This disclosure relates generally to speech communication including, but not limited to, multi-sensor signal optimization for speech communication.
Headphone systems including headsets equipped with a microphone can be used for entertainment and communication. Often, such devices are designed for people “on the move” who desire uninterrupted voice communications in outdoor settings. In such settings, a user of a headset can perform “hands free” control of the headset utilizing voice commands associated with a speech recognition engine, e.g., while riding on a bicycle, motorcycle, boat, vehicle, etc.
Although conventional speech processing systems enhance signal-to-noise ratios of speech communication systems utilizing directional microphones, such microphones are extremely susceptible to environmental noise such as wind noise, which can degrade headphone system performance and render such devices unusable.
The above-described deficiencies of today's speech communication environments and related technologies are merely intended to provide an overview of some of the problems of conventional technology, and are not intended to be exhaustive, representative, or always applicable. Other problems with the state of the art, and corresponding benefits of some of the various non-limiting embodiments described herein, may become further apparent upon review of the following detailed description.
A simplified summary is provided herein to help enable a basic or general understanding of various aspects of illustrative, non-limiting embodiments that follow in the more detailed description and the accompanying drawings. This summary is not intended, however, as an extensive or exhaustive overview. Instead, the sole purpose of this summary is to present some concepts related to some illustrative non-limiting embodiments in a simplified form as a prelude to the more detailed description of the various embodiments that follow. It will also be appreciated that the detailed description may include additional or alternative embodiments beyond those described in this summary.
In accordance with one or more embodiments, computing noise information for microphones and an output of a spatial filter, and selecting a portion of the noise information, or an optimized combination of portions of the noise information, are provided in order to enhance the performance of speech communication devices, e.g., used in noisy environments.
In one embodiment, a system, e.g., including a headset, a helmet, etc. can include a sensor component including acoustic sensors, e.g., microphones, a bone conduction microphone, an air conduction microphone, an omnidirectional sensor, etc. that can detect sound and generate, based on the sound, first sound information associated with a first sensor of the acoustic sensors and second sound information associated with a second sensor of the acoustic sensors. Further, an audio processing component, e.g., a digital signal processor, etc. can generate filtered sound information based on the first sound information, the second sound information, and a spatial filter. For instance, the spatial filter, e.g., a beamformer, an adaptive beamformer, etc. can be associated with a beam corresponding to a predetermined angle associated with positions of the acoustic sensors. Furthermore, the audio processing component can determine noise levels, e.g., signal-to-noise ratios, etc. for the first sound information, the second sound information, and the filtered sound information; and generate output sound information based on a selection of one of the noise levels, or a weighted combination of the noise levels.
In another embodiment, a transceiver component can send the output sound information directed to a communication device, e.g., a mobile phone, a cellular device, etc. via a wired data connection or a wireless data connection, e.g., a 802.X-based wireless connection, a Bluetooth® based wireless connection, etc. In yet another embodiment, the transceiver component can receive audio data from the communication device via the wireless data connection or the wired data connection. Further, the system can include speakers, e.g., included in an earplug, that can generate sound waves based on the audio data.
In one or more example embodiments, the first sensor can be a first microphone positioned at a first location corresponding to a first speaker of the speakers. Further, the second sensor can be a second microphone positioned at a second location corresponding to a second speaker of the speakers. As such, each sensor can be embedded in a speaker housing, e.g., an earbud, etc. that is proximate to an eardrum of a user of an associated communications device. In another example, a bone conduction microphone can be positioned adjacent to an air conduction microphone within a structure, e.g., soft rubber material enclosed with air. Further, a foam material can be positioned between the structure and the bone and air conduction microphones, e.g., to reduce mechanical vibration, etc. Furthermore, a membrane, e.g., thin membrane, can be positioned adjacent to the microphones, e.g., to facilitate filtering of wind, contact to a user's skin, etc. Further, the structure can include an air tube that can facilitate inflation and/or deflation of the structure.
