It is to be understood that the various embodiments of the present invention described herein may be utilized in various orientations, such as inclined, inverted, horizontal, vertical, etc., and in various configurations, without departing from the principles of the present invention. The embodiments are described merely as examples of useful applications of the principles of the invention, which is not limited to any specific details of these embodiments.
In the following description of the representative embodiments of the invention, directional terms, such as “above”, “below”, “upper”, “lower”, etc., are used for convenience in referring to the accompanying drawings. In general, “above”, “upper”, “upward” and similar terms refer to a direction toward the earth's surface along a wellbore, and “below”, “lower”, “downward” and similar terms refer to a direction away from the earth's surface along the wellbore.
Representatively illustrated in
In this example, the transceiver 24 communicates with the receiver 28 via acoustic stress waves transmitted via a tubular string or other type of transmission medium 30. However, it should be clearly understood that any type of telemetry may be used in the telemetry system 12 in keeping with the principles of the invention.
Each of the sensor assemblies 14, 16, 18, 20 includes a wireless transmitter or transceiver for short-range communication with the transceiver 24, either directly or via other of the sensor assemblies. In this manner, only the single long-range transceiver 24 is needed for communication between the sensor assemblies 14, 16, 18, 20 and the surface system 22. One or more repeaters may be used for very long distance communication between the transceiver 24 and the receiver 28.
Furthermore, the sensor assemblies 14, 16, 18, 20 can be positioned as desired without the complications of running wires or lines to the sensor assemblies. For example, the sensor assembly 14 can be positioned external to a casing or liner string 32 (e.g., in an annulus between the string and the wellbore 26), the sensor assembly 16 can be external to the tubular string 30, the sensor assembly 18 can be internal to the tubular string, and the sensor assembly 20 can be positioned in an earth formation 34 (e.g., via a perforation through the casing or liner string 32, not shown).
Since the well system 10 is merely one example illustrating principles of the invention, it will be appreciated that a wide variety of variations can be devised which still incorporate these principles. For example, it is not necessary for the transceiver 24 to communicate with the receiver 28 via the tubular string 30. Such communication could be via the casing or liner string 32, or via another form of telemetry (such as, a form of telemetry other than acoustic telemetry). The receiver 28 could include a transmitter for transmitting data and/or control signals to the transceiver 24 and/or any of the sensor assemblies 14, 16, 18, 20. Each of the sensor assemblies 14, 16, 18, 20 could include a receiver for receiving data and/or control signals from the receiver 28, the transceiver 24 and/or any of the other sensor assemblies. It is not necessary for the telemetry system 12 to be positioned completely or partially in the wellbore 26. The receiver 28 and/or system 22 could be positioned at a remote location other than the earth's surface. It is not necessary for the wellbore 26 to be cased. Thus, it should be clearly understood that the invention is not limited in any manner to the details of the well system 10 or telemetry system 12 described herein.
Referring additionally now to
In this manner, the combined sensor 36 and transceiver 24 may form an additional sensor assembly 38 in the telemetry system 12. However, in this case the sensor assembly 38 is configured for long-range, rather than short-range, transmission.
Additional sensor assemblies 40 may be used to relay data and/or control signals between the transceiver 24 and the surface system 22. Preferably, each of these additional sensor assemblies 40 also includes a sensor 42 and a long-range transceiver 44. In this manner, additional sensor data may be obtained as the signals are relayed between the transceiver 24 and the surface system 22.
The sensor assemblies 14, 16, 18, 20, 38, 40 described above may be used to sense and monitor any parameter or combination of parameters of interest associated with the wellbore 26 and surrounding formation 34. Examples of such parameters include pressure, temperature, water cut, fluid composition, resistivity, capacitance, radioactivity, etc.
Referring additionally now to
This signal relaying would preferably be via a short-range transmission mode. The transceiver 24 preferably communicates with the receiver 28 via a long-range transmission mode.
In this manner, the sensor assemblies 16, 20 do not have to be within short-range transmission distance of the transceiver 24. Instead, the sensor assemblies 16, 20 only need to be within short-range transmission distance of another sensor assembly 18 which, in turn, is within short-range transmission distance of the transceiver 24.
It will be appreciated that this decentralized configuration enables the sensor assemblies 14, 16, 18, 20 to be widely distributed, while remaining in communication with the transceiver 24 and still using only short-range wireless transmission modes. This represents a significant advance in convenience and economy over prior methods wherein only long-range wireless and hardwired transmission modes were utilized.
Another, somewhat similar, decentralized communication method and configuration of the telemetry system 12 is schematically illustrated in
This communication may be two-way (i.e., both reception and transmission) for each of the sensor assemblies 14, 16, 18, 20 and the transceiver 24. Note that in all of the methods and configurations described herein, any communication between elements can be either one-way or two-way, as desired.
As with the configuration of
Referring additionally now to
This more centralized communication method does require that each of the sensor assemblies 16, 18, 20 be within short-range transmission distance of the transceiver 24, but it has the advantage that none of the sensor assemblies needs to have the capability of relaying signals from any other sensor assembly. Thus, the method of
For the short-range signal transmission modes described herein, preferably electromagnetic or acoustic transmission modes are used. The short-range acoustic transmission modes would preferably be via flexural and/or shear acoustic stress waves transmitted through the tubular string 30 or other transmission medium.
For the long-range signal transmission modes described herein, preferably acoustic transmission modes are used. The long-range acoustic transmission modes would preferably be via axial and/or torsional acoustic stress waves transmitted through the tubular string 30 or other transmission medium.
