All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
The apparatuses (devices and systems) and methods of making and using them described herein relate antenna assemblies. In some variations, the antenna assemblies are configured for wireless radio and antenna devices that form part of a broadband wireless system for use as part of a system for accessing the internet. The wireless transmission stations described herein may be configured for indoor, outdoor, or indoor and outdoor use.
Wireless fidelity, referred to as “WiFi” generally describes a wireless communications technique or network that adheres to the specifications developed by the Institute of Electrical and Electronic Engineers (IEEE) for wireless local area networks (LAN). A WiFi device is considered operable with other certified devices using the 802.11 specification of the IEEE. These devices allow wireless communications interfaces between computers and peripheral devices to create a wireless network for facilitating data transfer. This often also includes a connection to a local area network (LAN).
Operating frequencies range within the WiFi family, and typically operate around the 2.4 GHz band and 5 GHz band of the spectrum. Multiple protocols exist at these frequencies and these may also differ by transmit bandwidth.
Laptops and similar wireless devices are generally the weakest link in a WiFi system, because the typically have a low transmission (TX) power between the transmitters and the access points (APs). Thus high gain antenna systems would be useful. Antenna gain provides for directional capabilities of the radiation pattern, which may be helpful in some applications such as extended distances and high WiFi density areas. A multi-directional antennae may be particularly useful in point to multi-point communication arrangement, where a centrally located high-gain antenna may be configured to service multiple Client Premise Equipment (CPE) devices. To date, obstacles for designing multi-directional antennae typically include achieving high gain, low cost and manufacturability, since multi-directional antennae tends to be more complicated in design than less directional antennas. Furthermore, antennae configured for outdoor deployment tend to further increase design complexity and cost due to weather and other environmental factors.
It would be beneficial to provide low-profile antenna systems for wireless signal transmission that are easy to manufacture and operate, particularly antennas configured to provide broadband data transmissions coverage in multiple sectors of regions that are each serviced by a dedicated radio transceiver of the multi-sector antenna. Such apparatuses may be particularly useful for radio transmissions operating above 1 GHz for data and voice communications. Described herein are antenna systems that may address the issues and needs discussed above.
Described herein are multi-directional antenna assemblies that include a plurality (e.g., 2, 3, 4, 5 or more, typically 3 or more) of antenna sections that are arranged in in-line along a long axis, for example, vertically stacked atop one another. Each antenna section may be formed to provide a relatively narrow beamwidth in a specific beam axis that is distinct from other antenna sections in the antenna assembly. The antenna assembly may include a radome cover positioned over the linear assembly. In one variation, the linear assembly includes three antenna sections. Although the description provided herein illustrates antenna assemblies having three stacked antenna sections, it should be understood that antenna assemblies as described herein may include only two antenna sections or more than three (e.g., 4, 5, 6, 7, 8, 9, etc.) antenna sections.
In general, the antenna sections of an antenna assembly as described herein are placed adjacent to each other in a line (e.g., in an axis) may be referred to as stacked, though they may be oriented horizontally, vertically, or any other angle. The different antenna sections forming the antenna assembly may be structurally identical or similar, or they may be different.
For example, all of the antenna sections forming an antenna assembly may be shaped generally as an elongate trough, having a long open region that is formed by two walls connecting to a base. The walls may flare outward to form the opening, so that the opening is larger than the base (which is typical opposite the base). The walls may extend along the long axis of the antenna assembly. In some variations the opening (e.g., the end regions of the walls facing away from the base) may include a choke region that is formed of ridges (e.g., “corrugations”) that extend along the opening, e.g., parallel to the long axis of the antenna assembly. The corrugations may include a plurality of ridges (e.g., between 2 and 100, e.g. between about 2 and 50, between about 2 and 30, between about 2 and 25, etc.). The ridges may be spaced apart from each other by a predetermine amount, and may be formed by bending, crimping, or otherwise manipulating the same material forming the walls (e.g., a metal such as aluminum), or they may be added to the wall and attached thereto. In general, the choke/corrugations are positioned at the open edge of each wall.