In one example, each speaker can generate sound waves 180° out of phase from each other, e.g., to facilitate cancelation, e.g., via one or more beamforming techniques, of an echo induced by close proximity of a microphone to a speaker. In another example, a first tube can mechanically couple a first earplug to a first speaker, and a second tube can mechanically couple a second earplug to a second speaker. As such, the tubes can facilitate delivery of environmental sounds to a user's ear, e.g., for safety reasons, etc. while the user listens to sound output from the speakers.
In one non-limiting implementation, a method can include receiving, via sound sensors of a computing device, sound information; determining, based on the sound information, signal-to-noise ratios (SNRs) associated with the sound sensors; determining, based on the sound information and spatial information associated with the sound sensors, beamforming information; determining a signal-to-noise ratio of the SNRs based on the beamforming information; and creating output data in response to selecting, based on a predetermined noise condition, one of the SNRs or a weighted combination of the SNRs.
Further, the method can include determining environmental noise associated with the sound information, and filtering a portion of the sound information based on the environmental noise. In one embodiment, the method can include determining echo information associated with acoustic coupling between the sound sensors and speakers of the computing device; and filtering a portion of the sound information based on the echo information.
In another non-limiting implementation, a computer readable medium comprising computer executable instructions that, in response to execution, cause a system including a processor to perform operations, comprising receiving sound data via microphones; determining, based on the sound data, a first level of noise associated with a first microphone of the microphones; determining, based on the sound data, a second level of noise associated with a second microphone of the microphones; determining, based on the sound data and a predefined angle of beam propagation associated with positions of the microphones, a third level of noise; and generating, based on the first, second, and third levels of noise, output data in response to noise information being determined to satisfy a predefined condition with respect to a predetermined level of noise.
In one embodiment, the first microphone is a bone conduction microphone and the second microphone is an air conduction microphone. In another embodiment, the microphones are air conduction microphones.
Other embodiments and various non-limiting examples, scenarios, and implementations are described in more detail below.
Various non-limiting embodiments are further described with reference to the accompanying drawings in which:
Various non-limiting embodiments of systems, methods, and apparatus presented herein enhance the performance of speech communication devices, e.g., used in noisy environments. In the following description, numerous specific details are set forth to provide a thorough understanding of the embodiments. One skilled in the relevant art will recognize, however, that the techniques described herein can be practiced without one or more of the specific details, or with other methods, components, materials, etc. In other instances, well-known structures, materials, or operations are not shown or described in detail to avoid obscuring certain aspects.
Reference throughout this specification to “one embodiment,” or “an embodiment,” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, the appearances of the phrase “in one embodiment,” or “in an embodiment,” in various places throughout this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
As utilized herein, terms “component”, “system”, and the like are intended to refer to hardware, a computer-related entity, software (e.g., in execution), and/or firmware. For example, a component can be an electronic circuit, a device, e.g., a sensor, a speaker, etc. communicatively coupled to the electronic circuit, a digital signal processing device, an audio processing device, a processor, a process running on a processor, an object, an executable, a program, a storage device, and/or a computer. By way of illustration, an application, firmware, etc. running on a computing device and the computing device can be a component. One or more components can reside within a process, and a component can be localized on one computing device and/or distributed between two or more computing devices.
Further, these components can execute from various computer readable media having various data structures stored thereon. The components can communicate via local and/or remote processes such as in accordance with a signal having one or more data packets (e.g., data from one component interacting with another component in a local system, distributed system, and/or across a network, e.g., the Internet, a local area network, a wide area network, etc. with other systems via the signal).
As another example, a component can be an apparatus, a structure, etc. with specific functionality provided by mechanical part(s) that house and/or are operated by electric or electronic circuitry; the electric or electronic circuitry can be operated by a software application or a firmware application executed by one or more processors; the one or more processors can be internal or external to the apparatus and can execute at least a part of the software or firmware application. As yet another example, a component can be an apparatus that provides specific functionality through electronic components without mechanical parts; the electronic components can include one or more processors therein to execute software and/or firmware that confer(s), at least in part, the functionality of the electronic components.
