15. The second cavity 34 may be formed by any other suitable technique.
Next, at step 212, the first articulated well bore 40 is drilled off the second well bore 32 to intersect the enlarged diameter cavity 20 of the first well bore 12. At step 214, the main well bore 150 for the first subterranean pattern 60 is drilled through the first articulated well bore 40 into the coal seam 15. As previously described, lateral kick-off points, or bumps may be formed along the main bore 150 during its formation to facilitate drilling of the lateral bores 152 and 154. After formation of the main well bore 150, lateral bores 152 and 154 for the subterranean pattern are drilled at step 216.
At step 218, the second articulated well bore 80 is drilled off the first well bore 12 to intersect the large diameter cavity 32 of the second well bore 32. At step 220, the main well bore 150 for the second subterranean pattern 90 is drilled through the second articulated well bore 80 into the coal seam 15. As previously described, lateral kick-off points or bumps may be formed along the main bore 150 in its formation to facilitate drilling of the lateral bores 152 and 154. At step 222, lateral bores 152 and 154 for the second pattern 90 are formed.
At step 224, gas lift equipment is installed in each of the first and second well bores 12 and 32 in preparation for blow-down of the bores. At step 226, compressed air is pumped down the substantially vertical well bores 12 and 32 to provide blow-down. The compressed air expands in the cavities 20 and 34, suspends the collected fluids within its volume and lifts the fluid to the surface. At the surface, air and produced methane or other gases are separated from the water and flared. The water may be disposed of as runoff, reinjected or moved to a remote site for disposal. In addition to providing gas lift, the blow-down may clean the cavities 20 and 34 and the vertical well bores 12 and 34 of debris and kick-off the well to initiate self-sustaining flow. In a particular embodiment, the blow-down may last for one, two or a few weeks.
At step 228, production equipment is installed in the substantially vertical well bores 12 and 34 in place of the gas lift equipment. The production equipment may include a well head and a sucker rod pump extending down into the cavities 20 and 34 for removing water from the coal seam 15. If a well is shut in for any period of time, water builds up in the cavity 20 or 34 or self-sustaining flow is otherwise terminated, the pump may be used to remove water and drop the pressure in the coal seam 15 to allow methane gas to continue to be diffused and to be produced up the annulus of the substantially vertical well bore.
At step 230, methane gas diffused from the coal seam 15 is continuously produced at the surface 14. Methane gas may be produced in two-phase flow with the water or otherwise produced with water and/or produced after reservoir pressure has been suitably reduced. Proceeding to step 232, water that drains through the drainage patterns into the cavities that is not lifted by the produced gas is pumped to the surface with the rod pumping unit. Water may be continuously or intermittently pumped as needed for removal from the cavities 20 and 34.
Next, at decisional step 234 it is determined whether the production of gas from the coal seam 15 is complete. In a particular embodiment, approximately seventy-five percent of the total gas in the coverage area of the coal seam may be produced at the completion of gas production. The production of gas may be complete after the cost of the collecting the gas exceeds the revenue generated by the well. Alternatively, gas may continue to be produced from the well until a remaining level of gas in the coal seam 15 is below required levels for mining or other operations. If production of the gas is not complete, the No branch of decisional step 234 returns to steps 230 and 232 in which gas and/or water continue to be removed from the coal seam 15. Upon completion of production, the Yes branch of decisional step 234 leads to the end of the process by which gas is produced from a coal seam. It will be understood that one or more steps may be modified, omitted, or performed in a different order. Additional steps may be added.
Referring to
The patterns 60 and 90 may be formed with the cavities 20 and 34 between laterals 252 to achieve a desired spacing. For example, the wells 12 and 32, and thus cavities 20 and 34, may be vertical and offset a minimum well statutory spacing by forming laterals 252 and 254 between the cavities 20 and 34. As a result, in one embodiment, for example, spacing requirements may be met and/or special exemptions or permission requests avoided while still providing access to the coverage area.
Although the present invention has been described with several embodiments, various changes and modifications may be suggested to one skilled in the art. It is intended that the present invention encompass such changes and modifications as fall within the scope of the appended claims and their equivalence.
