Multi-resonance antenna

Information

  • Patent Grant
  • 6784843
  • Patent Number
    6,784,843
  • Date Filed
    Thursday, October 17, 2002
    22 years ago
  • Date Issued
    Tuesday, August 31, 2004
    20 years ago
Abstract
In a multi-resonance antenna, at an open end of a radiation electrode of a feeding element and an open end of a radiation electrode of a parasitic element capacitance loading electrodes and ground electrodes are arranged opposite to each other. In the opposing portions, electric-field deflectors are provided, thus reducing the electric-field coupling between the feeding element and the parasitic element.
Description




TECHNICAL FIELD




The present invention relates to multi-resonance antennas, and more particularly, relates to a broadband multi-resonance antenna suitable for a portable information terminal.




BACKGROUND ART




Recently, there has been a demand for linking information terminals such as cellular phones, portable mobile terminals, and stationary terminals having communication functions with one another by wireless communication using the high frequency 1 to 5 GHz band. One example of such a communication method uses a center frequency of 2.45 GHz and a bandwidth of approximately 100 MHz. The method wirelessly links nearby information terminals. Data signals, audio signals, and video signals can be transmitted and received in bulk.




Wireless transceivers incorporated into or added to these information terminals are required to be miniaturized as much as possible. Concerning antennas mounted on the wireless transceivers, so-called miniature surface-mounted antennas which are miniaturized as much as possible are required.




The electrical length of an antenna is determined by the frequency of the operating electromagnetic waves. In order to ensure satisfactory antenna characteristics using a small antenna, it is necessary to form a radiation electrode on a dielectric base member with a high relative dielectric constant. The size of the antenna is generally determined by the relative dielectric constant and the volume of the base member. In an antenna using a dielectric base member with a high relative dielectric constant, the radiation electrode can be shortened relative to the operating frequency. Accordingly, the electrical Q factor is improved, whereas the effective frequency band is narrowed.




In order to broaden the frequency band, there is a broad-band linear antenna described in Japanese Unexamined Patent Application Publication No. 6-69715.




As shown in

FIG. 12

, the antenna contains a feeding element


3


on the top surface of a circuit board


1


formed of polyimide. The feeding element


3


is a radiation electrode strip with a power feeder


2


. The antenna also contains a parasitic element


5


which differs in length from the feeding element


3


. The parasitic element


5


is a radiation electrode strip with a ground


4


at one end thereof. The feeding element


3


and the parasitic element


5


are arranged side-by-side in parallel to each other. In the antenna, electric-field coupling is established between the feeding element


3


and the parasitic element


5


, and the feeding element


3


feeds power to the parasitic element


5


, thus causing the feeding element


3


and the parasitic element


5


to resonate at multiple frequencies. As a result, a broad frequency band is achieved.




Regarding the foregoing antenna arranged as described above, the length of the radiation electrode of the feeding element


3


is limited to approximately 410 mm, and the length of the radiation electrode of the parasitic element


5


is limited to approximately 360 mm. It is thus difficult to configure a portable and miniature antenna. The antenna is not configured to adjust multi-resonance matching between the feeding element


3


and the parasitic element


5


.




In other words, in the foregoing antenna, it is difficult to form a plurality of radiation electrodes on the surface of a dielectric base member with a small volume so as to satisfy the conditions for optimal multi-resonance matching. Specifically, when the radiation electrode of the feeding element and the radiation electrode of the parasitic element are arranged on the same principal surface of the dielectric base member, the distance between the feeding element and the parasitic element becomes narrow. Thus, excessive electric-field coupling occurs. As shown in

FIG. 13

, a resonance frequency f


1


of the feeding element and a resonance frequency f


2


of the parasitic element are separated from each other, and hence the feeding element and the parasitic element do not resonate at multiple frequencies. When the radiation electrodes are shortened to force multi-resonance to occur, as shown in

FIG. 14

, satisfactory matching cannot be achieved in resonance at one side. Thus, the antenna is in a single resonance state at the resonance frequency f


1


, and the optimal multi-resonance matching cannot be achieved.




In order to achieve multi-resonance matching, the electric-field coupling between the feeding element and the parasitic element is required to be weakened. When the principal surface of the dielectric base member is widened, the size of the base member itself is increased. It is thus impossible to obtain a miniaturized surface-mounted antenna. When the width of each radiation electrode is reduced too much, inductance components vary widely, and the resonance characteristics become unstable. It is thus difficult to mass-produce the antenna. Alternatively, the radiation electrode of the feeding element and the radiation electrode of the parasitic element can be arranged on the principal surface and an end surface of the dielectric base member, respectively. When the distance between the feeding element and the parasitic element becomes too large, satisfactory electric-field coupling cannot be achieved. When screen-printing the radiation electrodes, it is necessary to print two sides, namely, the principal surface and the end surface. Thus, the number of printing steps is increased, and the manufacturing cost is increased.