The word “exemplary” and/or “demonstrative” is used herein to mean serving as an example, instance, or illustration. For the avoidance of doubt, the subject matter disclosed herein is not limited by such examples. In addition, any aspect or design described herein as “exemplary” and/or “demonstrative” is not necessarily to be construed as preferred or advantageous over other aspects or designs, nor is it meant to preclude equivalent exemplary structures and techniques known to those of ordinary skill in the art. Furthermore, to the extent that the terms “includes,” “has,” “contains,” and other similar words are used in either the detailed description or the claims, such terms are intended to be inclusive—in a manner similar to the term “comprising” as an open transition word—without precluding any additional or other elements.
Artificial intelligence based systems, e.g., utilizing explicitly and/or implicitly trained classifiers, can be employed in connection with performing inference and/or probabilistic determinations and/or statistical-based determinations as in accordance with one or more aspects of the disclosed subject matter as described herein. For example, an artificial intelligence system can be used, via an audio processing component (see below), to generate filtered sound information derived from sensor inputs and a spatial filter, e.g., an adaptive beamformer, and select an optimal noise level associated with the filtered sound information, e.g., for speech communications.
As used herein, the term “infer” or “inference” refers generally to the process of reasoning about, or inferring states of, the system, environment, user, and/or intent from a set of observations as captured via events and/or data. Captured data and events can include user data, device data, environment data, data from sensors, sensor data, application data, implicit data, explicit data, etc. Inference can be employed to identify a specific context or action, or can generate a probability distribution over states of interest based on a consideration of data and events, for example.
Inference can also refer to techniques employed for composing higher-level events from a set of events and/or data. Such inference results in the construction of new events or actions from a set of observed events and/or stored event data, whether the events are correlated in close temporal proximity, and whether the events and data come from one or several event and data sources. Various classification schemes and/or systems (e.g., support vector machines, neural networks, expert systems, Bayesian belief networks, fuzzy logic, and data fusion engines) can be employed in connection with performing automatic and/or inferred action in connection with the disclosed subject matter.
In addition, the disclosed subject matter can be implemented as a method, apparatus, or article of manufacture using standard programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof to control a computer to implement the disclosed subject matter. The term “article of manufacture” as used herein is intended to encompass a computer program accessible from any computer-readable device, computer-readable carrier, or computer-readable media. For example, computer-readable media can include, but are not limited to, a magnetic storage device, e.g., hard disk; floppy disk; magnetic strip(s); an optical disk (e.g., compact disk (CD), a digital video disc (DVD), a Blu-ray Disc™ (BD)); a smart card; a flash memory device (e.g., card, stick, key drive); and/or a virtual device that emulates a storage device and/or any of the above computer-readable media.
As described above, conventional speech processing techniques are susceptible to environmental noise such as wind noise, which can degrade headphone system performance and render such devices unusable. Compared to such technology, various systems, methods, and apparatus described herein in various embodiments can improve user experience(s) by enhancing the performance of speech communication devices, e.g., used in noisy environments.
Referring now to
Additionally, the systems and processes explained herein can be embodied within hardware, such as an application specific integrated circuit (ASIC) or the like. Further, the order in which some or all of the process blocks appear in each process should not be deemed limiting. Rather, it should be understood by a person of ordinary skill in the art having the benefit of the instant disclosure that some of the process blocks can be executed in a variety of orders not illustrated.