Thus, each antenna section may be (e.g., vertically) separated from adjacent antenna sections by one or more isolation plates (walls) interposed abutting the adjacent antenna sections. In general, an isolation plate also including corrugations along an outwardly facing edge may be positioned between each of the antenna sections forming the antenna assembly. These isolation plates may have an outer edge that extends beyond the opening (trough opening) formed by the walls, and a plurality of ridges extending parallel to each other and the outer edge may form the corrugations. For any of the corrugation (choke) regions described herein, the ridges may be oriented outward, e.g., facing the direction of transmission of the antenna section. Any of the corrugations described herein may have a depth and/or spacing between the corrugations of, e.g., ¼ of the average, median, and/or mean of the wavelengths transmitted to/from the antenna section(s). An example of corrugations and choke regions may be found, for example, in U.S. patent application Ser. No. 14/486,992, filed Sep. 15, 2014 (and published as US-2015-0002357), titled “DUAL RECEIVER/TRANSMITTER RADIO DEVICES WITH CHOKE”.
Each of the antenna sections may also include an array of radiators positioned at or on the base within the trough. The array of radiators may be an array (e.g., a linear array) of radiating elements that are used to emit and/or receive electromagnetic energy for transmission of RF signals. The array of radiators may be arranged in a line (e.g., parallel to the long axis of the antenna assembly). The radiators may preferably be disc-shaped (or funnel-shaped) radiators, as described herein. Each antenna array is configured to emit electromagnetic (e.g., RF) energy from the antenna section so that antenna section has a distinct main lobe and a beam axis. In general, for a particular antenna assembly, the antenna sections forming the antenna assembly share a common (long) axis, which may be a vertical axis. The beam axes of the antenna sections may be oriented in the antenna assembly such that they originate from the common vertical axis, and the beam axes may be non-overlapping and each beam axes may point towards a different direction. For example, each beam axis may be separated from the other beam axes of the antenna assembly by a particular angular offset (e.g., 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees, 40 degrees, 50 degrees, 60 degrees, etc.).
In general, an antenna assembly may be configured to form an effective combined beamwidth that provides wide range of coverage across multiple sectors of areas.
For example, described herein are antenna assembly having a first axis, the antenna assembly comprising: a plurality of antenna sections arranged adjacent to each other along the first axis, wherein each antenna section includes: an elongate trough extending in the first axis, wherein the elongate trough comprises a first wall, a second wall, and a base extending between the first wall and the second wall, an opening into the trough between the first wall and the second wall, wherein the opening has a width that is larger than a width at the base, a radiator array, positioned at the base, a corrugation on the first wall along an edge of the first wall opposite the base, and a corrugation on the second wall along an edge of the second wall opposite the base.
An antenna assembly may include a long axis (e.g., a first axis), and: a first antenna section that is linearly between a second antenna section and a third antenna section, wherein the first, second and third antenna sections are in the first axis, further wherein each of the first, second and third antenna sections include: an elongate trough extending in the first axis, wherein the elongate trough comprises a first wall, a second wall, and a base extending between the first wall and the second wall, an opening into the trough between the first wall and the second wall, wherein the opening has a width that is larger than a width at the base, a radiator array comprises an array of radiator elements arranged in a line at the base along in the first axis, a corrugation on the first wall along an edge of the first wall opposite the base comprising a plurality of ridges extending in the first axis, and a corrugation on the second wall along an edge of the second wall opposite the base comprising a plurality of ridges extending in the first axis.
The corrugation on the first wall and the corrugation on the second wall of each antenna section of the plurality of antenna sections may each comprise a plurality of ridges extending in the first axis. In general, these corrugations may also be referred to as isolation choke regions (e.g., isolation choke boundaries).