DISCLOSURE OF INVENTION




In order to solve the foregoing problems, it is an object of the present invention to provide a multi-resonance between a feeding element and a parasitic element by suppressing excessive electric-field coupling between the feeding element and the parasitic element.




In order to achieve the foregoing object, the present invention solves the problems using the following arrangement. Specifically, a multi-resonance antenna of the present invention includes a feeding element including a first radiation electrode and a feeding electrode for feeding power to the first radiation electrode; a parasitic element including a second radiation electrode arranged next to the first radiation electrode; a ground electrode arranged opposite to an open end of each of at least one of the first radiation electrode and the second radiation electrode with a predetermined gap therebetween; and an electric-field deflector for suppressing electric-field coupling between the feeding element and the parasitic element, the electric-field deflector being formed in a portion where each open end and each ground electrode are opposed to each other.




According to the present invention, the electric-field deflector (s) is provided in one or both of portions where each open end of the feeding element and the parasitic element and each ground electrode are opposed to each other. Thus, the electric field is concentrated at the opposing portion between the open end and the ground electrode, and the electric-field coupling between the open end and the ground electrode is strengthened. In contrast, the electric-field coupling in the vicinity of the open ends of the feeding element and the parasitic element is weakened. Thus, the electric-field coupling between the feeding element and the parasitic element can be optimally adjusted, and satisfactory multi-resonance of the feeding element and the parasitic element can be caused to occur.




In other words, the electric field leaking from the vicinity of the open ends of the feeding element and the parasitic element where the electric field becomes the strongest is reduced, thus weakening the electric-field coupling between the feeding element and the parasitic element. As a result, the feeding element and the parasitic element can be caused to satisfactorily resonate at multiple frequencies.




In the multi-resonance antenna of the present invention, the first radiation electrode and the second radiation electrode may be radiation electrode strips which are arranged approximately parallel to each other. Preferably, the electric-field deflector substantially encloses the electric field generated between the open end and the ground electrode in between the open end and the ground electrode and deflects the direction of an electric field vector from the direction in which the first radiation electrode and the second radiation electrode extend.




The open end of the radiation electrode and the ground electrode may have opposing edges which are not perpendicular to the direction in which the first radiation electrode and the second radiation electrode extend. In other words, it is preferable that the electric-field deflector have an opposing edge for deflecting the direction of the electric field from the direction in which the feeding element and the parasitic element extend. Arranged as described above, part or the entirety of both opposing edges of the open end and the ground electrode are parallel to or tilted relative to the direction in which the feeding element and the parasitic element extend. Thus, the direction of the electric field generated between the open end of the radiation electrode and the ground electrode is changed. The electric field leaking from the opposing portion between the open end of the radiation electrode and the ground electrode is reduced compared with a case in which the opposing edges of the open end of the radiation electrode and the ground electrode are simply horizontal.




In the multi-resonance antenna of the present invention, a capacitance loading electrode may be provided at the open end of the radiation electrode. Preferably, the electric-field deflector is formed by the capacitance loading electrode and the ground electrode.




First and second capacitance loading electrodes may be formed at the open end of the first radiation electrode and the open end of the second radiation electrode, respectively. A first ground electrode may be formed opposite to the first capacitance loading electrode with a predetermined gap therebetween, and a second ground electrode may be formed opposite to the second capacitance loading electrode with a predetermined gap therebetween.




In this case, it is preferable that the electric-field deflectors be formed between the first capacitance loading electrode and the first ground electrode and between the second capacitance loading electrode and the second ground electrode.




Preferably, in order to miniaturize the multi-resonance antenna, the first radiation electrode and the second radiation electrode are formed to be strip-shaped and parallel to each other on a first principal surface of a substantially-rectangular dielectric base member, and the first capacitance loading electrode and the second capacitance loading electrode are formed on an end surface adjacent to the first principal surface of the dielectric base member.




In this case, the first ground electrode and the second ground electrode may be formed on the end surface of the dielectric base member, and the electric-field deflectors may be similarly formed on the end surface.




According to the present invention, there is provided a multi-resonance antenna including a dielectric base member; a first radiation electrode and a second radiation electrode which are strips formed in parallel to each other on a principal surface of the dielectric base member; a feeding electrode for feeding power to the first radiation electrode; an earth electrode for grounding the second radiation electrode; first and second capacitance loading electrodes formed at open ends of the first and second radiation electrodes, respectively; a ground electrode arranged opposite to each of at least one of the first and second capacitance loading electrodes. The capacitance loading electrode and the ground electrode are provided with protruding electrodes which extend in the opposite directions in a portion where the capacitance loading electrode and the ground electrode are opposed to each other.




According to the multi-resonance antenna, the protruding electrodes are formed opposite to each other in the opposing portion between the capacitance loading electrode and the ground electrode. Thus, electric lines of force leaking from the opposing portion between the capacitance loading electrode and the ground electrode can be reduced. As a result, mutual interference in the adjacent capacitance loading electrode by the electric lines of force from the opposite side is weakened.