As illustrated by
Sensor component 123 can detect sound via acoustic sensors 123a and 123b, and generate, based on the sound, first sound information associated with acoustic sensor 123a and second sound information associated with acoustic sensor 123b. Audio processing component 121 can receive the first and second sound information via analog-to-digital converter (ADC) 124 that converts such information to digital form. Further, signal processing and conditioning component 126, e.g., a digital signal processor, etc. can generate filtered sound information based on the first sound information, the second sound information, and a spatial filter associated with the acoustic sensors. In one embodiment, the spatial filter can use spatial information associated with the signals to differentiate speech and unwanted signals, e.g., associated with noise.
As such, in one aspect, audio processing component 121 can use the spatial information to enforce speech signal(s) picked up from a mouth of a user of multi-sensor device 100, and to suppress or separate interference signal(s) from the speech signal(s). In one or more embodiments, the spatial filter, e.g., a beamformer, an adaptive beamformer, etc. can be associated with a beam corresponding to a predetermined angle associated with positions of acoustic sensors 123. Furthermore, signal processing and conditioning component 126 can determine noise levels, e.g., signal-to-noise ratios, etc. for the first sound information, the second sound information, and the filtered sound information; and generate output sound information based on a selection of one of the noise levels, or a weighted combination of the noise levels.
In another embodiment, transceiver component 122 can send the output sound information directed to a communication device, e.g., a mobile phone, a cellular device, communications device 208 illustrated by
Now referring to
As illustrated by
On the other hand, acoustic sensors 203a and 203b can detect speech signal(s) from a user and communicate such signal(s) to electrical circuitry 120 through mic-in 205 via connector 204. Further, electrical circuitry 120 can process the speech signal(s) and send the processed signal(s) as output sound information to communication device 208.
Acoustic sensors 203a and 203b can be mounted on a suitable position on each side of a headphone, e.g., in respective housings of left/right speakers 202a and 202b. As illustrated by
As illustrated by
As illustrated by
In one embodiment, acoustic sensors 203a and 203b can be of an omnidirectional type of sensor, e.g., less subject to acoustic constraints. Further, in order to accommodate for different use cases, additional signal processing methods or beamforming methods with different parameters can be performed by audio processing component 121. For example, audio processing component 121 can produce an output 127 that includes an optimized weighted output, e.g., to facilitate optimal operation of headphone system 200 when one of the acoustic sensors failed and/or is not in use. In another embodiment, headphone system 200 can process signals, e.g., associated with wind noise cancellation and/or environmental noise cancellation, in a hearing assist mode of operation of a hearing aid device.
For example,
As illustrated by
S=f1X1+f2X2+f3X3+f4X4+f5X5 (1)
Further, in one embodiment, audio processing component 121 can select a process that provides the highest SNR. For example, in this case, the weighting function will consist of a 1 in the process with the highest SNR and zero for all the other processes. In such a “winner take all”, or maximum SNR set up, the weighting function fi is based on equation (2) as follows, which indicates that a process associated with the first vector index and the highest SNR is chosen:
fi=[1,0,0,0,0] (2)
In another embodiment, another weighting function is proportional to the SNR for each process. Further, other non-linear weighting functions can also be used, e.g., weighting processes with a high SNR more heavily than processes with lower SNRs.
In other embodiments, acoustic sensors 123a and 123b can “pick up” signals from speakers 136a and 136b due to acoustic coupling, e.g., due to acoustic sensors 123a and 123b being placed in close proximity with the speakers 136a and 136b. Such ‘picked up’ signals will appear as echo to a remote user, e.g., associated with output sound information transmitted by a multi-sensor device described herein, and/or be included as interference in such information.
However, if the left/right speakers 136a and 136b are made to produce sound waves in opposite phases, the signals induced in acoustic sensors 123a and 123b will be out of phase. This method generates artificial information to beamformer 400, e.g., that the sound source is not from within the sweet zone and can be separated out and suppressed. Such induced phase inversion produces sound waves that can be automatically suppressed through the beamforming, e.g., since human ears are not sensitive to sound waves in opposite phases.