Number | Name | Date | Kind |
---|---|---|---|
54144 | Hamar | Apr 1866 | A |
274740 | Douglass | Mar 1883 | A |
526708 | Horton | Oct 1894 | A |
639036 | Heald | Dec 1899 | A |
1189560 | Gondos | Jul 1916 | A |
1285347 | Otto | Nov 1918 | A |
1467480 | Hogue | Sep 1923 | A |
1485615 | Jones | Mar 1924 | A |
1488106 | Fitzpatrick | Mar 1924 | A |
1520737 | Wright | Dec 1924 | A |
1674392 | Flansburg | Jun 1928 | A |
1777961 | Capeliuschnicoff | Oct 1930 | A |
2018285 | Schweitzer et al. | Oct 1935 | A |
2069482 | Seay | Feb 1937 | A |
2150228 | Lamb | Mar 1939 | A |
2169718 | Boll et al. | Aug 1939 | A |
2335085 | Roberts | Nov 1943 | A |
2450223 | Barbour | Sep 1948 | A |
2490350 | Grable | Dec 1949 | A |
2679903 | McGowen, Jr. et al. | Jun 1954 | A |
2726063 | Ragland et al. | Dec 1955 | A |
2726847 | McCune et al. | Dec 1955 | A |
2783018 | Lytle | Feb 1957 | A |
2797893 | McCune et al. | Jul 1957 | A |
2847189 | Shook | Aug 1958 | A |
2911008 | Du Bois | Nov 1959 | A |
2934904 | Hendrix | May 1960 | A |
2980142 | Turak | Apr 1961 | A |
3163211 | Henley | Dec 1964 | A |
3208537 | Scarborough | Sep 1965 | A |
3347595 | Dahms et al. | Oct 1967 | A |
3385382 | Canalizo et al. | May 1968 | A |
3443648 | Howard | May 1969 | A |
3473571 | Dugay | Oct 1969 | A |
3503377 | Beatenbough et al. | Mar 1970 | A |
3528516 | Brown | Sep 1970 | A |
3530675 | Turzillo | Sep 1970 | A |
3534822 | Campbell et al. | Oct 1970 | A |
3578077 | Glenn, Jr. et al. | May 1971 | A |
3582138 | Loofbourow et al. | Jun 1971 | A |
3587743 | Howard | Jun 1971 | A |
3684041 | Kammerer, Jr. et al. | Aug 1972 | A |
3692041 | Bondi | Sep 1972 | A |
3744565 | Brown | Jul 1973 | A |
3757876 | Pereau | Sep 1973 | A |
3757877 | Leathers | Sep 1973 | A |
3763652 | Rinta | Oct 1973 | A |
3800830 | Etter | Apr 1974 | A |
3809519 | Garner | May 1974 | A |
3825081 | McMahon | Jul 1974 | A |
3828867 | Elwood | Aug 1974 | A |
3874413 | Valdez | Apr 1975 | A |
3887008 | Canfield | Jun 1975 | A |
3902322 | Watanabe | Sep 1975 | A |
3907045 | Dahl et al. | Sep 1975 | A |
3934649 | Pasini, III et al. | Jan 1976 | A |
3957082 | Fuson et al. | May 1976 | A |
3961824 | Van Eek et al. | Jun 1976 | A |
4011890 | Anderson | Mar 1977 | A |
4020901 | Pisio et al. | May 1977 | A |
4022279 | Driver | May 1977 | A |
4030310 | Schirtzinger | Jun 1977 | A |
4037658 | Anderson | Jul 1977 | A |
4060130 | Hart | Nov 1977 | A |
4073351 | Baum | Feb 1978 | A |
4089374 | Terry | May 1978 | A |
4116012 | Abe et al. | Sep 1978 | A |
4134463 | Allen | Jan 1979 | A |
4136996 | Burns | Jan 1979 | A |
4151880 | Vann | May 1979 | A |
4156437 | Chivens et al. | May 1979 | A |
4169510 | Meigs | Oct 1979 | A |
4182423 | Ziebarth et al. | Jan 1980 | A |
4189184 | Green | Feb 1980 | A |
4220203 | Steeman | Sep 1980 | A |
4221433 | Jacoby | Sep 1980 | A |
4222611 | Larson et al. | Sep 1980 | A |