In other words, the opposing edges of the capacitance loading electrode and the ground electrode become longer, and the electric lines of force are concentrated at the opposing portion. Also, the direction of electric lines of force in the opposing portion between the capacitance loading electrode and the ground electrode is changed, and mutual interference in electric lines of force between the adjacent feeding element and the parasitic element is weakened. As a result, multi-resonance matching between the feeding element and the parasitic element can be achieved.




In the multi-resonance antenna, it is preferable that the protruding electrode of the capacitance loading electrode and the protruding electrode of the ground electrode have opposing edges which extend in a direction differing from the direction in which the plurality of capacitance loading electrodes are aligned.




With this electrode arrangement, electric lines of force in the opposing portion between the capacitance loading electrode and the ground electrode are aligned in the same direction as the direction in which the opposing edges are arranged. The distribution density of electric lines of force becomes maximum in the opposing edges. Thus, the electric-field coupling with the adjacent radiation electrode is greatly weakened, and it is possible to make sufficient adjustments in order to cause satisfactory multi-resonance to occur.











BRIEF DESCRIPTION OF THE DRAWINGS





FIGS. 1A and 1B

show a multi-resonance antenna according to a first embodiment of the present invention, wherein

FIG. 1A

is a perspective view of a front surface, and

FIG. 1B

is a perspective view of a back surface;





FIG. 2

is an enlarged plan view showing capacitance loading electrodes and ground electrodes in the multi-resonance antenna;





FIGS. 3A and 3B

are schematic illustrations for describing electric-field deflectors in the multi-resonance antenna;





FIG. 4

shows return loss characteristics of the multi-resonance antenna according to the embodiment of the prevent invention;





FIG. 5

shows VSWR characteristics of the multi-resonance antenna according to the embodiment of the prevent invention;





FIGS. 6A

to


6


C show a multi-resonance antenna according to a second embodiment of the present invention, wherein

FIG. 6A

is a perspective view of a front surface,

FIG. 6B

is a perspective view of a back surface observed from a ground electrode side, and

FIG. 6C

is a perspective view of the back surface observed from a feeding electrode side;





FIG. 7

is an enlarged side view showing capacitance loading electrodes and ground electrodes in a multi-resonance antenna according to a third embodiment of the present invention;





FIG. 8

is an enlarged side view showing capacitance loading electrodes and ground electrodes in a multi-resonance antenna according to a fourth embodiment of the present invention;





FIG. 9

is an enlarged side view showing capacitance loading electrodes and ground electrodes in a multi-resonance antenna according to a fifth embodiment of the present invention;





FIG. 10

is an enlarged side view of a capacitance loading electrode and a ground electrode in a multi-resonance antenna according to a sixth embodiment of the present invention;





FIG. 11

is an enlarged side view of a capacitance loading electrode and a ground electrode in a multi-resonance antenna according to a seventh embodiment of the present invention;





FIG. 12

is a perspective view of a known multi-resonance antenna;





FIG. 13

shows VSWR characteristics for describing multi-resonance of the multi-resonance antenna; and





FIG. 14

shows VSWR characteristics for describing multi-resonance of the multi-resonance antenna.











BEST MODE FOR CARRYING OUT THE INVENTION




Hereinafter, a multi-resonance antenna according to the present invention is described using embodiments.




First Embodiment





FIGS. 1A and 1B

show a multi-resonance antenna according to a first embodiment of the present invention.

FIG. 1A

shows the multi-resonance antenna observed from a front surface side, and

FIG. 1B

shows the multi-resonance antenna observed from a back surface side.




Referring to

FIGS. 1A and 1B

, a dielectric base member


10


is a rectangular parallelepiped and is formed of ceramic with a high relative dielectric constant. Transverse end surfaces


11


and


12


of the dielectric base member


10


contain through holes


13


penetrating through the end surface


11


and the end surface


12


. Thus, the weight and the cost of the dielectric base member


10


are reduced.




The dielectric base member


10


is provided with a feeding element


16


and a parasitic element


17


on which electrodes are formed, which will be described below. Specifically, a first radiation electrode


18


and a second radiation electrode


19


, both of which are in the shape of a strip, are formed on a first principal surface (top surface)


14


of the dielectric base member


10


. The first radiation electrode


18


and the second radiation electrode


19


are formed with a predetermined distance therebetween and are substantially parallel to each other. The necessary number of slits


20


is provided on the surface of the first radiation electrode


18


forming the feeding element


16


. The effective electrical length of the feeding element


16


is adjusted by the slits


20


. A ground conductor layer


23


is formed on substantially the entirety of a second principal surface (bottom surface)


15


of the dielectric base member


10


excluding the periphery of a feeding terminal


30


described below.