Referring now to
Now referring to
Structure 730 can be inflated by blowing air into its housing using air tube 760, e.g., a one-way air tube, which enables a user to inflate structure 730 so that the acoustic sensors can achieve good contact with a user's skin surface, but not cause any discomfort to the user during prolonged use. For example, structure 730 can be inflated by blowing air into structure 730 using a mouthpiece (not shown) or a small balloon (not shown) attached to tube 760, which can be removed easily after the user has inflated structure 730 to achieve good contact and comfort.
In an embodiment, an inner housing of structure 730 can be filled with soft foam 740 to help maintain the shape of structure 730. Further, the acoustic sensors can be separated by a soft cushion (not shown) to further reduce any mechanical vibration that may transmit as signals from the helmet to the sensors. In yet another embodiment, soft membrane 750 can act as wind filter for air conduction microphone 720, while providing a soft contact to the user's skin surface.
Structure 730 can be attached to a helmet/form part of the helmet, freeing the user from any entangling wire(s), etc. Further, structure 730 can be built in different dimensions, e.g., to facilitate fitting structure 730 into helmets of different sizes. Furthermore, in an embodiment illustrated by
Now referring to
Referring now to
As it employed in the subject specification, the term “processor” can refer to substantially any computing processing unit or device comprising, but not limited to comprising, single-core processors; single-processors with software multithread execution capability; multi-core processors; multi-core processors with software multithread execution capability; multi-core processors with hardware multithread technology; parallel platforms; and parallel platforms with distributed shared memory. Additionally, a processor can refer to an integrated circuit, an application specific integrated circuit (ASIC), a digital signal processor (DSP), a field programmable gate array (FPGA), a programmable logic controller (PLC), a complex programmable logic device (CPLD), a discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions and/or processes described herein. Processors can exploit nano-scale architectures such as, but not limited to, molecular and quantum-dot based transistors, switches and gates, in order to optimize space usage or enhance performance of mobile devices. A processor may also be implemented as a combination of computing processing units.
In the subject specification, terms such as “store,” “data store,” “data storage,” “database,” “storage medium,” and substantially any other information storage component relevant to operation and functionality of a component and/or process, refer to “memory components,” or entities embodied in a “memory,” or components comprising the memory. It will be appreciated that the memory components described herein can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory.
By way of illustration, and not limitation, nonvolatile memory, for example, can be included in storage systems described above, non-volatile memory 2322 (see below), disk storage 2324 (see below), and memory storage 2346 (see below). Further, nonvolatile memory can be included in read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable ROM (EEPROM), or flash memory. Volatile memory can include random access memory (RAM), which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as synchronous RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), and direct Rambus RAM (DRRAM). Additionally, the disclosed memory components of systems or methods herein are intended to comprise, without being limited to comprising, these and any other suitable types of memory.
In order to provide a context for the various aspects of the disclosed subject matter,
Moreover, those skilled in the art will appreciate that the inventive systems can be practiced with other computer system configurations, including single-processor or multiprocessor computer systems, mini-computing devices, mainframe computers, as well as personal computers, hand-held computing devices (e.g., PDA, phone, watch), microprocessor-based or programmable consumer or industrial electronics, and the like. The illustrated aspects can also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network; however, some if not all aspects of the subject disclosure can be practiced on stand-alone computers. In a distributed computing environment, program modules can be located in both local and remote memory storage devices.
With reference to
System bus 2318 can be any of several types of bus structure(s) including a memory bus or a memory controller, a peripheral bus or an external bus, and/or a local bus using any variety of available bus architectures including, but not limited to, Industrial Standard Architecture (ISA), Micro-Channel Architecture (MSA), Extended ISA (EISA), Intelligent Drive Electronics (IDE), VESA Local Bus (VLB), Peripheral Component Interconnect (PCI), Card Bus, Universal Serial Bus (USB), Advanced Graphics Port (AGP), Personal Computer Memory Card International Association bus (PCMCIA), Firewire (IEEE 1194), and Small Computer Systems Interface (SCSI).
