The present invention relates generally to gain control circuits, and more particularly to a system for providing multi-segment gain control.
Variable gain amplifiers find widespread use in wireless transceivers. They are used in receivers to compensate for varying input levels and in transmitters to adjust the output power level.
A typical receiver includes a switched-gain low noise amplifier (LNA) and multiple baseband variable gain amplifiers. The switched-gain LNA provides at least two modes—high gain and bypass. It invariably suffers from switching transients that adversely affect the magnitude and phase of the received signal, which can be avoided with an LNA offering continuous gain control.
The receiver is generally characterized by its sensitivity and selectivity. The sensitivity of the radio receiver measures the minimum signal that can be detected and demodulated. This takes into account the noise figure of the radio receiver FT, the bandwidth B of the system, and the performance of the demodulator.
The noise figure of a cascaded radio receiver depends on the gain and noise contributed by each circuit, with the first few stages dominating. The selectivity, or linearity, of the radio receiver indicates the largest interfering signal that can be rejected by the system. These signals create intermodulation distortion products that increase rapidly as the interfering signal level increases and degrade receiver signal quality. As a result, the later stages in the receiver system dictate overall linearity.
The sensitivity and selectivity of the radio receiver create conflicting requirements. It therefore becomes advantageous to adapt the receiver to the operating environment and this requires individual control of the LNA and all the variable gain amplifiers.
A transmitter similarly uses baseband and radio frequency (rf) variable gain amplifiers to set the output power level, which varies dramatically in some systems such as in code division multiple access (CDMA) systems.
The transmitter is generally characterized by its maximum output power, distortion, and efficiency. The maximum output power relates to the range of the radio transmitter. It's limited by distortion, which causes spectral regrowth and interferes with nearby radio channels. In turn, amplifier distortion depends on the input signal amplitude and the operating bias, which ties directly to the efficiency of the system.
The gain of the different variable gain amplifiers directly affects the performance of the transmitter. As such, it becomes advantageous to adjust the transmitter based on its output power level and this requires control of each variable gain amplifier.
An automatic gain control (AGC) network must provide monotonic gain control with some precision; otherwise, problems develop due to feedback. Ideally, the AGC network also displays a linear-dB control response. The resulting linear control signal varies exponentially and greatly magnifies errors plus discontinuities due to segmenting of the gain control response. It would therefore be advantageous to have an AGC network that operates to overcome the above problems.
In one or more embodiments, a multi-segment gain control system is provided that comprises an AGC system that optimally maps a single control signal to multiple variable gain amplifiers to allow the gain of each amplifier to be adjusted independently resulting in a smooth overall gain response, and thereby achieving greater flexibility and superior performance.
In one embodiment, apparatus is provided for a multi-segment gain control. The apparatus comprises logic to convert a gain control signal to an exponential signal, and logic to map the exponential signal to two or more control signals that are used to control two or more gain stages to produce linear multi-segment gain control.
In one embodiment, apparatus is provided for a multi-segment gain control. The apparatus comprises means for converting a gain control signal to an exponential signal, and means for mapping the exponential signal to two or more control signals that are used to control two or more gain stages to produce linear multi-segment gain control.
In one embodiment, a communication device is provided that comprises apparatus for providing a multi-segment gain control. The apparatus comprises logic to convert a gain control signal to an exponential signal, and logic to map the exponential signal to two or more control signals that are used to control two or more gain stages to produce linear multi-segment gain control.
The foregoing aspects and the attendant advantages of the embodiments described herein will become more readily apparent by reference to the following detailed description when taken in conjunction with the accompanying drawings wherein:
In one or more embodiments, a multi-segment gain control system is provided that comprises an AGC system that optimally maps a single control signal to multiple variable gain amplifiers to allow the gain of each amplifier to be adjusted independently resulting in a smooth overall gain response.
Vbe1=IRxR1+Vbe2
where IRx represents the RSSI signal (and is inversely related to the required gain). This equation can be rewritten as;
where VT is the thermal voltage. During operation, the transistor loop (comprising devices Q3, Q4 and P1, P2) biases transistor Q1, while transistor N1 provides the base current for transistor Q2. Resistor R2 provides a current source for transistor N1.
For the following description, it will be assumed that the receiver comprises an rf variable gain amplifier 402 and three baseband (bb) variable gain amplifiers, shown generally at 404. During operation, the three baseband variable gain amplifiers are adjusted in tandem, and as a result, the control range is reduced to;
where ΔGexp is the range of the exponential current defined as;
and Grange is the overall gain control range of the system. (The currents Imin and Isw correspond to the exponential currents needed to control the baseband variable gain amplifiers.) This approach advantageously raises the minimum current Imin above the noise floor, while lowering the maximum current Isw and reducing power consumption. As a result, the exponential current Iexp can be mapped to directly control the gain of the baseband amplifiers 404 using the control signals Ibb, where Ibb=Iexp from Imin to Isw.