4224989 | Blount | Sep 1980 | A |
4226475 | Frosch et al. | Oct 1980 | A |
4257650 | Allen | Mar 1981 | A |
4278137 | Van Eek | Jul 1981 | A |
4283088 | Tabakov et al. | Aug 1981 | A |
4296785 | Vitello et al. | Oct 1981 | A |
4299295 | Gossard | Nov 1981 | A |
4303127 | Freel et al. | Dec 1981 | A |
4305464 | Masszi | Dec 1981 | A |
4312377 | Knecht | Jan 1982 | A |
4317492 | Summers et al. | Mar 1982 | A |
4328577 | Abbott et al. | May 1982 | A |
4333539 | Lyons et al. | Jun 1982 | A |
4366988 | Bodine | Jan 1983 | A |
4372398 | Kuckes | Feb 1983 | A |
4386665 | Dellinger | Jun 1983 | A |
4390067 | Willman | Jun 1983 | A |
4396076 | Inoue | Aug 1983 | A |
4397360 | Schmidt | Aug 1983 | A |
4401171 | Fuchs | Aug 1983 | A |
4407376 | Inoue | Oct 1983 | A |
4415205 | Rehm et al. | Nov 1983 | A |
4417829 | Berezoutzky | Nov 1983 | A |
4422505 | Collins | Dec 1983 | A |
4437706 | Johnson | Mar 1984 | A |
4442896 | Reale et al. | Apr 1984 | A |
4463988 | Bouck et al. | Aug 1984 | A |
4494616 | McKee | Jan 1985 | A |
4502733 | Grubb | Mar 1985 | A |
4512422 | Knisley | Apr 1985 | A |
4519463 | Schuh | May 1985 | A |
4527639 | Dickinson, III et al. | Jul 1985 | A |
4532986 | Mims et al. | Aug 1985 | A |
4533182 | Richards | Aug 1985 | A |
4536035 | Huffman et al. | Aug 1985 | A |
4544037 | Terry | Oct 1985 | A |
4558744 | Gibb | Dec 1985 | A |
4565252 | Campbell et al. | Jan 1986 | A |
4573541 | Josse et al. | Mar 1986 | A |
4599172 | Gardes | Jul 1986 | A |
4600061 | Richards | Jul 1986 | A |
4603592 | Siebold et al. | Aug 1986 | A |
4605076 | Goodhart | Aug 1986 | A |
4611855 | Richards | Sep 1986 | A |
4618009 | Carter et al. | Oct 1986 | A |
4638949 | Mancel | Jan 1987 | A |
4646836 | Goodhart | Mar 1987 | A |
4651836 | Richards | Mar 1987 | A |
4662440 | Harmon et al. | May 1987 | A |
4674579 | Geller et al. | Jun 1987 | A |
4676313 | Rinaldi | Jun 1987 | A |
4702314 | Huang et al. | Oct 1987 | A |
4705109 | Ledent et al. | Nov 1987 | A |
4705431 | Gadelle et al. | Nov 1987 | A |
4715440 | Boxell et al. | Dec 1987 | A |
4718485 | Brown et al. | Jan 1988 | A |
4727937 | Shum et al. | Mar 1988 | A |
4753485 | Goodhart | Jun 1988 | A |
4754808 | Harmon et al. | Jul 1988 | A |
4754819 | Dellinger | Jul 1988 | A |
4756367 | Puri et al. | Jul 1988 | A |
4763734 | Dickinson et al. | Aug 1988 | A |
4773488 | Bell et al. | Sep 1988 | A |
4776638 | Hahn | Oct 1988 | A |
4830105 | Petermann | May 1989 | A |
4832122 | Corey et al. | May 1989 | A |
4836611 | El-Saie | Jun 1989 | A |
4842081 | Parant | Jun 1989 | A |
4844182 | Tolle | Jul 1989 | A |
4852666 | Brunet et al. | Aug 1989 | A |
4883122 | Puri et al. | Nov 1989 | A |
4889186 | Hanson et al. | Dec 1989 | A |
4978172 | Schwoebel et al. | Dec 1990 | A |
5016709 | Combe et al. | May 1991 | A |
5016710 | Renard et al. | May 1991 | A |
5033550 | Johnson et al. | Jul 1991 | A |