Electromagnetic and acoustic transmission modes for wireless telemetry are well known to those skilled in the art. Thus, the principles underlying these wireless telemetry techniques are not described further herein.
In the methods depicted in
Representatively illustrated in
In the decentralized telemetry system 12 configurations of
The sensor assembly 18 could be programmed (either before or after installation) to relay only the signals A, B to the transceiver 24. Similarly, the transceiver 24 could be programmed to relay only the signal C in the transmitted signal D. Similar relaying and signal differentiation techniques may also be utilized for the additional signals E, F, G, H, I in the configuration of
In the more centralized telemetry system 12 configuration of
In an alternative method of differentiating between the signals A, B, C, D, each of these signals could include a unique code, such as a prefix, which identifies the particular sensor assembly 16, 18, 20, transceiver 24 or receiver 28 from which the signal originates. This would be similar in some respects to a CDMA multiplexing technique. Other multiplexing techniques may be used in keeping with the principles of the invention.
Referring additionally now to
The sensor 46 may be any type of sensor for detecting one or more parameters of interest. The electronic circuitry 48 receives indications of the parameter value from the sensor 46, processes this information, performs signal processing and appropriately drives the piezoceramic array 50.
The piezoceramic array 50 includes electromagnetically active material 52 arranged with a flexible film or membrane 54 for convenient attachment to the surface of a transmission medium, such as the tubular string 30. When driven appropriately by the circuitry 48, acoustic stress waves are imparted to the transmission medium by the piezoceramic array 50. Preferably, the acoustic stress waves are relatively high amplitude and high frequency flexural waves for short-range and relatively high data rate signal transmission to the transceiver 24.
The use of thin piezoceramics for acoustic signal transmission and reception is described in copending U.S. application Ser. No. 10/409,515, published as US 2004-0200613, and the entire disclosure of which is incorporated herein by this reference.
Note that the array 50 and circuitry 48 may also function as a receiver to receive signal transmissions from the other sensor assemblies 14, 18, 20, the transceiver 24, or even the receiver 28 (which may include a transmitter as described above). In this case the array 50 may respond to stress waves in the transmission medium by generating electrical pulses which are detected by the circuitry 48.
Referring additionally now to
In addition, each of the transceiver 24 and the sensor assemblies 14, 16, 18, 20 includes a sensor 56. The sensors 56 may all be the same type of sensor, or they may be different types of sensors. The sensors 56 may detect one or more parameters of interest.
Each of the sensor assemblies 14, 16, 18, 20 includes a transmitter 58 and a receiver 60. As described above for the configuration of the sensor assembly 16 depicted in
The transmitters 58 and receivers 60 are preferably configured for short-range communication. However, the transceiver 24 includes a transmitter 62 and receiver 64 configured for long-range communication.
One advantage of the configuration of the well system 10 depicted in
In the telemetry system 12 as depicted in
The receiver 60 of each sensor assembly 14, 16, 18, 20 facilitates this relaying of sensor data to the transceiver 24. In addition, the receivers 60 may be used to receive transmissions from the transceiver 24 and/or from the receiver 28 and surface system 22, for example, to program the sensor assemblies 14, 16, 18, 20 to receive and/or transmit at certain frequencies as described above.
Referring additionally now to
An upper transceiver 24 is associated with an upper set of the sensor assemblies 14, 16, and a lower transceiver 24 is associated with at least one other sensor assembly 18. In this manner, the upper transceiver 24 may be used for long-range transmission of the sensor data from the sensor assemblies 14, 16 and the upper transceiver, and for otherwise long-range communication with the receiver 28 and lower transceiver 24, while the lower transceiver may be used for long-range transmission of the sensor data from the sensor assemblies 18 and the lower transceiver, and for otherwise long-range communication with the receiver 28 and upper transceiver. The upper transceiver 24 may, for example, serve as a repeater for transmissions between the lower transceiver and the receiver 28, while also providing short-range communication with the sensor assemblies 14, 16.
It may now be fully appreciated that the present invention provides for convenient and economical wireless communication. In the various configurations of the well system 10 described above, communication with multiple sensor assemblies is accomplished in a manner which incorporates the benefits of short-range telemetry with those of long-range telemetry. Multiple sensors can be widely distributed in a variety of locations, without the problems associated with hardwiring the sensors to a central transmitter. In addition, the short-range transmission modes described above permit greater rates of data transfer than conventional long-range transmission modes.
Any of the sensor assemblies 14, 16, 18, 20, 38, 40 described above may include a combination of a sensor and a transmitter and/or a receiver. The transmitter and receiver may be combined into a single transceiver, or they may be separate components or share only certain elements. Any of the sensor assemblies 14, 16, 18, 20, 38, 40 may also include other components, such as actuators, well tools, etc., which may be actuated or otherwise operated in response to the signal communications described above, or operation of which may be monitored via the signal communications described above.
Any transmitter described herein could also include a receiver, and any receiver described herein could also include a transmitter. Any description herein of transmission of a signal from one component to another should be understood to include the capability of transmission of the same, a similar or a different signal in the opposite direction.
Of course, a person skilled in the art would, upon a careful consideration of the above description of representative embodiments of the invention, readily appreciate that many modifications, additions, substitutions, deletions, and other changes may be made to these specific embodiments, and such changes are within the scope of the principles of the present invention.
Accordingly, the foregoing detailed description is to be clearly understood as being given by way of illustration and example only, the spirit and scope of the present invention being limited solely by the appended claims and their equivalents.