Above the current Isw (i.e., above 75 dB of receiver gain), the rf variable gain amplifier 402 takes over. It is preferable that the gain of the rf variable gain amplifier 402 change at the same rate as the tandem of three baseband variable gain amplifiers 404, meaning its gain control signal (Irf shown in
Irf=k(Iexp)3
where Iexp ranges from Isw to Imax, and where k is a scaling constant.
ID1ID2=IQ1IQ2
The constant current Ik1 flowing through transistor Q1 results in;
which is the square of the input current Irf1. The input current Irf1 is also mirrored to transistors P3 and P4. This forces the input current Irf1 through diode D3 and transistor N1. The current flowing through diode D4 is then Ik2-Irf1, with the current Ik2 constant and greater than the maximum value of Irf1.
The current IQ2 flows through transistors Q3 and Q4 with;
IQ2=IQ3+IQ4
These currents also satisfy the relationship;
which allows current IQ4 to be rewritten as;
Substituting into the expression for IQ2 yields;
which simplifies to the desired cube function to produce the control current IQ3 (Irf);
A fixed current Ik2 flows through diode D5 to set a constant operating point for transistors Q3-Q4.
Other gain control responses (for use with different radio systems and any number of variable gain amplifiers) are possible with similar results provided the basis current Iexp and switching current(s) are shared. In one or more embodiments, the AGC system incorporates a variety of limiting and scaling circuits including, but not limited to, linear, cube, square and square root circuits.
ID1ID2=IQ1IQ2
Ideally, the current Ik2 is constant; unfortunately, this is not possible with a standard current mirror. The potential at the emitter of transistor Q1 decreases and nearly vanishes at low current levels (Iin), pushing the current source transistor into saturation (bipolar device) or triode region (MOS device). This differs from the input side of the mirror and results in mismatches. To avoid this, an operational amplifier feedback loop is added. It uses resistor R2 to monitor the current flow through transistor Q1 and adjusts the gate voltage applied to current source transistor N3 accordingly. Current source Ik2 and resistor R1 provide a reference to the operational amplifier 1102.
IQ1IQ2=(IQ3)2
The input current Iin biases transistor Q1, while a constant current Ik3 is established in transistor N1. As a result;
IQ3=√{square root over (IinIk3)}
which is the desired square-root operation.
Accordingly, while one or more embodiments of a multi-segment gain control system have been illustrated and described herein, it will be appreciated that various changes can be made to the embodiments without departing from their spirit or essential characteristics. Therefore, the disclosures and descriptions herein are intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.
The present application claims the benefit of priority from a co-pending U.S. Provisional patent application entitled “System for a Multi-segment AGC Circuit” having Ser. No. 60/533,523 and filed on Dec. 29, 2003, the disclosure of which is incorporated by reference herein in its entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
448539 | Morris | Mar 1891 | A |
599071 | Barr | Feb 1898 | A |
4198675 | Moore | Apr 1980 | A |
4263560 | Ricker | Apr 1981 | A |
4430627 | Machida | Feb 1984 | A |
4769588 | Panther | Sep 1988 | A |
4816772 | Klotz | Mar 1989 | A |
4926135 | Voorman | May 1990 | A |
4965531 | Riley | Oct 1990 | A |
4994768 | Shepherd et al. | Feb 1991 | A |
5006818 | Koyama et al. | Apr 1991 | A |
5015968 | Podell et al. | May 1991 | A |
5030923 | Arai | Jul 1991 | A |
5289136 | DeVeirman et al. | Feb 1994 | A |
5331292 | Worden et al. | Jul 1994 | A |
5399990 | Miyake | Mar 1995 | A |
5451901 | Welland | Sep 1995 | A |
5491450 | Helms et al. | Feb 1996 | A |
5508660 | Gersbach et al. | Apr 1996 | A |
5548594 | Nakamura | Aug 1996 | A |
5561385 | Choi | Oct 1996 | A |
5581216 | Ruetz | Dec 1996 | A |
5631587 | Co et al. | May 1997 | A |