5035605 | Dinerman et al. | Jul 1991 | A |
5036921 | Pittard et al. | Aug 1991 | A |
5074360 | Guinn | Dec 1991 | A |
5074365 | Kuckes | Dec 1991 | A |
5074366 | Karlsson et al. | Dec 1991 | A |
5082054 | Kiamanesh | Jan 1992 | A |
5111893 | Kvello-Aune | May 1992 | A |
5115872 | Brunet et al. | May 1992 | A |
5127457 | Stewart et al. | Jul 1992 | A |
5135058 | Millgard et al. | Aug 1992 | A |
5148875 | Karlsson et al. | Sep 1992 | A |
5148877 | MacGregor | Sep 1992 | A |
5165491 | Wilson | Nov 1992 | A |
5168942 | Wydrinski | Dec 1992 | A |
5174374 | Hailey | Dec 1992 | A |
5193620 | Braddick | Mar 1993 | A |
5194859 | Warren | Mar 1993 | A |
5197553 | Leturno | Mar 1993 | A |
5197783 | Theimer et al. | Mar 1993 | A |
5199496 | Redus et al. | Apr 1993 | A |
5201817 | Hailey | Apr 1993 | A |
5217076 | Masek | Jun 1993 | A |
5240350 | Yamaguchi et al. | Aug 1993 | A |
5242017 | Hailey | Sep 1993 | A |
5242025 | Neill et al. | Sep 1993 | A |
5246273 | Rosar | Sep 1993 | A |
5255741 | Alexander | Oct 1993 | A |
5271472 | Leturno | Dec 1993 | A |
5287926 | Grupping | Feb 1994 | A |
5289888 | Talley | Mar 1994 | A |
5301760 | Graham | Apr 1994 | A |
5343965 | Talley et al. | Sep 1994 | A |
5355967 | Mueller et al. | Oct 1994 | A |
5363927 | Frank | Nov 1994 | A |
5385205 | Hailey | Jan 1995 | A |
5394950 | Gardes | Mar 1995 | A |
5402851 | Baiton | Apr 1995 | A |
5411082 | Kennedy | May 1995 | A |
5411085 | Moore et al. | May 1995 | A |
5411088 | LeBlanc et al. | May 1995 | A |
5411104 | Stanley | May 1995 | A |
5411105 | Gray | May 1995 | A |
5431220 | Lennon et al. | Jul 1995 | A |
5431482 | Russo | Jul 1995 | A |
5435400 | Smith | Jul 1995 | A |
5447416 | Wittrisch | Sep 1995 | A |
5450902 | Matthews | Sep 1995 | A |
5454419 | Vloedman | Oct 1995 | A |
5458209 | Hayes et al. | Oct 1995 | A |
5462116 | Carroll | Oct 1995 | A |
5462120 | Gondouin | Oct 1995 | A |
5469155 | Archambeault et al. | Nov 1995 | A |
5477923 | Jordan, Jr. et al. | Dec 1995 | A |
5485089 | Kuckes | Jan 1996 | A |
5494121 | Nackerud | Feb 1996 | A |
5499687 | Lee | Mar 1996 | A |
5501273 | Puri | Mar 1996 | A |
5501279 | Garg et al. | Mar 1996 | A |
5584605 | Beard et al. | Dec 1996 | A |
5613242 | Oddo | Mar 1997 | A |
5615739 | Dallas | Apr 1997 | A |
5653286 | McCoy et al. | Aug 1997 | A |
5669444 | Riese et al. | Sep 1997 | A |
5676207 | Simon et al. | Oct 1997 | A |
5680901 | Gardes | Oct 1997 | A |
5690390 | Bithell | Nov 1997 | A |
5697445 | Graham | Dec 1997 | A |
5706871 | Anderson et al. | Jan 1998 | A |
5720356 | Gardes | Feb 1998 | A |
5727629 | Blizzard, Jr. et al. | Mar 1998 | A |
5735350 | Longbottom et al. | Apr 1998 | A |
5771976 | Talley | Jun 1998 | A |
5775433 | Hammett et al. | Jul 1998 | A |
5775443 | Lott | Jul 1998 | A |
5785133 | Murray et al. | Jul 1998 | A |
5832958 | Cheng | Nov 1998 | A |
5853054 | McGarian et al. | Dec 1998 | A |