Any of these antenna assemblies may include one or more isolation plates (referred to also herein as isolation plates) between adjacent antenna sections. The isolation walls may also include an isolation choke boundary (e.g., corrugations) along an outer edge facing the opening. The isolation walls may be formed of the same material as the walls, and may form the “top” and/or “bottom” of the trough.
In general, the radiator array may include a plurality of radiator elements (e.g., disk elements). The radiator elements may be arranged in a line, e.g., along in the first axis.
The output beamwidth of each antenna section may typically correspond to the angle between the first and second walls. In general, the beamwidth of each section may be e.g., 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees, 40 degrees, 45 degrees, 50 degrees, 55 degrees, 60 degrees, 65 degrees, 70 degrees, 75 degrees, 80 degrees, 85 degrees, 90 degrees, etc. For example, the beamwidth for each antenna section may be may be 30 degrees. In some variations the beamwidth for each antenna section is 60 degrees. The antenna sections an antenna assembly may have identical output beamwidths, or they may have different beamwidths. The antenna assemblies described herein (which may be referred to alternatively as in-line, stacked, or linear antenna assemblies) may typically have a combined beamwidth of all the antenna sections that is, e.g., between about 45 degrees and 360 degrees (e.g., between about 60 degrees and 180 degrees, e.g., between about 60 degrees and 120 degrees, etc.). For example, the combined beamwidth may be 90 degrees. In general, the combined bandwidth includes overlap of the bandwidths between the antenna sections, but extends from one edge to the other of the overlapping beamwidths.
In general, each antenna section of the antenna assembly has a beam axis, and each beam axis for the different antenna sections may point in different directions. For example, a beam axis of a first antenna section may be radially separated by, e.g., 30 degrees from a beam axis of a second antenna, and may also be radially separated by, e.g., 60 degrees from a beam axis of third antenna section in the plurality of antenna sections. Thus, each beam axis for the different antenna sections may be separated from the next nearest beam axis by a predetermined amount, which may be the same (e.g., 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, etc.) or different. In general the “first” “second” and “third” (and more) antenna sections described herein may be positioned in any order in the long axis. For example, a first antenna section may be positioned between (e.g., immediately next two) a second and a third antenna section, or a third antenna section may be adjacently (e.g., immediately next to) positioned between a first and a second antenna section, etc.
For example, in variations in which the same, or approximately the same radiator elements are arranged on the bases of each antenna section, the base of each antenna section may be shifted (e.g., rotated about the long axis of the antenna assembly). For example, a first antenna section (e.g., base) in the plurality of antenna sections may be rotated 30 degrees relative to the second antenna section (e.g., base) in the plurality of antenna sections, and rotated 60 degrees relative to a third antenna section (e.g., base) in the plurality of antenna sections, etc. The degree of rotation between each antenna section (and particularly between the different bases) may be constant or variable. In some variations the degree of rotation between the different antenna sections may be adjustable. Also, as mentioned above, the antenna sections may have varying output beamwidths. In some variations, at least two of the antenna sections have identical beamwidths.
Also described herein are methods of operating any of the antenna assemblies described herein as a multi-sector antenna. For example, described herein are methods for operating an antenna assembly having a plurality of antenna sections that are linearly positioned adjacent to each other in a first axis, wherein each antenna section comprises a first wall, a second wall, and a base extending between the first wall and the second wall, having an opening between the first wall and the second wall and an array of radiator elements on the base, and wherein the opening has a width that is larger than a width at the base, wherein each antenna section has a unique beam axis directed at a different direction. Such a method may include: emitting electromagnetic waves from the array of radiator elements within each antenna section, further wherein an output beamwidth of each antenna section corresponds to an angle between the first wall and the second wall of the antenna section; and further wherein electromagnetic waves emitted from each of the plurality of antenna sections only partially overlap with electromagnetic waves emitted from adjacent antenna sections.
