Multi-section core vacuum insulation panels with hybrid barrier film envelope

Information

  • Patent Grant
  • 10105931
  • Patent Number
    10,105,931
  • Date Filed
    Tuesday, February 7, 2017
    7 years ago
  • Date Issued
    Tuesday, October 23, 2018
    5 years ago
Abstract
A multi-layer vacuum insulating panel that includes: a first barrier film having at least one polymeric material layer and; a second barrier film having at least one interior polymeric layer, a metal foil layer, and at least one exterior polymeric layer positioned on the opposite side of the metal foil layer as the at least one interior polymeric layer; a sealing junction between the first barrier film and the second barrier film at a sealing section about a perimeter of the first barrier film and the second barrier film where the first barrier film and the second barrier film physically and sealingly engage one another; and a multi-section central core having a first fumed silica region that contains at least one fumed silica compound and at least one fibrous (fiberglass) region that are each discrete regions within the interior volume.
Description
BACKGROUND OF THE INVENTION

Vacuum insulation panels are shown in FIG. 1A of the present application, known vacuum insulation panels generally have a first side material 3, a second side material 4 that are typically the same and a single filling material 5. The single filling material may be a fiberglass material 6. As shown in FIG. 1A, both the first side and second side contain a metal foil layer between two thermal plastic layers.


BRIEF SUMMARY OF THE INVENTION

An aspect of the present invention is generally directed toward a multi-layer vacuum insulted panel that includes a first barrier film; a second barrier film; a sealing junction between the first barrier film and the second barrier film; a multi-section central core. The first barrier film includes at least one polymeric material. The first barrier film is free of a metal layer and has an interior facing surface. The second barrier film includes at least one interior polymeric layer, a metal foil layer and at least one exterior polymeric layer positioned on the opposite side of the metal foil layer at the at least one interior polymeric layer. The second barrier layer and first polymeric barrier layer define an interior volume between the first polymeric barrier layer and the second polymeric barrier layer. The interior volume has a width, a length, and a height. The sealing junction between the first barrier film and the second barrier film is located at a sealing section about a perimeter of the first barrier film and the second barrier film where the first barrier film and the second barrier film physically engage one another. The multi-section central core has a first fumed silica region that includes at least one fumed silica compound and at least one fiberglass region that are each discrete regions within the interior volume. The first fumed silica region is positioned within the interior volume and further positioned either (a) along at least a majority of a portion of the interior facing surface of the first barrier film or (b) along and proximate the sealing section and bridging sealing junction where the first barrier film and second barrier film engage one another. The portion of the interior volume free of the first fumed silica region defines a remaining interior volume. Each of the at one least fiberglass region(s) is (are) positioned within the remaining interior volume.


According to another aspect of the present invention, a multi-layer vacuum insulating panel includes a first barrier film, a second barrier film, a connection between the first barrier film and the second barrier film, and a bi-layer central core. The first barrier film typically includes a plurality of polymeric material layers where at least two of the plurality of polymeric layers are formed of different polymers and the first barrier film is free of a metal layer of material, more typically free of any metal material. The first barrier film has an interior facing surface and outwardly extending perimeter rim portion. The second barrier film typically includes at least one interior polymeric layer, a metal foil layer, and at least one exterior polymeric layer positioned on the opposite side of the metal foil layer as the at least one interior polymeric layer. The second barrier layer film and the first barrier film define an interior volume between the first barrier film and the second barrier film. The interior volume has a width, a length, and a height. The second barrier film has an outwardly extending perimeter rim portion. The connection between the first barrier film and the second barrier film is located about the outwardly extending perimeter of the first barrier and the second barrier film where the first barrier film and the second barrier film physically engage one another. The bi-layer central core generally includes a desiccant region and a fibrous region, typically a fiberglass containing region that are typically each discrete regions within the interior volume. Each region makes up from about 30% to about 70% of the interior volume and the desiccant region is positioned adjacent the first barrier film and the fibrous region is positioned adjacent the second barrier film more typically the desiccant region makes up over 50% of the interior volume.


Yet another aspect of the present invention includes a method of producing a multi-layer vacuum insulating panel includes the steps of: providing a first barrier film that includes a plurality of polymeric material layers where at least two of the plurality of polymeric layers are formed of different polymers and the first barrier film is free of a metal layer and the first barrier film has a first surface; providing a second barrier film that includes at least one interior polymeric layer, a metal foil layer, and at least one exterior polymeric layer positioned on the opposite side of the metal foil layer as the at least one interior polymeric layer; forming a desiccant layer that includes fumed silica power adjacent the first surface of the first barrier film; forming a fiberglass layer over at least substantially all of the desiccant layer; layering the second barrier film over the fiberglass layer; and heat sealing a perimeter of the first barrier film with a perimeter of the second barrier film to form the multi-layer vacuum insulating panel.


These and other features, advantages, and objects of the present invention will be further understood and appreciated by those skilled in the art by reference to the following specification, claims, and appended drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of the invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there are shown in the drawings, certain embodiment(s) which are presently preferred. It should be understood, however, that the invention is not limited to the precise arrangements and instrumentalities shown. Drawings are not necessary to scale. Certain features of the invention may be exaggerated in scale or shown in schematic form in the interest of clarity and conciseness.



FIG. 1 is a cross-sectional view of a prior art vacuum insulation panel;



FIG. 2 is a chart showing the thermal conductivity of vacuum insulation panels containing entirely fiberglass and entirely fumed silica with their interior overtime based on accelerated aging tests;



FIG. 3 is a perspective view of a vacuum insulation panel according to an aspect of the present invention;



FIG. 4 is a cross-sectional view taken along the plane shown in FIG. 3 according to an embodiment of the present invention;



FIG. 4A is an enlarged view of the section designated 4A in FIG. 4 of the present application;



FIG. 5 is a cross-sectional view taken along the plane shown in FIG. 3 according to an embodiment of the present invention;



FIG. 5A is an enlarged view of the section designated 5A in FIG. 5 of the present application;



FIG. 6 is a cross-sectional view taken along the plane shown in FIG. 3 according to an embodiment of the present invention;



FIG. 6A is an enlarged view of the section designated 6A in FIG. 6 of the present application;



FIG. 7 is a cross-sectional view taken along the plane shown in FIG. 3 according to an embodiment of the present invention;



FIG. 7A is an enlarged view of the section designated 7A in FIG. 7 of the present application;



FIG. 8 is a cross-sectional view taken along the plane shown in FIG. 3 according to an embodiment of the present invention;



FIG. 8A is an enlarged view of the section designated 7A in FIG. 7 of the present application;



FIG. 9 is a perspective view of an appliance showing incorporation the multi-sectional core vacuum insulation panels within the appliance walls; and



FIG. 10 is a flow chart showing a process of producing a multi-section core vacuum insulation panel according to an aspect of the present invention.