5648744 | Prakash et al. | Jul 1997 | A |
5677646 | Entrikin | Oct 1997 | A |
5739730 | Rotzoll | Apr 1998 | A |
5767748 | Nakao | Jun 1998 | A |
5818303 | Oishi et al. | Oct 1998 | A |
5834987 | Dent | Nov 1998 | A |
5841320 | Ichihara | Nov 1998 | A |
5862465 | Ou | Jan 1999 | A |
5878101 | Aisaka | Mar 1999 | A |
5880618 | Koen | Mar 1999 | A |
5880631 | Sahota | Mar 1999 | A |
5939922 | Umeda | Aug 1999 | A |
5945855 | Momtaz | Aug 1999 | A |
5949286 | Jones | Sep 1999 | A |
5990740 | Groe | Nov 1999 | A |
5994959 | Ainsworth | Nov 1999 | A |
5999056 | Fong | Dec 1999 | A |
6011437 | Sutardja et al. | Jan 2000 | A |
6018651 | Bruckert et al. | Jan 2000 | A |
6044124 | Monahan et al. | Mar 2000 | A |
6052035 | Nolan et al. | Apr 2000 | A |
6057739 | Crowley et al. | May 2000 | A |
6060935 | Shulman | May 2000 | A |
6091307 | Nelson | Jul 2000 | A |
6100767 | Sumi | Aug 2000 | A |
6107878 | Black | Aug 2000 | A |
6114920 | Moon et al. | Sep 2000 | A |
6163207 | Kattner et al. | Dec 2000 | A |
6173011 | Rey et al. | Jan 2001 | B1 |
6191956 | Foreman | Feb 2001 | B1 |
6204728 | Hageraats | Mar 2001 | B1 |
6211737 | Fong | Apr 2001 | B1 |
6229374 | Tammone, Jr. | May 2001 | B1 |
6234387 | Cuthbert et al. | May 2001 | B1 |
6246289 | Pisati et al. | Jun 2001 | B1 |
6255889 | Branson | Jul 2001 | B1 |
6259321 | Song et al. | Jul 2001 | B1 |
6288609 | Brueske et al. | Sep 2001 | B1 |
6298093 | Genrich | Oct 2001 | B1 |
6333675 | Saito | Dec 2001 | B1 |
6370372 | Molnar et al. | Apr 2002 | B1 |
6392487 | Alexanian | May 2002 | B1 |
6404252 | Wilsch | Jun 2002 | B1 |
6476660 | Visocchi et al. | Nov 2002 | B1 |
6515553 | Filiol et al. | Feb 2003 | B1 |
6525606 | Atkinson | Feb 2003 | B1 |
6549078 | Sridharan et al. | Apr 2003 | B1 |
6559717 | Lynn et al. | May 2003 | B1 |
6560448 | Baldwin et al. | May 2003 | B1 |
6571083 | Powell, II et al. | May 2003 | B1 |
6577190 | Kim | Jun 2003 | B2 |
6583671 | Chatwin | Jun 2003 | B2 |
6583675 | Gomez | Jun 2003 | B2 |
6639474 | Asikainen et al. | Oct 2003 | B2 |
6664865 | Groe et al. | Dec 2003 | B2 |
6683509 | Albon et al. | Jan 2004 | B2 |
6693977 | Katayama et al. | Feb 2004 | B2 |
6703887 | Groe | Mar 2004 | B2 |
6711391 | Walker et al. | Mar 2004 | B1 |
6724235 | Costa et al. | Apr 2004 | B2 |
6734736 | Gharpurey | May 2004 | B2 |
6744319 | Kim | Jun 2004 | B2 |
6751272 | Burns et al. | Jun 2004 | B1 |
6753738 | Baird | Jun 2004 | B1 |
6763228 | Prentice et al. | Jul 2004 | B2 |
6774740 | Groe | Aug 2004 | B1 |
6777999 | Kanou et al. | Aug 2004 | B2 |
6781425 | Si | Aug 2004 | B2 |
6791413 | Komurasaki et al. | Sep 2004 | B2 |
6795843 | Groe | Sep 2004 | B1 |
6798290 | Groe et al. | Sep 2004 | B2 |
6801089 | Costa et al. | Oct 2004 | B2 |
6845139 | Gibbons | Jan 2005 | B2 |
6856205 | Groe | Feb 2005 | B1 |
6870411 | Shibahara et al. | Mar 2005 | B2 |
6894564 | Gilbert | May 2005 | B1 |
6917719 | Chadwick | Jul 2005 | B2 |
6940356 | McDonald, II et al. | Sep 2005 | B2 |
6943600 | Craninckx | Sep 2005 | B2 |
6975687 | Jackson et al. | Dec 2005 | B2 |
6985703 | Groe et al. | Jan 2006 | B2 |
6990327 | Zheng et al. | Jan 2006 | B2 |
7062248 | Kuiri | Jun 2006 | B2 |
7065334 | Otaka et al. | Jun 2006 | B1 |
7088979 | Shenoy et al. | Aug 2006 | B1 |
7123102 | Uozumi et al. | Oct 2006 | B2 |
7142062 | Vaananen et al. | Nov 2006 | B2 |
7148764 | Kasahara et al. | Dec 2006 | B2 |
7171170 | Groe et al. | Jan 2007 | B2 |
7215215 | Hirano et al. | May 2007 | B2 |
20020031191 | Shimizu | Mar 2002 | A1 |
20020071497 | Bengtsson et al. | Jun 2002 | A1 |
20020193009 | Reed | Dec 2002 | A1 |
20020197975 | Chen | Dec 2002 | A1 |
20030078016 | Groe et al. | Apr 2003 | A1 |
20030092405 | Groe et al. | May 2003 | A1 |
20030118143 | Bellaouar et al. | Jun 2003 | A1 |
20030197564 | Humphreys et al. | Oct 2003 | A1 |
20040017852 | Redman-White | Jan 2004 | A1 |
20040051590 | Perrott et al. | Mar 2004 | A1 |
20050093631 | Groe | May 2005 | A1 |
20050099232 | Groe et al. | May 2005 | A1 |
Number | Date | Country | |
---|---|---|---|
60533523 | Dec 2003 | US |