A method of operating an antenna assembly may include, for example: positioning an antenna assembly comprising three or more antenna sections arranged atop each other along a first vertical axis so that each antenna assembly is positioned in a different direction orthogonal to the first vertical axis; emitting electromagnetic waves from an array of radiator elements within each antenna section, wherein an output beam angle of each antenna is angularly offset from the output beam angle of every other antenna section; and reducing transmission of electromagnetic waves between antenna sections using isolation plates positioned between adjacent antenna sections, wherein each isolation plate has an outer edge and a plurality of ridges extending parallel to the outer edge forming a corrugated pattern along a portion of the outer edge.
Emitting may comprise emitting electromagnetic waves from all of the antenna sections so that the combined beamwidth is between about 60 degrees and 360 degrees (e.g., approximately 90 degrees). Emitting may also or alternatively comprise emitting electromagnetic energy from a first antenna section in the plurality of antenna sections with a first beam axis that is radially separated by 30 degrees from a second beam axis of a second antenna section in the plurality of antenna sections, and 60 degrees from a third beam axis of third antenna section in the plurality of antenna sections. In some variations, emitting electromagnetic waves from the array of radiator elements within each antenna section comprises independently emitting electromagnetic waves from each of the antenna sections; alternatively emission from all or some of the antenna sections may be coordinated and/or identical.
In general, emitting electromagnetic waves from the array of radiator elements within each antenna section comprises emitting electromagnetic waves from a linear array of the radiator elements arranged in line with the first axis.
Also described herein are methods of operating an antenna assembly having a plurality of antenna sections that are linearly positioned adjacent to each other in a first axis, the method comprising: emitting a first radio wave signal in a first direction from a first array of radiators in the first axis and in a first one of the plurality of antenna sections; emitting a second radio wave signal in a second direction from a second array of radiators in the first axis and in a second one of the plurality of antenna sections; emitting a third radio wave signal in a third direction from a third array of radiators in the first axis and in a third one of the plurality of antenna sections; suppressing radio wave signals between the plurality of antenna sections to prevent radio wave signals from any of the antenna sections of the plurality of sections from being received by adjacent antenna sections.
The regions covered by the first, second and third radio waves may be substantially non-overlapping. For example, the first, second and third directions may be angularly directed in different direction corresponding to each pair of the walls and are non-overlapping.
Any of these methods may also include limiting the spread of each of the first, second and third radio wave signals by, for each of the first, second and third array of radiators, providing a pair of walls angularly positioned adjacent to the array of radiators, wherein the front edge of each of the walls includes vertical corrugations for isolating radio wave signals.
The step of suppressing radio wave signals may comprises providing an isolation plate between adjacent antenna sections of the plurality of antenna sections, wherein a front edge of the isolation plate includes corrugations.
For example, described herein are antenna assemblies having a first vertical axis, that include: three or more antenna sections arranged atop each other along the first vertical axis, wherein each antenna section includes: a reflector, and a radiator array, positioned at a base of the reflector, wherein each antenna section is separated from an adjacent antenna section by an isolation plate having an outer edge, further comprising a plurality of ridges extending parallel to the outer edge forming a corrugation along a portion of the outer edge, further wherein each antenna section is oriented along the first vertical axis so that an output beam axis of each antenna section points in a different direction than any other antenna section in the antenna assembly. Each antenna section may be oriented along the first vertical axis so that the output beam axis of each antenna section points in a different direction that is offset by more than about 10 degrees from any other output beam axis of any antenna section in the antenna sections. For each antenna section, the reflector may comprise two walls positioned perpendicular to the isolation plate, and the corrugation may extend along the outer edge between the walls of the reflector. The radiator array may comprise a line of circular disks (dish or funnel-shaped radiators/absorbers).
Each antenna section may comprise an elongate trough extending in the first vertical axis formed by a first wall and a second wall. Each antenna section may comprise an elongate trough extending in the first vertical axis formed by a first wall and a second wall and a base between the first wall and second wall, and an opening into the trough between the first wall and the second wall, wherein the opening has a width that is larger than a width at the base.