DETAILED DESCRIPTION

Before the subject invention is described further, it is to be understood that the invention is not limited to the particular embodiments of the invention described below, as variations of the particular embodiments may be made and still fall within the scope of the appended claims. It is also to be understood that the terminology employed is for the purpose of describing particular embodiments, and is not intended to be limiting. Instead, the scope of the present invention will be established by the appended claims.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range, and any other stated or intervening value in that stated range, is encompassed within the invention. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the invention, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the invention.


In this specification and the appended claims, the singular forms “a,” “an” and “the” include plural reference unless the context clearly dictates otherwise.


The present invention is generally directed toward a multi-section core vacuum insulation panel(s) 10 that can be used in connection with insulating an appliance 12. (See FIGS. 3 and 8). As shown in the attached FIG. 2, vacuum insulation panels containing solely fumed silica do not have as high of an initial thermal conductivity compared to vacuum insulation panels containing solely glass fibers, but have less thermal conductivity over a majority of the time period and significantly less as a greater amount of time passes. However, a significant improvement in thermal conductivity is achieved by use of vacuum insulation panels solely containing fiber glass over the first few years.


As shown in FIGS. 3-8A, the multi-section core vacuum insulation panels 10 according to various aspects of the present invention generally include a first barrier film 14; a second barrier film 16; a sealing junction 18; and multi-section core 20 within the interior volume defined by the first barrier film 14 and the second barrier film 16.


Generally speaking, the first barrier film may include one or more layers of the same or various polymeric materials. Such polymeric materials typically include polyethylene terephthalate, polybutylene terephthalate, polypropylene and nylon. One or more combinations of various polymeric materials may be used. Typically the interior facing layer is a heat sealing layer that is often a low density polyethylene layer. The first barrier film is typically free of a metal foil layer and more typically free of metal entirely.


The second barrier film typically includes a metal foil layer 30. Typically, the metal foil layer is the central layer of a three (or more) layer system where an outer layer (or layers) of a polymeric material(s) 32 is (are) on one side of the metal foil and at least one heat seal layer on the interior facing opposite side of the metal foil layer. The interior facing opposite side of the metal foil may have one or more polymeric material layers 34 positioned between the heat seal layer and the metal foil layer. The heat seal layer is a polymeric material typically a low density polyethylene layer, as discussed above.


Most commonly the second barrier film is a three layer film that includes an outer protective layer of polyethylene terephthalate, an aluminum foil middle layer where the aluminum foil has a thickness of at least about 6 μm, and a heat seal layer on the interior facing side of the second barrier film which is typically a low density polyethylene. As discussed above, additional polymer layers on either side of the metal foil layer may be employed. Two or more polymer layers may be employed on the outer facing side of the metal foil and two or more polymeric materials may be placed on the interior facing side of the metal foil. Other possible polymeric materials include those discussed above: polypropylene, nylon, and metalized polyethylene terephthalate. The second barrier film contains an aluminum layer while the first barrier film is typically free of any metal layer more typically free of any metal.


This vacuum insulated panel construction with only one barrier film side containing a metal foil and the other being metal foil layer free helps to facilitate less edge loss, the gas and water penetration through the side of the vacuum insulation panel, thus strikingly increasing the longevity of the vacuum insulation panel.


According to an aspect of the present invention, as shown in FIGS. 4-7, the interior volume of the multi-section core 20, which is defined by the interior facing surfaces 22, 24 of the first barrier film and the second barrier film respectively, contains at least two discrete regions containing a desiccant such as a fumed silica in one region and a inorganic fiber material such as fiberglass in the other discrete region. In addition to fiberglass, other inorganic fibers may be used instead of or in addition to fiberglass. The other fibers include inorganic wool and ceramic fibers.


The desiccant region 26 and the fibrous region 28 are shown in FIGS. 4-5A as extending substantially across the width of the vacuum insulation panel 10. As these Figures also show the desiccant region as making up approximately 60% (FIGS. 4 and 4A) or about 50% (FIGS. 5 and 5A) of the interior volume of the vacuum insulation panel and similarly the fibrous region making up about 40% and approximately 50% of the interior volume of the vacuum insulation panel. The desiccant region and the fibrous region in these embodiments are generally rectangular cuboid in shape in the finished vacuum insulation panel. The desiccant region consists essentially of desiccant, i.e. the region is free of any other material that might materially adversely affect the moisture absorbing properties of the region. Minor aspects of impurities may be present, but are not preferred. Similarly, the fibrous region is typically comprised of one or more fibrous materials, typically fiberglass or one or more inorganic fibrous materials. This region similarly consists of essentially of inorganic material(s), typically one or more inorganic fibrous materials, but may contain minor amounts of other materials that do not materially affect the nature of the fibrous region, in particular that do not materially affect the nature of the vacuum insulating panel's construction and/or the insulation properties of the material(s) within the fibrous region(s).


Importantly, the desiccant region(s) typically encompasses at least about 30%, 50%, over 50%, about 55%, about 60% or more, about 70% or more, or about 75% or more of the total interior volume of the vacuum insulation panel. Additionally, while it is possible to locate the desiccant region elsewhere in the vacuum insulation panel, the most significant improvements are achieved by having the desiccant region cover all of the volume defined by the first barrier film and extending over the sealing junction 18 into at least a portion of the interior volume defined by the second barrier film 16 as shown in FIGS. 4-5A. The desiccant increases the longevity of the vacuum insulation panel due to its moisture absorbing properties. As moisture is transmitted through the first barrier film, moisture vapor is absorbed and typically captured and retained by the large amount of desiccant material thereby preventing loss of vacuum pressure in the vacuum insulation panel and increasing the longevity of the vacuum insulation panel.


The desiccant region may include a plurality of the different desiccants. A preferred desiccant is a fumed silica powder. The fumed silica may be a pyrogenic silica having microscopic droplets of amorphous silica fused together. The fumed silica may have a (Brunauer Emmett and Teller BET) specific surface area of at least 380 m2/g. A higher surface area and moisture absorption rate material is most preferred. The desiccant region will either be positioned within the interior volume of the vacuum insulation panel along at least a majority (typically all) of the interior facing surface of the first barrier film and/or along and approximate the sealing junction 18 of the sealing section 17 between the first barrier film 14 and the second barrier film 16, specifically along and proximate the sealing junction 18 and bridging the junction point where the first barrier film and the second barrier film engage one another(in the cross section). The desiccant region is typically contains one or more fumed silica and is free of fibrous material. More typically, the desiccant region is a single fumed silica powder only and free of any other materials. The desiccant material, as shown in FIGS. 4-5A, typically extends across the width and length of the interior volume.