System memory 2316 includes volatile memory 2320 and nonvolatile memory 2322. A basic input/output system (BIOS), containing routines to transfer information between elements within computer 2312, such as during start-up, can be stored in nonvolatile memory 2322. By way of illustration, and not limitation, nonvolatile memory 2322 can include ROM, PROM, EPROM, EEPROM, or flash memory. Volatile memory 2320 includes RAM, which acts as external cache memory. By way of illustration and not limitation, RAM is available in many forms such as SRAM, dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), Synchlink DRAM (SLDRAM), Rambus direct RAM (RDRAM), direct Rambus dynamic RAM (DRDRAM), and Rambus dynamic RAM (RDRAM).
Computer 2312 can also include removable/non-removable, volatile/non-volatile computer storage media, networked attached storage (NAS), e.g., SAN storage, etc.
It is to be appreciated that
A user can enter commands or information into computer 2312 through input device(s) 2336. Input devices 2336 include, but are not limited to, a pointing device such as a mouse, trackball, stylus, touch pad, keyboard, microphone, joystick, game pad, satellite dish, scanner, TV tuner card, digital camera, digital video camera, web camera, and the like. These and other input devices connect to processing unit 2314 through system bus 2318 via interface port(s) 2338. Interface port(s) 2338 include, for example, a serial port, a parallel port, a game port, and a universal serial bus (USB). Output device(s) 2340 use some of the same type of ports as input device(s) 2336.
Thus, for example, a USB port can be used to provide input to computer 2312 and to output information from computer 2312 to an output device 2340. Output adapter 2342 is provided to illustrate that there are some output devices 2340 like monitors, speakers, and printers, among other output devices 2340, which use special adapters. Output adapters 2342 include, by way of illustration and not limitation, video and sound cards that provide means of connection between output device 2340 and system bus 2318. It should be noted that other devices and/or systems of devices provide both input and output capabilities such as remote computer(s) 2344.
Computer 2312 can operate in a networked environment using logical connections to one or more remote computers, such as remote computer(s) 2344. Remote computer(s) 2344 can be a personal computer, a server, a router, a network PC, a workstation, a microprocessor based appliance, a peer device, or other common network node and the like, and typically includes many or all of the elements described relative to computer 2312.
For purposes of brevity, only a memory storage device 2346 is illustrated with remote computer(s) 2344. Remote computer(s) 2344 is logically connected to computer 2312 through a network interface 2348 and then physically connected via communication connection 2350. Network interface 2348 encompasses wire and/or wireless communication networks such as local-area networks (LAN) and wide-area networks (WAN). LAN technologies include Fiber Distributed Data Interface (FDDI), Copper Distributed Data Interface (CDDI), Ethernet, Token Ring and the like. WAN technologies include, but are not limited to, point-to-point links, circuit switching networks like Integrated Services Digital Networks (ISDN) and variations thereon, packet switching networks, and Digital Subscriber Lines (DSL).
Communication connection(s) 2350 refer(s) to hardware/software employed to connect network interface 2348 to bus 2318. While communication connection 2350 is shown for illustrative clarity inside computer 2312, it can also be external to computer 2312. The hardware/software for connection to network interface 2348 can include, for example, internal and external technologies such as modems, including regular telephone grade modems, cable modems and DSL modems, ISDN adapters, and Ethernet cards.
The above description of illustrated embodiments of the subject disclosure, including what is described in the Abstract, is not intended to be exhaustive or to limit the disclosed embodiments to the precise forms disclosed. While specific embodiments and examples are described herein for illustrative purposes, various modifications are possible that are considered within the scope of such embodiments and examples, as those skilled in the relevant art can recognize.