The base of a first antenna section may be fixed at an angle that is rotated 30 degrees relative to the base of a second antenna section, and is at an angle rotated 60 degrees relative to the base of a third antenna section. The antenna assembly may also include a corrugation on the first wall along an edge of the first wall opposite the base, and a corrugation on the second wall along an edge of the second wall opposite the base. The corrugation on the first wall and the corrugation on the second wall of each antenna section of the antenna sections may each comprise a plurality of ridges extending in the first axis.
Also described herein are antenna assemblies having a first axis, the antenna assembly comprising: a first antenna section that is linearly between a second antenna section and a third antenna section, wherein the first, second and third antenna sections are in the first axis, further wherein each of the first, second and third antenna sections include: an elongate trough extending in the first axis, wherein the elongate trough comprises a first wall, a second wall, and a base extending between the first wall and the second wall, an opening into the trough between the first wall and the second wall, wherein the opening has a width that is larger than a width at the base, a radiator array comprises an array of disc-shaped radiator elements arranged in a line at the base along in the first axis, a corrugation on the first wall along an edge of the first wall opposite the base comprising a plurality of ridges extending in the first axis, and a corrugation on the second wall along an edge of the second wall opposite the base comprising a plurality of ridges extending in the first axis; and a first isolation plate between the first and second antenna section, and a second isolation plate between the second and third antenna sections, wherein the first and second isolation plates each comprise a plurality of ridges extending parallel to an outer edge and forming a corrugation along the outer edge.
Described herein are multi-sector antenna assemblies. These assemblies are arranged typically arranged as a unitary frame having a plurality (e.g., 2, 3, 4, 5, 6, 7, 8, or more) internal antenna sections that are arranged in a line, with each antenna section adjacent to another antenna section along a first axis. The antenna sections typically each have a characteristic bandwidth and beam-angle; the beam-angles may extend out from the first axis and the beam-angle of each antenna section may be directed in a different direction from the beam-angles of the other antenna sections. The entire antenna assembly may be covered in a complete or partial housing, which may include, for example, a radome. In general, these multi-sector antenna assemblies may be arranged so that the antenna sections are stacked atop each other (e.g., when the antenna assembly is oriented in a vertical position).
For example, a multi-sector antenna assembly may include a plurality of antenna sections that are arranged adjacent to each other along a first axis. Each antenna section may be shaped as an elongate trough that extends in the first axis, and typically includes a first (e.g., right) wall, a second (e.g., left) wall, and a base extending between the first wall and the second wall, forming three sides of a section (e.g., transverse to the first axis) through the trough; the perimeter of this section may be approximately trapezoidal, so that the opening into the trough between the first wall and the second wall opposite from the base (forming the back wall) may has a width that is larger than a width at the base. Each antenna section may also include a radiator array positioned at the base (e.g., on the base, extending from the base, etc.). Any of these antenna sections may also include choke boundary region along at least two of the edges (e.g., the edges of the first and second walls opposite from the base). This choke boundary region may be referred to as a corrugation or corrugation region. For example, each antenna section may include a corrugation on the first wall along an edge of the first and second wall opposite the base. The corrugation may limit the passage of electromagnetic energy between the antenna section and another antenna (e.g., antenna assembly or any other antenna) nearby, helping to isolate the antenna section.
Each of these features, as well as additional features, including variations of these and additional features, are described and illustrated in greater detail below. Specific examples of components and arrangements are intended for purposes of illustration only and are not intended to limit the scope of the present invention. Regarding the figures, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed. References to specific techniques include alternative, further, and more general techniques, especially when describing aspects of this application, or how inventions that might be claimable subject matter might be made or used. References to contemplated causes or effects, e.g., for some described techniques, do not preclude alternative, further, or more general causes or effects that might occur in alternative, further, or more general described techniques. References to one or more reasons for using particular techniques, or for avoiding particular techniques, do not preclude other reasons or techniques, even if completely contrary, where circumstances might indicate that the stated reasons or techniques might not be as applicable as the described circumstance.