Similarly, the fibrous region may contain a plurality of the different (inorganic) fiber materials, but typically contains one or more fiberglass materials. As shown in FIGS. 4-5A, the fibrous region is typically a rectangular cuboid shaped material in the completed vacuum insulation panels and extends such that it covers the interior surface of the second barrier film. The fibrous region also typically extends across the width and length of the interior volume.


An alternative embodiment is shown in FIGS. 6 and 6A. In this embodiment, the fibrous material bridges the junction point 19 between the first barrier film 14 and the second barrier film 16 forming a rectangular cuboid central layer. The desiccant regions 26, 26′ are on opposing sides of the fibrous region. Both desiccant regions are similarly rectangular cuboid in shape.


Another aspect of the present invention is shown in FIGS. 7 and 7A. In this aspect, the desiccant region is a rectangular cuboid bridging the sealing junction 18 and the junction point 19 between the first barrier film 14 and the second barrier film 16. The fibrous regions 28, 28′ are similarly rectangular cuboid in shape and on opposing sides of the central desiccant region.


Another aspect of present invention is shown in FIGS. 8 and 8A. In this aspect, the desiccant region occupies the volume about the perimeter of the vacuum insulation panel on all four sides of the vacuum insulation panel interior and bridges the sealing junction 18 between the first barrier film 14 and the second barrier film 16 and extends from the first barrier film to the second barrier film. The fibrous region 28 occupies the center portion of the interior volume of the vacuum insulation panel.


The multi-section core vacuum insulation panels of the present invention typically have an initial thermal conductivity of about 3 mW/m·K and after 10 years has a thermal conductivity of at least about 8 mW/m·K or less (based upon 180 day accelerated aging test at 82° C. to simulate wear after 10 years in real application).


The method of producing the multi-layer insulating panel(s) 100 described herein typically includes the step of producing or providing a first barrier film 110 comprising a plurality of polymeric material layers where at least two of the plurality of polymeric layers are formed of different polymers and the first barrier film is free of a metal layer and has a first surface. The process further typically includes producing or providing a second barrier film 120 that includes at least one interior polymeric layer, a metal foil layer (typically an aluminum foil layer) and more typically an aluminum foil layer having at least 6 microns thickness, at least one exterior polymeric layer positioned on the opposite side of the metal foil layer as the at least one interior polymeric layer.


The process further typically includes the step of forming at least one desiccant layer or region 130 that comprises, consists essentially of, or consists of a fumed silica powder. The desiccant layer is typically positioned adjacent the first surface of the first barrier film, but could alternatively be positioned such that it bridges the junction between the first barrier film and the second barrier film. The process further typically includes forming a fiberglass layer 140 over at least substantially all of the desiccant layer when the desiccant layer is a planar layer. This step may alternatively involve forming a fiberglass region or layer in such a manner as to fill the remaining interior volume of the multi-layer vacuum insulation panel being formed that is not occupied by the desiccant layer. The process typically next include layering the second barrier film over the fiberglass layer 150 when both the desiccant layer and fiberglass (fibrous) layer are planar or over the central core section of the vacuum insulated panel. Next a portion of the sealing section is sealed 160 around the perimeter of the vacuum panel. The partially sealed vacuum insulated panel is then placed in a vacuum chamber 170 where a vacuum is applied and the remaining, unsealed portion of the sealing section sealed 180, typically also by heat sealing.


Thereafter, the completed multi-section core vacuum insulated panel may be installed between any two walls of an appliance, typically a refrigerator. (See FIG. 9). The panels may be placed between the exterior and interior walls or between two interior walls in a mullion. The thickness of a wall using the multi-section core vacuum insulated panels may maintain the same thickness as a wall without, but would conserve more energy or alternatively wall thickness may be lessened to increase interior volume of the appliance to allow for greater food storage while maintaining the same energy efficiency as an appliance with thicker walls employ more traditional urethane foam insulation only.

Claims
  • 1. A multi-layer vacuum insulating panel comprising: a first barrier film comprising a plurality of polymeric material layers where at least two of the plurality of polymeric layers are formed of different polymers and the first barrier film is free of a metal layer and wherein the first barrier film has an interior facing surface and the first barrier film has an outwardly extending perimeter rim portion;a second barrier film comprising at least one interior polymeric layer, a metal foil layer, and at least one exterior polymeric layer positioned on the opposite side of the metal foil layer as the at least one interior polymeric layer; wherein the second barrier film and the first barrier film define an interior volume between the first barrier film and the second barrier film and wherein the interior volume has a width, a length and a height and the second barrier film has an outwardly extending perimeter rim portion; anda connection between the first barrier film and the second barrier film is located about the outwardly extending perimeter of the first barrier film and the second barrier film where the first barrier film and the second barrier film physically engage one another; anda bi-layer central core having a desiccant region and a fibrous region that are each discrete regions within the interior volume wherein each make up from about 30-70% of the interior volume and the desiccant region is positioned adjacent the first barrier film and the fibrous region is positioned adjacent the second barrier film.
  • 2. The multi-layer vacuum insulating panel of claim 1, wherein: the connection between the first barrier film and the second barrier film is a heat sealed connection and wherein the desiccant region and the fibrous region each make up about 50% of the interior volume.
  • 3. The multi-layer vacuum insulating panel of claim 1, wherein: the desiccant region comprises a pyrogenic silica having microscopic droplets of amorphous silica fused together, and wherein the pyrogenic silica has a Brunauer, Emmett and Teller (BET) specific surface area of at least 380 m2/g.
  • 4. The multi-layer vacuum insulating panel of claim of claim 1, wherein: the interior polymeric layer of the second barrier film is a polymer adapted to heat sealingly engage the first barrier film and the exterior polymeric layer is a polymeric protective layer comprising polybutylene terephthalate, and wherein the metal foil layer of the second barrier film is an aluminum foil layer, and wherein the desiccant region consists essentially of a fumed silica powder and the fibrous region consists essentially of a fiberglass.
  • 5. The multi-layer vacuum insulating panel of claim 4, wherein: the desiccant region and the fibrous region each make up from about 45% to about 55% of the interior volume and wherein the second barrier film allows less moisture transmission through the layer than the first barrier film.
  • 6. The multi-layer vacuum insulating panel of claim 1, wherein: the connection between the first barrier film and the second barrier film forms a sealing junction at a sealing section about the outwardly extending perimeter rim portion of the first barrier film;wherein the desiccant region is positioned within the interior volume and further positioned either (a) along at least a majority of a portion of the interior facing surface of the first barrier film or (b) along and proximate the sealing section and bridging the sealing junction where the first barrier film and the second barrier film physically engage one another.
  • 7. The multi-layer vacuum insulating panel of claim 1, wherein: the fibrous region is positioned within the interior and extends across the width and length of the interior volume and is adjacent the second barrier film.
  • 8. The multi-layer vacuum insulating panel of claim 7, wherein: the desiccant region is positioned within the interior volume and extends across the width and length of the interior volume and is adjacent the first barrier film.
  • 9. The multi-layer vacuum insulating panel of claim 1, wherein: the desiccant region is positioned about a perimeter volume of the interior volume, wherein the perimeter volume is proximate the connection between the first barrier film and the second barrier film, and wherein the at least one desiccant region extends between the first barrier film and the second barrier film and wherein the fibrous region is positioned within a center volume of the interior volume and extends between the first barrier film and the second barrier film.
  • 10. The multi-layer vacuum insulating panel of claim 9, wherein: the desiccant region consists of fumed silica and the fibrous region consists of fiberglass.
  • 11. The multi-layer vacuum insulating panel of claim 1, wherein: the fibrous region extends across the width of the interior volume and the fibrous region is a continuous section.
  • 12. The multi-layer vacuum insulating panel of claim 11, wherein: the desiccant region is a continuous section of the multi-layer vacuum insulating panel.
  • 13. The multi-layer vacuum insulating panel of claim 12, wherein: the desiccant region comprises a first desiccant region, andthe fibrous region is positioned between the first desiccant region and a second desiccant region wherein the first desiccant region is positioned adjacent the first barrier film and the second desiccant region is positioned adjacent the second barrier film.
  • 14. The multi-layer vacuum insulating panel of claim 1, wherein: the first barrier film has at least one side wall about a perimeter of the first barrier film that extends away from the connection between the first barrier film and the second barrier film, and wherein the first barrier film further comprises a substantially planar center section interconnected with the at least one side wall such that the first barrier film is tray-shaped; and wherein the second barrier film has at least one side wall about a perimeter of the second barrier film that extends away from the connection between the first barrier film and the second barrier film, and further comprises a substantially planar center section interconnected with the at least one side wall such that the second barrier film is tray-shaped.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. patent application Ser. No. 14/187,605, filed on Feb. 24, 2014, now U.S. Pat. No. 9,689,604, issued on Jun. 27, 2017, entitled “MULTI-SECTION CORE VACUUM INSULATION PANELS WITH HYBRID BARRIER FILM ENVELOPE,” the entire disclosure of which is hereby incorporated herein by reference.