On a longitudinal end surface


21


of the dielectric base member


10


positioned an open end


18


A of the first radiation electrode


18


and an open end


19


A of the second radiation electrode


19


, a first capacitance loading electrode


24


which is continuous with the first radiation electrode


18


and a second capacitance loading electrode


25


which is continuous with the second radiation electrode


19


are provided. On the end surface


21


, a first ground electrode


26


which is formed opposite to the first capacitance loading electrode


24


with a predetermined gap therebetween and a second ground electrode


27


which is formed opposite to the second capacitance loading electrode


25


with a predetermined gap therebetween are provided. The ground electrodes


26


and


27


are connected to the ground conductor layer


23


on the bottom surface


15


of the dielectric base member


10


.




On a second longitudinal end surface


22


of the dielectric base member


10


, a feeding electrode


28


and a ground electrode


29


are provided. A feeding end


18


B of the first radiation electrode


18


is connected through the feeding electrode


28


to the feeding terminal


30


which is provided on the bottom surface


15


of the dielectric base member


10


. A ground end


19


B of the second radiation electrode


19


is connected through the ground electrode


29


to the ground conductor layer


23


. Arranged as described above, the feeding terminal


30


is connected, preferably through an impedance matching circuit, to a signal source formed on a circuit board of an information terminal (not shown), such as to a wireless transmitting/receiving circuit. The ground conductor layer


23


is connected to a ground pattern of the circuit board.




According to the multi-resonance antenna of the first embodiment, the feeding element


16


and the parasitic element


17


have features in portions where the first capacitance loading electrode


24


, the second capacitance loading electrode


25


, the first ground electrode


26


, and the second ground electrode


27


, all of which are formed on the end surface


21


of the dielectric base member


20


, are opposed to the corresponding electrode. These features will now be described using an enlarged view shown in FIG.


2


.




A first capacitance loading stepped-portion


31


is provided at the bottom of the first capacitance loading electrode


24


. A second capacitance loading stepped-portion


32


is provided at the bottom of the second capacitance loading electrode


25


. These capacitance loading stepped-portions


31


and


32


contain flat edge portions


33


and


34


and extending portions


35


and


36


. The flat edge portions


33


and


34


extend in the horizontal direction so as to be separated from side edges (inner edges)


24


A and


25


A of the capacitance loading electrodes


24


and


25


, respectively. The extending portions


35


and


36


are formed by extending outer edges


24


B and


25


B of the capacitance loading electrodes


24


and


25


, respectively, downward.




In contrast, at the top of the first ground electrode


26


and the second ground electrode


27


, a first ground stepped-portion


37


and a second ground stepped-portion


38


are provided in accordance with the shape of the first capacitance loading stepped-portion


31


and the second capacitance loading stepped-portion


32


. Flat portions


39


and


40


formed by horizontal edges of the ground stepped-portions


37


and


38


are opposed to leading edges of the extending portions


35


and


36


, respectively. Protruding portions


41


and


42


forming the ground stepped-portions


37


and


38


protrude in the direction toward the flat portions


33


and


34


of the capacitance loading stepped-portions


31


and


32


, respectively, and have leading edges opposed to the flat portions


33


and


34


. With this electrode arrangement, the extending portions


35


and


36


of the capacitance loading stepped-portions


31


and


32


and the protruding portions


41


and


42


of the ground stepped-portions


37


and


38


have opposing edges


35


A,


36


A,


41


A, and


42


A which extend in the vertical direction.




In the electrode arrangement in which the extending portions


35


and


36


and the protruding portions


41


and


42


are formed to extend in the opposite directions, when high-frequency power is supplied from the feeding electrode


28


to the feeding element


16


, the electric fields in the capacitance loading electrodes


24


and


25


are concentrated at the opposing portions where the capacitance loading electrode


24


is opposed to the ground electrode


26


and the capacitance loading electrode


25


is opposed to the ground electrode


27


, as indicated by the arrows in FIG.


3


A. Thus, the electric field leaking from the opposing portions between the capacitance loading electrode


24


and the ground electrode


26


and between the capacitance loading electrode


25


and the ground electrode


27


is reduced. As a result, the electric-field coupling between the feeding element


16


and the parasitic element


17


is weakened in portions of the capacitance loading electrodes


24


and


25


.




In other words, the directions of electric lines of force are changed in the vertical opposing edges


35


A,


36


A,


41


A, and


42


A of the extending portions


35


and


36


of the capacitance loading stepped-portions


31


and


32


and the protruding portions


41


and


42


of the ground stepped-portions


37


and


38


. Accordingly, the distribution of electric lines of force changes in each opposing portion between the capacitance loading electrodes


24


and the ground electrodes


26


and between the capacitance loading electrode


25


and the ground electrodes


27


. In other words, as shown in

FIG. 3A

, mutual interference in electric lines of force in the capacitance loading stepped-portions


31


and


32


of the adjacent feeding element


16


and the parasitic element


17


is changed.