The terms “antenna”, “antenna system” and the like, may generally refer to any device that is a transducer designed to transmit or receive electromagnetic radiation. In other words, antennas convert electromagnetic radiation into electrical currents and vice versa. Often an antenna is an arrangement of conductor(s) that generate a radiating electromagnetic field in response to an applied alternating voltage and the associated alternating electric current, or can be placed in an electromagnetic field so that the field will induce an alternating current in the antenna and a voltage between its terminals.
The phrase “wireless communication system” generally refers to a coupling of EMF's (electromagnetic fields) between a sender and a receiver. For example, and without limitation, many wireless communication systems operate with senders and receivers using modulation onto carrier frequencies of between about 2.4 GHz and about 5 GHz. However, in the context of the invention, there is no particular reason why there should be any such limitation. For example and without limitation, wireless communication systems might operate, at least in part, with vastly distinct EMF frequencies, e.g., ELF (extremely low frequencies).
The phrase “access point”, the term “AP”, and the like, generally refers to any devices capable of operation within a wireless communication system, in which at least some of their communication is potentially with wireless stations. For example, an “AP” might refer to a device capable of wireless communication with wireless stations, capable of wire-line or wireless communication with other AP's, and capable of wire-line or wireless communication with a control unit. Additionally, some examples AP's might communicate with devices external to the wireless communication system (e.g., an extranet, internet, or intranet), using an L2/L3 network. However, in the context of the invention, there is no particular reason why there should be any such limitation. For example one or more AP's might communicate wirelessly, while zero or more AP's might optionally communicate using a wire-line communication link.
The term “filter”, and the like, generally refers to signal manipulation techniques, whether analog, digital, or otherwise, in which intervals of frequencies may be selectively transmitted or rejected. The transmitted intervals are called passbands and the rejected intervals are called stopbands.
By way of example, in systems in which frequencies both in the approximately 2.4 GHz range and the approximately 5 GHz range are concurrently used, it might occur that a single band-pass, high-pass, or low-pass filter for the approximately 2.4 GHz range is sufficient to distinguish the approximately 2.4 GHz range from the approximately 5 GHz range, but that such a single band-pass, high-pass, or low-pass filter has drawbacks in distinguishing each particular channel within the approximately 2.4 GHz range or has drawbacks in distinguishing each particular channel within the approximately 5 GHz range. In such cases, a 1st set of signal filters might be used to distinguish those channels collectively within the approximately 2.4 GHz range from those channels collectively within the approximately 5 GHz range. A 2nd set of signal filters might be used to separately distinguish individual channels within the approximately 2.4 GHz range, while a 3rd set of signal filters might be used to separately distinguish individual channels within the approximately 5 GHz range.
The phrase “isolation technique”, the term “isolate”, and the like, may refer to any device or technique involving reducing the amount of undesirable, non-specific, non-targeted and/or unintended signals (noise) perceived on a device, e.g., a 1st channel of a device, when signals are concurrently communicated on a 2nd channel. This is sometimes referred to herein as “crosstalk”, “interference”, or “noise”.
The phrase “null region”, the term “null”, and the like, generally refer to regions in which an operating antenna (or antenna part) has relatively little EMF effect on those particular regions. This has the effect that EMF radiation emitted or received within those regions are often relatively unaffected by EMF radiation emitted or received within other regions of the operating antenna (or antenna part).
The term “radio”, and the like, generally refers to (1) devices capable of wireless communication while concurrently using multiple antennae, frequencies, or some other combination or conjunction of techniques, or (2) techniques involving wireless communication while concurrently using multiple antennae, frequencies, or some other combination or conjunction of techniques.