US Referenced Citations (403)
Number Name Date Kind
948541 Coleman Feb 1910 A
1275511 Welch Aug 1918 A
1849369 Frost Mar 1932 A
2108212 Schellens Feb 1938 A
2128336 Torstensson Aug 1938 A
2164143 Munters Jun 1939 A
2318744 Brown May 1943 A
2356827 Coss et al. Aug 1944 A
2432042 Richard Dec 1947 A
2439602 Heritage Apr 1948 A
2439603 Heritage Apr 1948 A
2451884 Stelzer Oct 1948 A
2538780 Hazard Jan 1951 A
2559356 Hedges Jul 1951 A
2729863 Kurtz Jan 1956 A
2768046 Evans Oct 1956 A
2817123 Jacobs Dec 1957 A
2942438 Schmeling Jun 1960 A
2985075 Knutsson-Hall May 1961 A
3086830 Malia Apr 1963 A
3125388 Costantini et al. Mar 1964 A
3137900 Carbary Jun 1964 A
3218111 Steiner Nov 1965 A
3258883 Campanaro et al. Jul 1966 A
3358059 Snyder Dec 1967 A
3379481 Fisher Apr 1968 A
3408316 Mueller et al. Oct 1968 A
3471416 Fijal Oct 1969 A
3597850 Jenkins Aug 1971 A
3607169 Coxe Sep 1971 A
3634971 Kesling Jan 1972 A
3635536 Lackey et al. Jan 1972 A
3688384 Mizushima et al. Sep 1972 A
3769770 Deschamps et al. Nov 1973 A
3862880 Feldman Jan 1975 A
3868829 Mann et al. Mar 1975 A
3875683 Waters Apr 1975 A
3910658 Lindenschmidt Oct 1975 A
3933398 Haag Jan 1976 A
3935787 Fisher Feb 1976 A
4006947 Haag et al. Feb 1977 A
4043624 Lindenschmidt Aug 1977 A
4050145 Benford Sep 1977 A
4067628 Sherburn Jan 1978 A
4170391 Bottger Oct 1979 A
4242241 Rosen et al. Dec 1980 A
4260876 Hochheiser Apr 1981 A
4303730 Torobin Dec 1981 A
4303732 Torobin Dec 1981 A
4325734 Burrage et al. Apr 1982 A
4332429 Frick et al. Jun 1982 A
4396362 Thompson et al. Aug 1983 A
4417382 Schilf Nov 1983 A
4492368 Deleeuw et al. Jan 1985 A
4529368 Makansi Jul 1985 A
4548196 Torobin Oct 1985 A
4583796 Nakajima et al. Apr 1986 A
4660271 Lenhardt Apr 1987 A
4671909 Torobin Jun 1987 A
4671985 Rodrigues et al. Jun 1987 A
4681788 Barito et al. Jul 1987 A
4745015 Cheng et al. May 1988 A
4777154 Torobin Oct 1988 A
4805293 Buchser Feb 1989 A
4917841 Jenkins Apr 1990 A
5007226 Nelson Apr 1991 A
5018328 Cur et al. May 1991 A
5033636 Jenkins Jul 1991 A
5066437 Barito et al. Nov 1991 A
5082335 Cur et al. Jan 1992 A
5084320 Barito et al. Jan 1992 A
5094899 Rusek, Jr. Mar 1992 A
5118174 Benford et al. Jun 1992 A
5121593 Forslund Jun 1992 A
5157893 Benson et al. Oct 1992 A
5168674 Molthen Dec 1992 A
5171346 Hallett Dec 1992 A
5175975 Benson et al. Jan 1993 A
5212143 Torobin May 1993 A
5221136 Hauck et al. Jun 1993 A
5227245 Brands et al. Jul 1993 A
5231811 Andrepont et al. Aug 1993 A
5248196 Lynn et al. Sep 1993 A
5252408 Bridges et al. Oct 1993 A
5263773 Gable et al. Nov 1993 A
5273801 Barry et al. Dec 1993 A
5318108 Benson et al. Jun 1994 A
5340208 Hauck et al. Aug 1994 A
5353868 Abbott Oct 1994 A
5359795 Mawby et al. Nov 1994 A
5375428 LeClear et al. Dec 1994 A
5397759 Torobin Mar 1995 A
5418055 Chen et al. May 1995 A
5433056 Benson et al. Jul 1995 A
5477676 Benson et al. Dec 1995 A
5500287 Henderson Mar 1996 A
5500305 Bridges et al. Mar 1996 A
5505810 Kirby et al. Apr 1996 A
5507999 Copsey et al. Apr 1996 A
5509248 Dellby et al. Apr 1996 A
5512345 Tsusumi et al. Apr 1996 A
5532034 Kirby et al. Jul 1996 A
5533311 Tirrell et al. Jul 1996 A
5562154 Benson et al. Oct 1996 A
5586680 Dellby et al. Dec 1996 A
5599081 Revlett et al. Feb 1997 A
5600966 Valence et al. Feb 1997 A
5632543 McGrath et al. May 1997 A
5640828 Reeves et al. Jun 1997 A
5643485 Potter et al. Jul 1997 A
5652039 Tremain et al. Jul 1997 A
5716581 Tirell et al. Feb 1998 A
5768837 Sjoholm Jun 1998 A
5792801 Tsuda et al. Aug 1998 A
5813454 Potter Sep 1998 A
5826780 Neeser et al. Oct 1998 A
5827385 Meyer et al. Oct 1998 A
5834126 Sheu Nov 1998 A
5843353 Devos et al. Dec 1998 A
5866228 Awata Feb 1999 A
5866247 Klatt et al. Feb 1999 A
5868890 Fredrick Feb 1999 A
5900299 Wynne May 1999 A
5918478 Bostic et al. Jul 1999 A
5924295 Park Jul 1999 A
5950395 Takemasa et al. Sep 1999 A
5952404 Simpson et al. Sep 1999 A
5966963 Kovalaske Oct 1999 A
5985189 Lynn et al. Nov 1999 A
6013700 Asano et al. Jan 2000 A
6063471 Dietrich et al. May 2000 A
6094922 Ziegler Aug 2000 A
6109712 Haworth et al. Aug 2000 A
6128914 Tamaoki et al. Oct 2000 A
6132837 Boes et al. Oct 2000 A
6158233 Cohen et al. Dec 2000 A
6163976 Tada Dec 2000 A
6164030 Dietrich Dec 2000 A
6164739 Schulz et al. Dec 2000 A
6187256 Aslan et al. Feb 2001 B1
6209342 Banicevic et al. Apr 2001 B1
6210625 Matsushita et al. Apr 2001 B1
6220473 Lehman et al. Apr 2001 B1
6221456 Pogorski et al. Apr 2001 B1