In this regard, while the disclosed subject matter has been described in connection with various embodiments and corresponding Figures, where applicable, it is to be understood that other similar embodiments can be used or modifications and additions can be made to the described embodiments for performing the same, similar, alternative, or substitute function of the disclosed subject matter without deviating therefrom. Therefore, the disclosed subject matter should not be limited to any single embodiment described herein, but rather should be construed in breadth and scope in accordance with the appended claims below.
This application is a continuation of, and claims priority to each of, U.S. patent application Ser. No. 15/629,711, filed on Jun. 21, 2017 which is a continuation of, and claims priority to U.S. patent application Ser. No. 13/621,432, filed on Sep. 17, 2012 (now U.S. Pat. No. 9,711,127), entitled “MULTI-SENSOR SIGNAL OPTIMIZATION FOR SPEECH COMMUNICATION”, and each of which claim further priority to U.S. Provisional Patent Application Ser. No. 61/536,362, filed on Sep. 19, 2011, entitled “SYSTEM AND APPARATUS FOR WEAR-ARRAY HEADPHONE FOR COMMUNICATION, ENTERTAINMENT AND HEARING PROTECTION WITH ACOUSTIC ECHO CONTROL AND NOISE CANCELLATION”; U.S. Provisional Patent Application Ser. No. 61/569,152, filed on Dec. 9, 2011, entitled “SYSTEM AND APPARATUS WITH EXTREME WIND NOISE AND ENVIRONMENTAL NOISE RESISTANCE WITH INTEGRATED MULTI-SENSORS DESIGNED FOR SPEECH COMMUNICATION”; and U.S. Provisional Patent Application Ser. No. 61/651,601, filed on May 25, 2012, entitled “MULTI-SENSOR ARRAY WITH EXTREME WIND NOISE AND ENVIRONMENTAL NOISE SUPPRESSION FOR SPEECH COMMUNICATION”, the respective entireties of the aforementioned applications are hereby each incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
5933506 | Aoki et al. | Aug 1999 | A |
6230122 | Wu et al. | May 2001 | B1 |
6339758 | Kanazawa et al. | Jan 2002 | B1 |
7035415 | Belt et al. | Apr 2006 | B2 |
7778425 | Kajala et al. | Aug 2010 | B2 |
8239196 | Paniconi | Aug 2012 | B1 |
8565459 | Rasmussen | Oct 2013 | B2 |
20050147258 | Myllyla et al. | Jul 2005 | A1 |
20060270468 | Hui et al. | Nov 2006 | A1 |
20070223717 | Boersma | Sep 2007 | A1 |
20110129097 | Andrea | Jun 2011 | A1 |
20120239385 | Hersbach et al. | Sep 2012 | A1 |
20130039503 | Beaucoup et al. | Feb 2013 | A1 |
20130246059 | Kechichian et al. | Sep 2013 | A1 |
20130308784 | Dickins et al. | Nov 2013 | A1 |
Entry |
---|
Final Office Action dated May 6, 2016 for U.S. Appl. No. 13/621,432, 28 pages. |
Final Office Action dated Jun. 18, 2015 for U.S. Appl. No. 13/621,432, 24 pages. |
Office Action dated Mar. 2, 2015 U.S. Appl. No. 13/621,432, 24 pages. |
Office Action dated Nov. 17, 2016 U.S. Appl. No. 13/621,432, 28 pages. |
Office Action dated Dec. 3, 2015 for U.S. Appl. No. 13/621,432, 24 pages. |
Notice of Allowance dated Mar. 27, 2018 for U.S. Appl. No. 15/629,711, 31 pages. |
Number | Date | Country | |
---|---|---|---|
20180336874 A1 | Nov 2018 | US |
Number | Date | Country | |
---|---|---|---|
61651601 | May 2012 | US | |
61569152 | Dec 2011 | US | |
61536362 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15629711 | Jun 2017 | US |
Child | 16048012 | US | |
Parent | 13621432 | Sep 2012 | US |
Child | 15629711 | US |