In general, the maximum distribution of the electric field is near the open ends of the feeding element and the parasitic element. When the electrodes are arranged as shown in

FIG. 3B

, that is, when the gap between a capacitance loading electrode


124


and a ground electrode


126


at the feeding element side and the gap between a capacitance loading electrode


125


and a ground electrode


127


at the parasitic element side are formed in the vertical direction relative to the direction in which the capacitance loading electrodes


124


and


125


extend, the electric field leaking from the portion between the capacitance loading electrode


124


and the ground electrode


126


and the electric field leaking from the portion between the capacitance loading electrode


125


and the ground electrode


127


are easily coupled with each other. Thus, When having chip-type antenna built in portable phone, the feeding element can be arranged adjacent to the parasitic element.




In contrast, as shown in

FIG. 3A

, according to the first embodiment, the electric fields are enclosed between the first capacitance loading electrode


24


and the first ground electrode


26


and between the second capacitance loading electrode


25


and the second ground electrode


27


, and the directions of the electric field vectors are deflected. Thus, coupling is weakened, and undesired electric-field coupling between the feeding element and the parasitic element is suppressed. Accordingly, a small surface-mountable multi-resonance antenna with the optimal electric-field coupling between the feeding element and the parasitic element can be achieved.




In other words, according to the first embodiment, an “electric-field deflector” is formed in each of at least one of the portion between the open end of the first radiation electrode and the first ground electrode (that is, the portion between the first capacitance loading electrode and the first ground electrode) and the portion between the open end of the second radiation electrode and the second ground electrode (that is, the portion between the second capacitance loading electrode and the second ground electrode) and is used to deflect electric fields generated in these portions. In other words, the electric-field deflectors control the coupling between the electric field generated in the portion between the open end of the first radiation electrode and the first ground electrode and the electric field generated in the portion between the open end of the second radiation electrode and the second ground electrode. In particular, the electric-field deflectors are used to enclose the electric field and to deflect the directions of the electric-field vectors.




As shown in

FIG. 2

, the entire length of the opposing edges of the capacitance loading stepped-portions


31


and


32


and the ground stepped-portions


37


and


38


is approximately increased by the length of the vertical opposing edges


35


A,


36


A,


41


A, and


42


A of the capacitance loading stepped-portions


31


and


32


and the ground stepped-portions


37


and


38


. Most of the electric lines of force pass through the opposing portions between the capacitance loading electrodes


24


and


25


and the ground electrodes


26


and


27


. As a result, the electric-field coupling between the feeding element


16


and the parasitic element


17


is weakened. Thus, when the feeding element


16


and the parasitic element


17


are provided in close vicinity to each other, satisfactory multi-resonance can be achieved.




In particular, according to the multi-antenna according to the first embodiment, the sticking-out ground-side protruding portions


41


and


42


are formed at the side (inner side) where the first ground electrode


26


and the second ground electrode


27


are opposed to each other. Undesirable electric-field coupling between the feeding element


16


and the parasitic element


17


can be suppressed more efficiently.




Specific characteristics of the foregoing multi-resonance antenna will now be described.




The dielectric base member


10


with a length of 6 mm, a width of 6 mm, and a height of 5 mm is produced using a ceramic material with a relative dielectric constant of 6.4. On a surface of the dielectric base member


10


, the feeding element


16


and the parasitic element


17


in which the electrodes are arranged as described above are formed. The first radiation electrode


18


and the second radiation electrode


19


each have a width of 2.0 mm and a length of 9.0 mm. The entire length of the first capacitance loading electrode


24


and the feeding electrode


28


and the entire length of the second capacitance loading electrode


25


and the ground electrode


29


are each 18 mm. The distance between the first radiation electrode


18


and the second radiation electrode


19


is 2.0 mm.

FIG. 4

shows return loss characteristics in a case in which the horizontal axis represents frequency in this case, and

FIG. 5

shows VSWR (voltage standing wave ratio) characteristics.




The return loss characteristics shown in

FIG. 4

indicate a path generated by sweeping the frequency from 2.2 GHz to 2.7 GHz. Marker


1


indicates 2.4 GHz, marker


2


indicates 2.45 GHz, and marker


3


indicates 2.5 GHz. According to this characteristic curve, the resonance peaks are at the frequencies 2.41 GHz and 2.5 GHz, where the return loss is less than −10 dB. The feeding element


16


and the parasitic element


17


are in a multi-resonance matching state.




Referring to

FIG. 5

, markers


1


,


2


, and


3


indicate the same frequencies as those shown in FIG.


4


. Markers


1


and


3


indicate a VSWR of 1.5, and marker


2


indicates 1.6. According to this characteristic curve, the lower limit of the frequency in which VSWR is less than or equal to 2 is 2.39 GHz, and the upper limit is 2.53 GHz. Thus, the bandwidth is approximately 138 MHz.