6224179 Wenning et al. May 2001 B1
6244458 Frysinger et al. Jun 2001 B1
6260377 Tamaoki et al. Jul 2001 B1
6294595 Tyagi et al. Sep 2001 B1
6305768 Nishimoto Oct 2001 B1
6390378 Briscoe, Jr. et al. May 2002 B1
8176746 Briscoe, Jr. et al. May 2002 B2
6406449 Moore et al. Jun 2002 B1
6408841 Hirath et al. Jun 2002 B1
6415623 Jennings et al. Jul 2002 B1
6430780 Kim et al. Aug 2002 B1
6460955 Vaughan et al. Oct 2002 B1
6519919 Takenouchi et al. Feb 2003 B1
6623413 Wynne Sep 2003 B1
6689840 Eustace et al. Feb 2004 B1
6716501 Kovalchuk et al. Apr 2004 B2
6736472 Banicevic May 2004 B2
6749780 Tobias Jun 2004 B2
6773082 Lee Aug 2004 B2
6858280 Allen et al. Feb 2005 B2
6860082 Yamamoto et al. Mar 2005 B1
6938968 Tanimoto et al. Sep 2005 B2
7008032 Chekal et al. Mar 2006 B2
7026054 Ikegawa et al. Apr 2006 B2
7197792 Moon Apr 2007 B2
7197888 LeClear et al. Apr 2007 B2
7207181 Murray et al. Apr 2007 B2
7210308 Tanimoto et al. May 2007 B2
7234247 Maguire Jun 2007 B2
7263744 Kim et al. Sep 2007 B2
7284390 Van Meter et al. Oct 2007 B2
7296432 Muller et al. Nov 2007 B2
7316125 Uekado et al. Jan 2008 B2
7343757 Egan et al. Mar 2008 B2
7360371 Feinauer et al. Apr 2008 B2
7449227 Echigoya et al. Nov 2008 B2
7475562 Jackovin Jan 2009 B2
7517031 Laible Apr 2009 B2
7614244 Venkatakrishnan et al. Nov 2009 B2
7625622 Teckoe et al. Dec 2009 B2
7641298 Hirath et al. Jan 2010 B2
7665326 LeClear et al. Feb 2010 B2
7703217 Tada et al. Apr 2010 B2
7703824 Kittelson et al. Apr 2010 B2
7757511 LeClear et al. Jul 2010 B2
7762634 Tenra et al. Jul 2010 B2
7794805 Aumaugher et al. Sep 2010 B2
7815269 Wenning et al. Oct 2010 B2
7842269 Schachtely et al. Nov 2010 B2
7845745 Gorz et al. Dec 2010 B2
7861538 Welle et al. Jan 2011 B2
7886559 Hell et al. Feb 2011 B2
7893123 Luisi Feb 2011 B2
7908873 Cur et al. Mar 2011 B1
7930892 Vonderhaar Apr 2011 B1
7938148 Carlier et al. May 2011 B2
7992257 Kim Aug 2011 B2
8049518 Wern et al. Nov 2011 B2
8074469 Hamel et al. Dec 2011 B2
8079652 Laible et al. Dec 2011 B2
8108972 Bae et al. Feb 2012 B2
8113604 Olson et al. Feb 2012 B2
8117865 Allard et al. Feb 2012 B2
8157338 Seo et al. Apr 2012 B2
8162415 Hagele et al. Apr 2012 B2
8163080 Meyer et al. Apr 2012 B2
8182051 Laible et al. May 2012 B2
8197019 Kim Jun 2012 B2
8202599 Henn Jun 2012 B2
8211523 Fujimori et al. Jul 2012 B2
8266923 Bauer et al. Sep 2012 B2
8281558 Heimeyer et al. Oct 2012 B2
8299545 Chen et al. Oct 2012 B2
8299656 Allard et al. Oct 2012 B2
8343395 Hu et al. Jan 2013 B2
8353177 Adamski et al. Jan 2013 B2
8382219 Hoffmann et al. Feb 2013 B2
8434317 Besore May 2013 B2
8439460 Laible et al. May 2013 B2
8456040 Allard et al. Jun 2013 B2
8491070 Davis et al. Jul 2013 B2
8516845 Wuesthoff et al. Aug 2013 B2
8528284 Aspenson et al. Sep 2013 B2
8590992 Lim et al. Nov 2013 B2
8717029 Chae et al. May 2014 B2
8739567 Junge Jun 2014 B2
8739568 Allard et al. Jun 2014 B2
8752918 Kang Jun 2014 B2
8752921 Gorz et al. Jun 2014 B2
8763847 Mortarotti Jul 2014 B2
8764133 Park et al. Jul 2014 B2
8770682 Lee et al. Jul 2014 B2
8776390 Hanaoka et al. Jul 2014 B2
8840204 Bauer et al. Sep 2014 B2
8852708 Kim et al. Oct 2014 B2
8881398 Hanley et al. Nov 2014 B2
8905503 Sahasrabudhe et al. Dec 2014 B2
9009969 Choi et al. Apr 2015 B2
RE45501 Maguire May 2015 E
9056952 Eilbracht et al. Jun 2015 B2
9074811 Korkmaz Jul 2015 B2
9080808 Choi et al. Jul 2015 B2
9102076 Doshi et al. Aug 2015 B2
9103482 Fujimori et al. Aug 2015 B2
9125546 Kleemann et al. Sep 2015 B2
9140480 Kuehl et al. Sep 2015 B2
9170045 Oh et al. Oct 2015 B2
8955352 Lee et al. Dec 2015 B2
9221210 Wu et al. Dec 2015 B2
9228386 Thielmann et al. Jan 2016 B2
9267727 Lim et al. Feb 2016 B2
9303915 Kim et al. Apr 2016 B2
9328951 Shin et al. May 2016 B2
9353984 Kim et al. May 2016 B2
9410732 Choi et al. Aug 2016 B2
9429356 Kim et al. Aug 2016 B2
9448004 Kim et al. Sep 2016 B2
9482463 Choi et al. Nov 2016 B2
9506689 Carbajal et al. Nov 2016 B2
9518777 Lee et al. Dec 2016 B2
9568238 Kim et al. Feb 2017 B2
D781641 Incukur Mar 2017 S
D781642 Incukur Mar 2017 S
9605891 Lee et al. Mar 2017 B2
9696085 Seo et al. Jul 2017 B2
9702621 Cho et al. Jul 2017 B2
9759479 Ramm et al. Sep 2017 B2
9777958 Choi et al. Oct 2017 B2
9791204 Kim et al. Oct 2017 B2
20020114937 Albert et al. Aug 2002 A1
20020168496 Morimoto et al. Nov 2002 A1
20030008100 Horn Jan 2003 A1
20030041612 Piloni et al. Mar 2003 A1
20030056334 Finkelstein Mar 2003 A1
20030173883 Koons Sep 2003 A1
20040178707 Avendano Sep 2004 A1