The terms “polarization”, “orthogonal”, and the like, generally refer to signals having a selected polarization, e.g., horizontal polarization, vertical polarization, right circular polarization, left circular polarization. The term “orthogonal” generally refers to relative lack of interaction between a 1st signal and a 2nd signal, in cases in which that 1st signal and 2nd signal are polarized. For example and without limitation, a 1st EMF signal having horizontal polarization should have relatively little interaction with a 2nd EMF signal having vertical polarization.
The term “lobes” refers to the radiation pattern of an antenna. An antenna shows a pattern of “lobes” at various angles, directions where the radiated signal strength reach a maximum, separated by “nulls”, angles at which the radiation falls to zero. The lobe that is designed to be bigger than the others is the “main lobe”. The other lobes are “sidelobes”. The “sidelobe” in the opposite direction from the “main lobe” is called the “backlobe”.
The term “beamwidth” may refer to the half power beamwidth, which is the angle between the half-power (−3 dB) points of the main lobe of an antenna (or, as described herein, a portion of an antenna comprising a subset of emitters) when referenced to the peak effective radiated power of the main lobe. Beamwidth is usually, but not always, expressed in degrees, and for the horizontal plane. As described herein, a multi-sector antenna as described herein may include a plurality of antenna sections, each having an individual (and independent and/or overlapping) beamwidth. The beamwidth for these antennas may reference the “horizontal plane” (e.g., a plane that is perpendicular to the axis formed by, in some variations, the emitting elements).
The term “beam axis” of an antenna typically references the main lobe of the radiation pattern of such antenna. The beam axis may be the axis of maximum radiation that passes through the main lobe.
The phrase “wireless station” (WS), “mobile station” (MS), and the like, generally refer to devices capable of operation within a wireless communication system, in which at least some of their communication potentially uses wireless techniques.
The phrase “patch antenna” or “microstrip antenna” generally refers to an antenna formed by suspending one or more metal patches over a ground plane. The assembly may be contained inside a plastic radome, which protects the antenna structure from damage. A patch antenna may be constructed on a dielectric substrate to provide for electrical isolation.
The phrase “dual polarized” generally refers to antennas or systems formed to radiate electromagnetic radiation polarized in two modes. Generally the two modes are horizontal radiation and vertical radiation.
For example,
In the example of a linear antenna assembly 12 shown in
In general any of the linear antenna assemblies described herein may include a plurality of N antenna sections, where N≥2. In the example of an antenna assembly shown in
The corrugations 201, 202, (as well as the isolation dividers 241, 242) may reduce signal interference to adjacent antenna sections, and/or adjacently located radio antennas.
As discussed above, the walls of the trough may confine the radiation or radio frequency (RF) emission of the radiators located within the through. The choke boundary region (e.g., corrugations) at the top of the trough walls may further suppress radiation in extraneous directions (i.e., prevent or suppress radio wave radiations in other directions that may interfere with antenna sections adjacent to the main antenna section).
In the particular example shown in
The orientation of the adjacently positioned (stacked) antenna sections in an antenna assembly may be varied. For example,
For example, in
In
In
In
In
In
In some variations, the beam-angles of the different antenna sections forming the antenna assembly may be more or less angled relative to each other. For example, the antenna sections may have differing main lobes or half power beamwidths. The main lobe configurations may be altered by changing the performance characteristics of the radiator array, e.g. number of columns, number of elements in each column, the angular position and/or shape of the walls, etc. One of ordinary skill in the art having the benefit of this disclosure can extend the concept so that the combined output beamwidth of the antenna sections is different by varying the position of the beam axes of the antenna sections, and varying the main lob of each of the antenna sections, while maintaining partial overlapping with the adjacent region. This will change the region spanned by the electromagnetic waves emitted from each of the antenna sections. An example of one variation is shown in
In some variations, each antenna section 121, 122, 123 is a sector antenna. In one variation, each sector antenna may have a main lobe having a beamwidth of 60 degrees. The antenna sections may be positioned such that the main lobs of the adjacent antennae overlaps at the half-power point, such that the three antenna sections forms a combined beamwidth of 180 degrees. In another variation, at least two of the antenna sections have different main lobes or beamwidths. In operation, the plurality of antenna sections behave as one antenna providing coverage over a range of areas or sectors.