Second Embodiment




Referring to

FIGS. 6A

to


6


C, a multi-resonance antenna according to a second embodiment of the present invention will now de described. The same reference numerals are given to components corresponding to those of the first embodiment shown in

FIGS. 1A and 1B

, and repeated descriptions of the common portions are omitted.




The multi-resonance antenna of the second embodiment differs from that of the first embodiment in that a feeding element


43


has a different electrode arrangement.




Specifically, referring to

FIGS. 6A and 6B

, unlike the radiation electrode shown in

FIGS. 1A and 1B

, the radiation electrode


18


of the feeding element


43


has a ground end


18


C at the end surface


22


side of the dielectric base member


10


. The radiation electrode


18


is connected to the ground conductor layer


23


through a ground electrode


49


formed on the end surface


22


.




In contrast, similar to

FIGS. 1A and 1B

, the capacitance loading electrode


24


is formed on the end surface


21


of the dielectric base member


10


. A feeding electrode


44


is provided opposite to the capacitance loading electrode


24


. Specifically, a feeding stepped-portion


47


constituted of a flat portion


45


and a protruding portion


46


is provided opposite to the capacitance loading stepped-portion


32


of the capacitance loading electrode


24


.




The feeding electrode


44


is connected to a feeding terminal


48


provided on the bottom surface


15


of the dielectric base member


10


. The structure of the parasitic element


17


relative to the feeding element


43


is the same as that of the first embodiment shown in

FIGS. 1A and 1B

.




With the electrode arrangement according to the second embodiment, high-frequency power supplied to the feeding terminal


48


is fed to the first radiation electrode


18


through the electrostatic capacitance between the capacitance loading stepped-portion


32


and the feeding stepped-portion


47


. In this case, similar to the first embodiment, the electric field leaking from the portion between the capacitance loading electrode


25


and the ground electrode


27


and the portion between the capacitance loading electrode


24


and the feeding electrode


44


is reduced. Thus, the electric-field coupling between the feeding terminal


43


and the parasitic element


17


can be optimally set.




Third Embodiment




In a multi-resonance antenna according to a third embodiment of the present invention, as shown in

FIG. 7

, a first capacitance loading electrode


51


and a first ground electrode


53


at the feeding element side are opposed to each other, with a predetermined gap therebetween, at parallel edges thereof which are formed perpendicular to the direction in which the first radiation electrode extends. Thus, the length of the opposing edge is the same as the width of the capacitance loading electrode


51


. Electric lines of force passing through the opposing portion between the capacitance loading electrode


51


and the ground electrode


53


greatly expand outside the opposing portion, and the electric field coupling with the adjacent parasitic element is strengthened. In other words, no electric-field deflector is provided at the feeding element side.




An extending portion


55


of a second capacitance loading electrode


52


at the parasitic element side is formed so as to be separated from the first capacitance loading electrode


51


as much as possible. A protruding portion


56


of a second ground electrode


54


is formed to greatly protrude upward between the first capacitance loading electrode


51


and the second capacitance loading electrode


52


. With this electrode arrangement, the electric-field deflector is formed at the parasitic element side, and vertical opposing edges


55


A and


56


A of the extending portion


55


and the protruding portion


56


become longer than the first embodiment shown in

FIGS. 1A and 1B

. Thus, electrical lines of force passing through the portion between the second capacitance loading electrode


52


and the second ground electrode


54


can be enclosed between the vertical opposing edges


55


A and


56


A of the extending portion


55


and the protruding portion


56


.




The gap between a leading edge of the protruding portion


56


of the second ground electrode


54


and an open end


19


A of a second radiation electrode is formed to be larger than the gap between the vertical opposing edges


55


A and


56


A. Thus, electrical lines of force passing through the leading edge of the protruding portion


56


are reduced, and the electric-field coupling with the first capacitance loading electrode


51


adjacent to the leading edge portion of the protruding portion


56


is weakened. Since the electric field leaking from the opposing portion between the first capacitance loading electrode


51


and the first ground electrode


53


is mainly coupled with the second ground electrode


54


, effects on the protruding portion


55


of the second capacitance loading electrode


52


and on the parasitic element can be greatly minimized.




Fourth Embodiment




In a multi-resonance antenna according to a fourth embodiment of the present invention, as shown in

FIG. 8

, no electric-field deflector is formed at the parasitic element side. A first capacitance loading electrode


57


at the feeding element side is provided with an extending portion


61


which is formed by extending a portion of the first capacitance loading electrode


57


near a second capacitance loading electrode


58


at the parasitic element side downward. Along the extending portion


61


, a protruding portion


62


is formed from a first ground electrode


59


side. Specifically, with this electrode arrangement of the electric-field deflector, similarly to the third embodiment, vertical opposing edges


61


A and


62


A of the extending portion


61


and the protruding portion


62


can be elongated.