5853056 | Landers | Dec 1998 | A |
5853224 | Riese | Dec 1998 | A |
5863283 | Gardes | Jan 1999 | A |
5868202 | Hsu | Feb 1999 | A |
5868210 | Johnson et al. | Feb 1999 | A |
5879057 | Schwoebel et al. | Mar 1999 | A |
5884704 | Longbottom et al. | Mar 1999 | A |
5917325 | Smith | Jun 1999 | A |
5934390 | Uthe | Aug 1999 | A |
5938004 | Roberts et al. | Aug 1999 | A |
5941307 | Tubel | Aug 1999 | A |
5941308 | Malone et al. | Aug 1999 | A |
5944107 | Ohmer | Aug 1999 | A |
5957539 | Durup et al. | Sep 1999 | A |
5971074 | Longbottom et al. | Oct 1999 | A |
5988278 | Johnson | Nov 1999 | A |
5992524 | Graham | Nov 1999 | A |
6012520 | Yu et al. | Jan 2000 | A |
6015012 | Reddick | Jan 2000 | A |
6019173 | Saurer et al. | Feb 2000 | A |
6024171 | Montgomery et al. | Feb 2000 | A |
6030048 | Hsu | Feb 2000 | A |
6050335 | Parsons | Apr 2000 | A |
6056059 | Ohmer | May 2000 | A |
6062306 | Gano et al. | May 2000 | A |
6065550 | Gardes | May 2000 | A |
6065551 | Gourley et al. | May 2000 | A |
6079495 | Ohmer | Jun 2000 | A |
6089322 | Kelley et al. | Jul 2000 | A |
6119771 | Gano et al. | Sep 2000 | A |
6119776 | Graham et al. | Sep 2000 | A |
6135208 | Gano et al. | Oct 2000 | A |
6170571 | Ohmer | Jan 2001 | B1 |
6179054 | Stewart | Jan 2001 | B1 |
6189616 | Gano et al. | Feb 2001 | B1 |
6192988 | Tubel | Feb 2001 | B1 |
6199633 | Longbottom | Mar 2001 | B1 |
6209636 | Roberts et al. | Apr 2001 | B1 |
6237284 | Erickson | May 2001 | B1 |
6244340 | McGlothen et al. | Jun 2001 | B1 |
6247532 | Ohmer | Jun 2001 | B1 |
6263965 | Schmidt et al. | Jul 2001 | B1 |
6279658 | Donovan et al. | Aug 2001 | B1 |
6280000 | Zupanick | Aug 2001 | B1 |
6283216 | Ohmer | Sep 2001 | B1 |
6318457 | Den Boer et al. | Nov 2001 | B1 |
6349769 | Ohmer | Feb 2002 | B1 |
6357523 | Zupanick | Mar 2002 | B1 |
6357530 | Kennedy et al. | Mar 2002 | B1 |
6425448 | Zupanick et al. | Jul 2002 | B1 |
6439320 | Zupanick | Aug 2002 | B1 |
6450256 | Mones | Sep 2002 | B1 |
6454000 | Zupanick | Sep 2002 | B1 |
6457540 | Gardes | Oct 2002 | B1 |
6470978 | Trueman et al. | Oct 2002 | B1 |
6478085 | Zupanick | Nov 2002 | B1 |
6491101 | Ohmer | Dec 2002 | B1 |
6497556 | Zupanick | Dec 2002 | B1 |
6554063 | Ohmer | Apr 2003 | B1 |
6557628 | Ohmer | May 2003 | B1 |
6561288 | Zupanick | May 2003 | B1 |
6564867 | Ohmer | May 2003 | B1 |
6566649 | Mickael | May 2003 | B1 |
6571888 | Comeau et al. | Jun 2003 | B1 |
6575235 | Zupanick | Jun 2003 | B1 |
6575255 | Rial et al. | Jun 2003 | B1 |
6577129 | Thompson | Jun 2003 | B1 |
6585061 | Radzinski | Jul 2003 | B1 |
6590202 | Mickael | Jul 2003 | B1 |
6591903 | Ingle | Jul 2003 | B1 |
6591922 | Rial et al. | Jul 2003 | B1 |
6595301 | Diamond et al. | Jul 2003 | B1 |
6595302 | Diamond et al. | Jul 2003 | B1 |
6598686 | Zupanick | Jul 2003 | B1 |
6604580 | Zupanick | Aug 2003 | B1 |
6604910 | Zupanick | Aug 2003 | B1 |