Other examples of antenna assemblies having different numbers and arrangements of in-line antenna sections are shown schematically in
For example,
Another example is shown in
In any of the examples described herein, each antenna section may include one or more emitting elements for emitting and/or receiving RF energy. In particular, each antenna section may include a plurality of emitters (emitting elements) that are arranged in an array, such as in a linear array that can be oriented in-line with the long axis of the antenna assembly. For example,
In some variations, such as the examples shown in
An antenna assembly may have one or more emitter elements that include a patch portion connected to the second cylindrical portion. The patch portion may have an aperture through it. The patch is disposed on an insulator such as a printed circuit board, and a metallic ground portion may also be connected to an insulator opposite the patch. The ground portion may have an aperture through it for receiving a fastener. The screw may be used to connect together the ground, the patch, the insulator and the cone. The screw or other fastener may also hold in place a radio frequency (RF) feed to the threaded aperture on the conical portion. Additionally an RF feed may be adhered to the patch and a portion of the cylinder on the vertex end disposed in electrical contact with the RF feed.
The device may be arranged in an array to provide for an effective radiation pattern and the elements or the array and height of the radiators positions to provide for impedance matching and improved antenna gain.
Another example of a multi-sector antenna apparatus (assembly) is shown in
For example,
In
In
In
As mentioned above, a plurality of different antenna sections may be coupled together in a stack to form an antenna assembly. Each of the different antenna sections may be fed by a single radio transceiver device or by separate radio transceiver devices. For example, as shown in
In
As mentioned above, any of the antenna assemblies described herein may include an outer cover (e.g., radome) that is at least partially transparent over the antenna reflectors for the wavelengths of RF energy being transmitted by the individual antenna sections.
As mentioned above, in some variations each antenna section is coupled to a transmitter/receiver/transceiver, thus each antenna section may include a separate transmitter/receiver/transceiver, although these separate transmitters may be connected to each other and/or controlled by controller. In some variations the transmission of RF signals from each antenna section may be specific to that sector, or it may be transmitted from all of the sectors, or some combination thereof. For example, in some variations, the antenna sections are operated simultaneously, e.g., the radiator arrays in the antenna sections may be driven by a single radio transceiver unit. In some variations, the antenna sections are operated individually. For example, each of the antenna section may be connected driven by a separate radio transceiver unit. In some variations one transceiver drives all or a subset of the antenna sections. For example, a single transceiver unit may drive one, two, three, four, etc. antenna sectors in a multi-sector antenna assembly, while in the same multi-sector antenna assembly, a second (or more) transceiver drives another one, two, three, four, etc. antenna sectors.
In use, a sector antenna assembly such as the ones described herein may be configured to cover a broader geographic region than a single antenna. For example, as illustrated in
The above illustration provides many different embodiments or embodiments for implementing different features of the invention. Specific embodiments of components and processes are described to further explain the invention. These are, of course, merely embodiments and are not intended to limit the invention from that described in the claims.
Although the invention is illustrated and described herein as embodied in one or more specific examples, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention, as set forth in the following claims.
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical range recited herein is intended to include all sub-ranges subsumed therein.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This patent application is a continuation of U.S. patent application Ser. No. 14/862,676 filed Sep. 23, 2015, titled “MULTI-SECTOR ANTENNAS,” now U.S. Pat. No. 10,164,332, which claims priority to U.S. Provisional Patent Application No. 62/063,916, filed Oct. 14, 2014, titled “MULTI SECTOR ANTENNA,” each of which is herein incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62063916 | Oct 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14862676 | Sep 2015 | US |
Child | 16231543 | US |