20040180176 Rusek Sep 2004 A1
20040226141 Yates et al. Nov 2004 A1
20040253406 Hayashi et al. Dec 2004 A1
20050042247 Gomoll et al. Feb 2005 A1
20050229614 Ansted Oct 2005 A1
20050235682 Hirai et al. Oct 2005 A1
20060064846 Espindola et al. Mar 2006 A1
20060076863 Echigoya et al. Apr 2006 A1
20060201189 Adamski et al. Sep 2006 A1
20060263571 Tsunetsugu et al. Nov 2006 A1
20070001563 Park et al. Jan 2007 A1
20070099502 Ferinauer May 2007 A1
20070176526 Gomoll et al. Aug 2007 A1
20070266654 Noale Nov 2007 A1
20080048540 Kim Feb 2008 A1
20080300356 Meyer et al. Dec 2008 A1
20080309210 Luisi et al. Dec 2008 A1
20090032541 Rogala et al. Feb 2009 A1
20090056367 Neumann Mar 2009 A1
20090058244 Cho et al. Mar 2009 A1
20090113925 Korkmaz May 2009 A1
20090131571 Fraser et al. May 2009 A1
20090179541 Smith et al. Jul 2009 A1
20090205357 Lim et al. Aug 2009 A1
20090302728 Rotter et al. Dec 2009 A1
20090322470 Yoo et al. Dec 2009 A1
20090324871 Henn Dec 2009 A1
20100170279 Aoki Jul 2010 A1
20100206464 Heo et al. Aug 2010 A1
20100231109 Matzke et al. Sep 2010 A1
20100287843 Oh Nov 2010 A1
20100287974 Cur et al. Nov 2010 A1
20100293984 Adamski et al. Nov 2010 A1
20100295435 Kendall et al. Nov 2010 A1
20110011119 Kuehl et al. Jan 2011 A1
20110023527 Kwon et al. Feb 2011 A1
20110030894 Tenra et al. Feb 2011 A1
20110095669 Moon et al. Apr 2011 A1
20110146325 Lee Jun 2011 A1
20110146335 Jung et al. Jun 2011 A1
20110165367 Kojima et al. Jul 2011 A1
20110215694 Fink et al. Sep 2011 A1
20110220662 Kim et al. Sep 2011 A1
20110241513 Nomura et al. Oct 2011 A1
20110241514 Nomura et al. Oct 2011 A1
20110260351 Corradi et al. Oct 2011 A1
20110290808 Bai et al. Dec 2011 A1
20110309732 Horil et al. Dec 2011 A1
20110315693 Cur et al. Dec 2011 A1
20120000234 Adamski et al. Jan 2012 A1
20120060544 Lee et al. Mar 2012 A1
20120099255 Lee et al. Apr 2012 A1
20120103006 Jung et al. May 2012 A1
20120104923 Jung et al. May 2012 A1
20120118002 Kim et al. May 2012 A1
20120137501 Allard et al. Jun 2012 A1
20120152151 Meyer et al. Jun 2012 A1
20120196059 Fujimori et al. Aug 2012 A1
20120231204 Jeon et al. Sep 2012 A1
20120237715 McCracken Sep 2012 A1
20120240612 Wusthoff et al. Sep 2012 A1
20120273111 Nomura et al. Nov 2012 A1
20120279247 Katu et al. Nov 2012 A1
20120280608 Park et al. Nov 2012 A1
20120285971 Junge et al. Nov 2012 A1
20120297813 Hanley et al. Nov 2012 A1
20120324937 Adamski et al. Dec 2012 A1
20130026900 Oh et al. Jan 2013 A1
20130033163 Kang Feb 2013 A1
20130043780 Ootsuka et al. Feb 2013 A1
20130068990 Eilbracht et al. Mar 2013 A1
20130111941 Yu et al. May 2013 A1
20130221819 Wing Aug 2013 A1
20130255304 Cur et al. Oct 2013 A1
20130256318 Kuehl et al. Oct 2013 A1
20130256319 Kuehl et al. Oct 2013 A1
20130257256 Allard et al. Oct 2013 A1
20130257257 Cur et al. Oct 2013 A1
20130264439 Allard et al. Oct 2013 A1
20130270732 Wu et al. Oct 2013 A1
20130285527 Choi et al. Oct 2013 A1
20130293080 Kim et al. Nov 2013 A1
20130305535 Cur et al. Nov 2013 A1
20130328472 Shim et al. Dec 2013 A1
20140009055 Cho et al. Jan 2014 A1
20140097733 Seo et al. Apr 2014 A1
20140132144 Kim et al. May 2014 A1
20140166926 Lee et al. Jun 2014 A1
20140171578 Meyer et al. Jun 2014 A1
20140190978 Bowman et al. Jul 2014 A1
20140196305 Smith Jul 2014 A1
20140216706 Melton et al. Aug 2014 A1
20140232250 Kim et al. Aug 2014 A1
20140260332 Wu Sep 2014 A1
20140346942 Kim et al. Nov 2014 A1
20140364527 Matthias et al. Dec 2014 A1
20150015133 Carbajal et al. Jan 2015 A1
20150027628 Cravens et al. Jan 2015 A1
20150059399 Hwang et al. Mar 2015 A1
20150115790 Ogg Apr 2015 A1
20150147514 Shinohara et al. May 2015 A1
20150159936 Oh et al. Jun 2015 A1
20150168050 Cur et al. Jun 2015 A1
20150184923 Jeon Jul 2015 A1
20150190840 Muto et al. Jul 2015 A1
20150241115 Strauss et al. Aug 2015 A1
20150241118 Wu Aug 2015 A1
20150285551 Aiken et al. Oct 2015 A1
20160084567 Fernandez et al. Mar 2016 A1
20160116100 Thiery et al. Apr 2016 A1
20160123055 Ueyama May 2016 A1
20160161175 Benold et al. Jun 2016 A1
20160178267 Hao et al. Jun 2016 A1
20160178269 Hiemeyer et al. Jun 2016 A1
20160235201 Soot Aug 2016 A1
20160240839 Umeyama et al. Aug 2016 A1
20160258671 Allard et al. Sep 2016 A1
20160290702 Sexton et al. Oct 2016 A1
20160348957 Hitzelberger et al. Dec 2016 A1
20170038126 Lee et al. Feb 2017 A1
20170157809 Deka et al. Jun 2017 A1
20170176086 Kang Jun 2017 A1
20170191746 Seo Jul 2017 A1
Foreign Referenced Citations (197)