In the fourth embodiment, the width of the first ground electrode


59


is narrower than the width of the second ground electrode


60


. The gap between a leading edge of the first capacitance loading electrode


57


and the first ground electrode


59


is wider than the gap between the vertical opposing edges


61


A and


62


A. Thus, the electric field leaking from the leading edge of the extending portion


61


is weakened. In other words, the electric field is concentrated at the vertical opposing edges


61


A and


62


A of the first capacitance loading electrode


57


and the first ground electrode


59


. Thus, the electric field leaking toward the adjacent second capacitance loading electrode


58


side can be reduced.




Fifth Embodiment




A multi-resonance antenna according to a fifth embodiment of the present invention, as shown in

FIG. 9

, is similar to the configuration of the first embodiment containing the first capacitance loading electrode


24


, the second capacitance loading electrode


25


, the first ground electrode


26


, and the second ground electrode


27


. However, at the sides where the feeding element and the parasitic element are opposed to each other, the gap between a leading edge of an extending portion


67


of a first capacitance loading electrode


63


and a first ground electrode


65


and the gap between a leading edge of an extending portion


68


of a second capacitance loading electrode


64


and a second ground electrode


66


are configured to be wider than the gaps in the other opposing portions.




When the electric-field deflectors are arranged as described above, the electric field leaking from the portions between the capacitance loading electrodes


63


and the ground electrode


65


and between the capacitance loading electrode


64


and the ground electrode


66


is increased, whereas the electric field at adjacent edges


63


A and


64


A of the capacitance loading electrodes


63


and


64


is weakened. In other words, portions where the electric field coupling between the capacitance loading electrodes


63


and the ground electrode


65


and between the capacitance loading electrode


64


and the ground electrode


66


is strong are deflected from the edges


63


A and


64


A toward the other opposing edges of the capacitance loading electrodes


63


and


64


and the ground electrodes


65


and


66


. As a result, the electric-field coupling between the capacitive loading electrodes


63


and


64


is weakened, and the excessive electric field coupling between the feeding element and the parasitic element can be reduced.




Sixth Embodiment




According to a sixth embodiment of the present invention, as shown in

FIG. 10

, an extending portion


73


is provided at the bottom of a capacitance loading electrode


71


. At the top of a ground electrode


72


, protruding portions


74


extending along both edges of the extending portion


73


are provided.




When the electric-field deflector is arranged as described above, the opposing edges of the capacitance loading electrode


71


and the ground electrode


72


are elongated by the length of vertical opposing edges of the extending portion


73


and the protruding portions


74


extending in the vertical direction. Electric lines of force leaking from the opposing portion between the capacitance loading electrode


71


and the ground electrode


72


are reduced. Unlike electric lines of force in horizontal opposing edges, electric lines of force in the vertical edges are in the horizontal direction. As a result, the distribution of electric lines of force in the opposing portion between the capacitance loading electrode


71


and the ground electrode


72


can be changed.




Seventh Embodiment




According to a seventh embodiment of the present invention, as shown in

FIG. 11

, the opposing portion between a capacitance loading electrode


75


and a ground electrode


76


includes a triangular extending portion


77


and a triangular protruding portion


78


, thus forming tilted opposing edges.




When the electric-field deflector is arranged as described above, the opposing edges become longer than horizontal opposing edges, and the directions of electric lines of force are tilted. When the opposing edges are tilted, the mutual interference in electric lines of force with an adjacent capacitance loading electrode is weakened.




The capacitance loading electrode described in the sixth embodiment and the seventh embodiment can be an electrode corresponding to the first capacitance loading electrode or an electrode corresponding to the second capacitance loading electrode. Also the ground electrode can be an electrode corresponding to the first ground electrode or an electrode corresponding to the second ground electrode.




In the foregoing embodiments, a single parasitic element is provided for the single feeding element


16


. In the multi-resonance antenna of the present invention, a plurality of parasitic elements can be provided for the single feeding element. In this case, the electrode arrangement in the opposing portion between the capacitance loading electrode and the ground electrode and the electrode arrangement in the opposing portion between the capacitance loading electrode and the feeding electrode can be configured in accordance with the arrangement described in any of the embodiments, and multi-resonance can be adjusted between the feeding element and the plurality of parasitic elements. Concerning the width of the radiation electrode of the feeding element and the width of the radiation electrode of the parasitic element, one can be made narrower than the other, thus changing the resonance frequency.




INDUSTRIAL APPLICABILITY




The multi-resonance antenna of the present invention has optimal electric-field coupling between a feeding element and a parasitic element, and can be preferably used for linking information terminals such as cellular phones, portable mobile.