6607042 | Hoyer et al. | Aug 2003 | B1 |
6636159 | Winnacker | Oct 2003 | B1 |
6639210 | Odom et al. | Oct 2003 | B1 |
6644422 | Rial et al. | Nov 2003 | B1 |
6646441 | Thompson et al. | Nov 2003 | B1 |
6653839 | Yuratich et al. | Nov 2003 | B1 |
6662870 | Zupanick | Dec 2003 | B1 |
6668918 | Zupanick | Dec 2003 | B1 |
6679322 | Zupanick | Jan 2004 | B1 |
6681855 | Zupanick | Jan 2004 | B1 |
6688388 | Zupanick | Feb 2004 | B1 |
6722452 | Rial et al. | Apr 2004 | B1 |
6758279 | Moore et al. | Jul 2004 | B1 |
20020043404 | Trueman et al. | Apr 2002 | A1 |
20020050358 | Algeroy | May 2002 | A1 |
20020074120 | Scott | Jun 2002 | A1 |
20020074122 | Kelly et al. | Jun 2002 | A1 |
20020096336 | Zupanick | Jul 2002 | A1 |
20020108746 | Zupanick | Aug 2002 | A1 |
20020117297 | Zupanick | Aug 2002 | A1 |
20020189801 | Zupanick | Dec 2002 | A1 |
20030062198 | Gardes | Apr 2003 | A1 |
20030066686 | Conn | Apr 2003 | A1 |
20030075334 | Haugen et al. | Apr 2003 | A1 |
20030106686 | Ingle et al. | Jun 2003 | A1 |
20030164253 | Trueman et al. | Sep 2003 | A1 |
20030221836 | Gardes | Dec 2003 | A1 |
20040007389 | Zupanick | Jan 2004 | A1 |
20040007390 | Zupanick | Jan 2004 | A1 |
20040011560 | Rial et al. | Jan 2004 | A1 |
20040020655 | Rusby et al. | Feb 2004 | A1 |
20040033557 | Scott et al. | Feb 2004 | A1 |
20040055787 | Zupanick | Mar 2004 | A1 |
20040060351 | Gunter et al. | Apr 2004 | A1 |
20040140129 | Gardes | Jul 2004 | A1 |
20040226719 | Morgan et al. | Nov 2004 | A1 |
20050087340 | Zupanick et al. | Apr 2005 | A1 |
20050133219 | Zupanick | Jun 2005 | A1 |
20050189114 | Zupanick | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
8549964 | Nov 1986 | AU |
2 278 735 | Jan 1998 | CA |
2210866 | Jan 1998 | CA |
CH 653 741 | Jan 1986 | DE |
19725996 | Jan 1998 | DE |
0819834 | Jan 1998 | EP |
0 875 661 | Nov 1998 | EP |
0 952 300 | Oct 1999 | EP |
1 316 673 | Jun 2003 | EP |
964503 | Aug 1950 | FR |
442008 | Jan 1936 | GB |
444484 | Mar 1936 | GB |
651468 | Apr 1951 | GB |
893869 | Apr 1962 | GB |
2 255 033 | Oct 1992 | GB |
2297 988 | Aug 1996 | GB |
2347157 | Aug 2002 | GB |
SU-750108 | Jun 1975 | RU |
SU-1448078 | Mar 1987 | RU |
SU-1770570 | Mar 1990 | RU |
750108 | Jun 1975 | SU |
876968 | Oct 1981 | SU |
1448078 | Mar 1987 | SU |
1770570 | Mar 1990 | SU |
9421889 | Sep 1994 | WO |
WO 9428280 | Dec 1994 | WO |
WO 9721900 | Jun 1997 | WO |
WO 9825005 | Jun 1998 | WO |
WO 9835133 | Aug 1998 | WO |
WO 9960248 | Nov 1999 | WO |
0031376 | Jun 2000 | WO |
WO 0079099 | Dec 2000 | WO |
WO 0144620 | Jun 2001 | WO |
WO 0218738 | Mar 2002 | WO |
WO 02059455 | Aug 2002 | WO |
WO 02061238 | Aug 2002 | WO |
WO 03061238 | Aug 2002 | WO |
WO 03036023 | May 2003 | WO |
WO 03102348 | Dec 2003 | WO |
WO 2004035984 | Apr 2004 | WO |
WO 2005003509 | Jan 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20050103490 A1 | May 2005 | US |