Number Date Country
626838 May 1961 CA
1320631 Jul 1993 CA
2259665 Jan 1998 CA
2640006 Aug 2007 CA
1158509 Apr 2002 CN
100359272 Dec 2005 CN
1970185 May 2007 CN
101437756 May 2009 CN
201680116 Dec 2010 CN
201748744 Feb 2011 CN
102296714 Dec 2011 CN
102452522 May 2012 CN
102717578 Oct 2012 CN
102720277 Oct 2012 CN
103072321 May 2013 CN
202973713 Jun 2013 CN
203331442 Dec 2013 CN
104816478 Aug 2015 CN
105115221 Dec 2015 CN
2014963379 Jan 2016 CN
1150190 Jun 1963 DE
4110292 Oct 1992 DE
19818890 Nov 1999 DE
19915311 Oct 2000 DE
102008026528 Dec 2009 DE
102009046810 May 2011 DE
102010024951 Dec 2011 DE
102011051178 Dec 2012 DE
102012223536 Jun 2014 DE
102012223541 Jun 2014 DE
0260699 Mar 1988 EP
0480451 Apr 1992 EP
0645576 Mar 1995 EP
0691518 Jan 1996 EP
0860669 Aug 1998 EP
1087186 Mar 2001 EP
1200785 May 2002 EP
1243880 Sep 2002 EP
1484563 Dec 2004 EP
1496322 Jan 2005 EP
1505359 Feb 2005 EP
1602425 Dec 2005 EP
1624263 Aug 2006 EP
2342511 Jul 2011 EP
2543942 Jan 2013 EP
2607073 Jun 2013 EP
2789951 Oct 2014 EP
2878427 Jun 2015 EP
2991698 Dec 2013 FR
2980963 Apr 2014 FR
837929 Jun 1960 GB
1214548 Dec 1970 GB
51057777 May 1976 JP
59191588 Dec 1984 JP
03013779 Jan 1991 JP
04165197 Oct 1992 JP
04309778 Nov 1992 JP
06159922 Jun 1994 JP
7001479 Jan 1995 JP
H07167377 Jul 1995 JP
08300052 Nov 1996 JP
H08303686 Nov 1996 JP
H09166271 Jun 1997 JP
10113983 May 1998 JP
11159693 Jun 1999 JP
11311395 Nov 1999 JP
11336990 Dec 1999 JP
2000097390 Apr 2000 JP
2000117334 Apr 2000 JP
2000320958 Nov 2000 JP
2001038188 Feb 2001 JP
2001116437 Apr 2001 JP
03478771 Jun 2001 JP
2001336691 Dec 2001 JP
2001343176 Dec 2001 JP
3438948 Aug 2003 JP
2004303695 Oct 2004 JP
2005114015 Apr 2005 JP
2005164193 Jun 2005 JP
2005256849 Sep 2005 JP
2006077792 Mar 2006 JP
2006161834 Jun 2006 JP
2006161945 Jun 2006 JP
03792801 Jul 2006 JP
2006200685 Aug 2006 JP
2007263186 Oct 2007 JP
4111096 Jul 2008 JP
2008157431 Jul 2008 JP
2009063064 Mar 2009 JP
2009162402 Jul 2009 JP
2009524570 Jul 2009 JP
2010017437 Jan 2010 JP
2010071565 Apr 2010 JP
2010108199 May 2010 JP
2010145002 Jul 2010 JP
04545126 Sep 2010 JP
2010236770 Oct 2010 JP
2010276309 Dec 2010 JP
2011002033 Jan 2011 JP
2011069612 Apr 2011 JP
04779684 Sep 2011 JP
2011196644 Oct 2011 JP
4828353 Nov 2011 JP
2012026493 Feb 2012 JP
2012063029 Feb 2012 JP
04897473 Mar 2012 JP
2013195009 Mar 2012 JP
2012087993 May 2012 JP
2012163258 Aug 2012 JP
2012189114 Oct 2012 JP
2012242075 Dec 2012 JP
2013002484 Jan 2013 JP
2013050242 Mar 2013 JP
2013050267 Mar 2013 JP
2013076471 Apr 2013 JP
2013088036 May 2013 JP
20020057547 Jul 2002 KR
20020080938 Oct 2002 KR
20030083812 Nov 2003 KR
20040000126 Jan 2004 KR
20050095357 Sep 2005 KR
100620025 Sep 2006 KR
20070044024 Apr 2007 KR
1020050126499 Jun 2007 KR
1020080103845 Nov 2008 KR
20090026045 Mar 2009 KR
1017776 Feb 2011 KR
20120007241 Jan 2012 KR
2012046621 May 2012 KR
2012051305 May 2012 KR
20150089495 Aug 2015 KR
2061925 Jun 1996 RU
2077411 Apr 1997 RU
2132522 Jun 1999 RU
2162576 Jan 2001 RU
2166158 Apr 2001 RU
2187433 Aug 2002 RU
2234645 Aug 2004 RU
2252377 May 2005 RU
2253792 Jun 2005 RU
2349618 Mar 2009 RU
2414288 Mar 2011 RU
2529525 Sep 2014 RU
2571031 Dec 2015 RU
00476407 Jul 1975 SU
648780 Feb 1979 SU
01307186 Apr 1987 SU
9614207 May 1996 WO
1998049506 Nov 1998 WO
02060576 Apr 1999 WO
9614207 Apr 1999 WO
9920961 Apr 1999 WO
9920964 Apr 1999 WO
199920964 Apr 1999 WO
200160598 Aug 2001 WO
200202987 Jan 2002 WO
2002052208 Apr 2002 WO
02060576 Aug 2002 WO
03072684 Sep 2003 WO
2003089729 Oct 2003 WO
2004010042 Jan 2004 WO
2006045694 May 2006 WO
2006073540 Jul 2006 WO
2007033836 Mar 2007 WO
2007085511 Aug 2007 WO
2007106067 Sep 2007 WO
2008077741 Jul 2008 WO
2008118536 Oct 2008 WO
2008122483 Oct 2008 WO
2009013106 Jan 2009 WO
2009112433 Sep 2009 WO
2009147106 Dec 2009 WO
2010007783 Jan 2010 WO
2010029730 Mar 2010 WO
2010043009 Apr 2010 WO
2010092627 Aug 2010 WO
2010127947 Nov 2010 WO
2010127947 Feb 2011 WO
2011058678 May 2011 WO
2011003711 Jun 2011 WO
2011081498 Nov 2011 WO
2010007783 Jan 2012 WO
2012023705 Apr 2012 WO
2012026715 Jun 2012 WO
2012043990 Jun 2012 WO
2012044001 Jun 2012 WO
2012119892 Sep 2012 WO
2012152646 Nov 2012 WO
2012031885 Jan 2013 WO
2012085212 Jul 2013 WO
2014038150 Mar 2014 WO
2014095542 Jun 2014 WO
2014121893 Aug 2014 WO
2014184393 Nov 2014 WO
2013140816 Aug 2015 WO
2016082907 Jun 2016 WO
2017029782 Feb 2017 WO
Non-Patent Literature Citations (37)
Entry