Claims
  • 1. A multi-resonance antenna comprising:a feeding element including a first radiation electrode and a feeding electrode for feeding power to the first radiation electrode; a parasitic element including a second radiation electrode arranged next to the first radiation electrode; a ground electrode arranged opposite to an open end of at least one of the first radiation electrode and the second radiation electrode with a predetermined gap therebetween; and an electric-field deflector for suppressing electric-field coupling between the feeding element and the parasitic element, the electric-field deflector being disposed in a portion where said open end of said at least one of the first radiation electrode and the second radiation electrode and said ground electrode are opposed to each other.
  • 2. A multi-resonance antenna according to claim 1, wherein the first radiation electrode and the second radiation electrode are radiation electrode strips which are arranged approximately parallel to each other.
  • 3. A multi-resonance antenna according to claim 2, wherein the electric-field deflector substantially encloses an electric field generated between the open end of said at least one of the first radiation electrode and the second radiation electrode and the ground electrode and deflects the direction of an electric field vector from the direction in which the first radiation electrode and the second radiation electrode extend.
  • 4. A multi-resonance antenna according to claim 2, wherein the open end of the radiation electrode and the ground electrode have opposing edges which are not perpendicular to the direction in which the first radiation electrode and the second radiation electrode extend.
  • 5. A multi-resonance antenna according in claim 1, wherein capacitance. loading electrode is provided at the open end of the radiation electrode, and the electric-field deflector is defined by the capacitance loading electrode and the ground electrode.
  • 6. A multi-resonance antenna according to claim 5, wherein the capacitance loading electrode includes first and second capacitance loading electrode, the first capacitance loading electrode and the second capacitance loading electrode are disposed at the open end of the first radiation electrode and the open end of the second radiation electrode, respectively.
  • 7. A multi-resonance antenna according to claim 6, wherein the ground electrode includes first and second ground electrodes, the first ground electrode is disposed opposite to the first capacitance loading electrode with a predeterminded gap therebetween, and the second ground electrode is disposed opposite to the second capacitance loading electrode with a predetermined gap therebetween.
  • 8. A multi-resonance antenna according to claim 7, wherein the electric-field deflector is disposed between the first capacitance loading electrode and the first ground electrode and another electric-field deflector is disposed between the second capacitance loading electrode and the second ground electrode.
  • 9. A multi-resonance antenna according to claim 8, further comprising a substantially-rectangular dielectric base member, wherein the first radiation electrode and the second radiation electrode have a strip-shaped configuration and are substantially parallel to each other on a first major surface of the substantially-rectangular dielectric base member, and the first capacitance loading electrode and the second capacitance loading electrode are disposed on an end surface adjacent to the first major surface of the dielectric base member.
  • 10. A multi-resonance antenna according to claim 9, wherein the first ground electrode and the second ground electrode are disposed on the end surface of the dielectric base member, and the electric-field deflector is disposed on the end surface of the dielectric base member.
  • 11. A multi-resonance antenna according to claim 1, wherein the ground electrode is a first ground electrode and is arranged opposite to the open end of the first radiation electrode with a predetermined gap therebetween and a second ground electrode is arranged opposite to the open end of the first radiation electrode with a predetermined gap therebetween.
  • 12. A multi-resonance antenna according to claim 11, wherein the electric-field deflector is disposed in the portion between the open end of the first radiation electrode and the first ground electrode and another electric-field deflector is disposed in the portion between the open end of the second radiation electrode and the second ground electrode.
  • 13. A multi-resonance antenna comprising:a dielectric base member; a first radiation electrode and a second radiation electrode including strips arranged substantially parallel to each other on a major surface of the dielectric base member; a feeding electrode for feeding power to the first radiation electrode; a ground electrode for grounding the second radiation electrode; first and second capacitance loading electrodes disposed at open ends of the first and second radiation electrodes, respectively; a ground electrode arranged opposite to at least one of the first and second capacitance loading electrodes; wherein said at least one of the first and second capacitance loading electrodes and the ground electrode are provided with protruding electrodes which extend in opposite directions in a portion where said at least one of the first and second capacitance loading electrodes and the ground electrode are opposed to each other.
  • 14. A multi-resonance antenna according to claim 13, wherein the first and second capacitance loading electrodes are aligned each other.
  • 15. A multi-resonance antenna according to claim 14, wherein the protruding electrode of said at least one of the first and second capacitance loading electrodes and the protruding electrode of the ground electrode have opposing edges which extend in a direction that is different from the direction in which the first and second capacitance loading electrodes are aligned.
Priority Claims (1)
Number Date Country Kind
2001-046956 Feb 2000 JP
PCT Information
Filing Document Filing Date Country Kind
PCT/JP02/01367 WO 00
Publishing Document Publishing Date Country Kind
WO02/06737 8/29/2002 WO A
US Referenced Citations (2)
Number Name Date Kind
6437744 Akiyama et al. Aug 2002 B1
6677902 Akiyama et al. Jan 2004 B2
Foreign Referenced Citations (3)
Number Date Country
5-347509 Dec 1993 JP
5-347510 Dec 1993 JP
2001-007639 Jan 2001 JP