International Search Report, International Application No. PCT/US2016/060519, dated Mar. 16, 2017, 10 pages.
International Search Report, International Application No. PCT/US2016/062804, dated Feb. 27, 2017, 9 pages.
International Search Report, International Application No. PCT/US2016/063023, dated Mar. 30, 2017, 7 pages.
International Search Report, International Application No. PCT/US2016/063065, dated Apr. 20, 2017, 9 pages.
International Search Report, International Application No. PCT/US2016/063355, dated Feb. 27, 2017, 9 pages.
International Search Report, International Application No. PCT/US2016/063958, dated Mar. 6, 2017, 10 pages.
International Search Report, Application No. PCT/US2017/021068, dated Nov. 2, 2017, 9 pages.
European Patent Office, “European Search Report,” issued in connection with European Patent Application No. 14158615.6, dated Jun. 24, 2015, 5 pages.
International Search Report, PCT/US2016/043991, dated Apr. 27, 2017, 8 pages.
International Search Report, PCT/US2016/047558, dated Jun. 8, 2017, 9 pages.
International Search Report, PCT/US2016/062189, dated Mar. 30, 2017, 7 pages.
International Searching Authority, “Search Report,” issued in connection with International Patent Application No. PCT/US2016/062479, dated Feb. 9, 2017, 8 pages.
International Searching Authority, “Search Report,” issued in connection with International Patent Application No. PCT/US2016/060947, dated Feb. 2, 2017, 8 pages.
International Searching Authority, “Search Report,” issued in connection with International Patent Application No. PCT/US2016/061125, dated Jan. 12, 2017, 9 pages.
International Searching Authority, “Search Report,” issued in connection with International Patent Application No. PCT/US2016/062453, dated Feb. 9, 2017, 8 pages.
International Searching Authority, “Search Report,” issued in connection with International Patent Application No. PCT/US2016/061790, dated Jan. 26, 2017, 8 pages.
International Searching Authority, “Search Report,” issued in connection with International Patent Application No. PCT/US2016/062029, dated Jan. 26, 2017, 8 pages.
International Searching Authority, “Search Report,” issued in connection with International patent Application No. PCT/US2016/060961, dated Feb. 2, 2017, 9 pages.
International Search Report, Application No. PCT/US2016/054067, dated Jun. 29, 2017, 7 pages.
International Search Report, Application No. PCT/US2016/054121, dated Jul. 6, 2017, 9 pages.
International Search Report, Application No. PCT/US2016055161, dated Jun. 29, 2017, 9 pages.
International Search Report, Application No. PCT/US2016/055304, dated Jun. 29, 2017, 9 pages.
International Search Report, PCT/US2016/053711, dated Aug. 31, 2017, 8 pages.
International Search Report, PCT/US2016/054639, dated Aug. 17, 2017, 8 pages.
International Search Report, PCT/US2016/057271, dated Aug. 17, 2017, 8 pages.
International Search Report, PCT/US2017/017802, dated Sep. 28, 2017, 9 pages.
International Search Report, PCT/US2017/019930, dated Sep. 28, 2017, 9 pages.
BASF, “Balindur™ Solutions for fixing Vaccum Insulated Panels,” web page, 4 pages, date unknown, http://performance-materials.basf.us/products/view/family/balindur, at least as early as Dec. 21, 2015.
BASF, “Balindur™,” web page, 2 pages, date unknown, http://product-finder.basf.com/group/corporate/product-finder/en/brand/BALINDUR, at least as early as Dec. 21, 2015.
PU Solutions Elastogram, “Balindur™ masters the challenge,” web page, 2 pages, date unknown, http://product-finder.basf.com/group/corporate/product-finder/en/literature-document:/Brand+Balindur-Flyer—Balindur+The+new+VIP+fixation+technology-English.pdf, Dec. 21, 2014.
European Patent Application No. 13775196.2, Supplemental Search Report, dated Dec. 7, 2015, 10 pages.
European Patent Application No. 14158608.1, Search Report, dated Sep. 30, 2014, 5 pages.
International Patent Application No. PCT/US2013036203, International Search Report, dated Jul. 26, 2013, 10 pages.
European Patent Application No. 15154577.9, Search Report, dated Jul. 20, 2015, 8 pages.
European Patent Application No. 14158619, Search Report, dated Jun. 22, 2015, 9 pages.
European Patent Application No. 15153481, Search Report, dated Jul. 10, 2015, 6 pages.
KitchenAid, “Refrigerator user instructions,” Sep. 5, 2015, 120 pages.
Related Publications (1)
Number Date Country
20170144412 A1 May 2017 US
Divisions (1)
Number Date Country
Parent 14187605 Feb 2014 US
Child 15426579 US