This section is intended to introduce the reader to aspects of art that may be related to various aspects of the present disclosure described herein, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure described herein. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
Conventional sound and light reproduction systems and many others like them are typically directed to solving problems related to transportability of a stage and/or the ability to direct light or sound from the stage towards the audience. Additionally, conventional systems are also focused on delivering a partial sensory experience to an individual in an enclosure. For example, U.S. Pat. No. 6,702,767 relates to a multisensory stimulation system wherein an individual is seated in a viewing chamber that provides stimulation through an optical system as well as aromatic sensory components, tactile sensation devices, an audio input system, and an audio delivery device. The focus of these conventional systems is generally providing an individual with a partial sensory stimulation experience for the purpose of stress relief. Other prior systems relate the distribution of fragrance throughout a building or a room, such as a theater, for the purpose of masking foul odors.
Conventional and prior systems lack enhancing the experience of the audience at entertainment venues through multisensory stimulation of the senses of sight, sound, taste, touch and smell. As such, the experience of an audience member in an entertainment venue who sits closer to the stage is generally quite different than the experience of an audience member who sits farther away from the stage. For example when fragrance intended to be incorporated into a performance, the audience members sitting closer to the stage are more likely to experience stimulation of their senses of smell when fragrance emitters are located near the stage. Similarly, when pyrotechnics are incorporated as part of a performance, those seated closer to the stage will have a better view of the pyrotechnics than those seated farther away from the stage. Additionally, those seated closer to the stage will generally receive greater stimulation of their senses of sound than those seated farther from the stage when the speakers or sound reproduction system is located at or near the stage. Additionally, when taste stimulation is emitted from the stage, those seated close to the stage are more likely to be stimulated than those seated away from the stage. Also, when touch is stimulated by, for example bubble or foam emission from the stage, those located near the stage are more likely to be stimulated.
Hence, what is needed is a multi-sensory module array system that allows audience members at a venue to experience the same or substantially the same multi-sense stimulation independent of their location or proximity to a live or recorded performance within the venue, outside the venue, or remotely, among others.
In one aspect of the disclosure described herein, a multi-sensory module array system, apparatus, and method are disclosed for enhancing the experience of members of the audience at entertainment events through the stimulation of a plurality of the senses of sight, sound, touch, taste and smell independent of their location or proximity to a live or recorded performance. In particular, the multi-sensory module array system may be incorporated in venues such as amphitheaters, concert halls, auditoriums, indoor and outdoor public presentation venues, convention centers, drive-in theaters and the like. Here, one object of the disclosed described herein is to enhance the stimulation of the audience at an entertainment venue so that, regardless of where an attendee is seated within a venue, his/her sensory experience will closely approximate the sensory experience of every other attendee.
In another aspect of the disclosure described herein, a multi-sensory module array system is provided having a first zone with a first, second, third, and fourth multi-sensory entertainment module spaced apart from each other and defining a first perimeter configuration, wherein the first, second, third, and fourth modules are configured to emit a sensory output within the first zone. The system can further include a second zone having the fourth, a fifth, a sixth, and a seventh multi-sensory entertainment modules spaced apart from each other and defining a second perimeter configuration of the fourth, fifth, sixth, and seventh modules, wherein the fourth, fifth, sixth, and seventh modules are configured to emit the sensory output within the second zone. Here, the fourth module is shared between the first zone and second zone. In addition, the first zone and second zone spatial area dimensions are nearly identical with respect to each other. Further, the first and second configurations of the first, second, third, fourth, fifth, sixth, and seventh modules are configured above or around one or more audience members in a horizontal plane, and wherein the amplitude of the sensory output within the first zone is nearly identical with respect to the second zone.
Further, the fourth module shares one channel with the first zone and a second channel with the second zone. In addition, the multi-sensory modules are further coupled to a lattice grid structure. The first and second perimeter configurations are further comprised of a diamond configuration. In addition, the sensory output of the multi-sensory modules are comprised of one or more of: sound, sight, touch, smell, and taste. The multi-sensory module can further be comprised of two or more of: speaker or audio emitting module, heating or cooling element emitting module, display or video emitting module, fragrance emitting module, fog or vapor emitting module, pyrotechnic emitting module, light emitting module, laser emitting module, CO2 emitting module, camera or image capturing module, microphone or sound capturing module, liquid dispensing module, and tesla coils. In addition, the first and second zones are at a first location, and third and fourth zone having a plurality of multi-sensory modules at a second location, wherein the amplitude of the sensory outputs at the first location are nearly identical to the second location. Further, the plurality of multi-sensory modules at the second location can communicate via a network with the multi-sensory modules at the first location. Also, the system can include a live performance location or stage having one or more devices for capturing one or more senses from the live performance location and transmitting the senses to the multi-sensory modules of the first and second zones.
In another aspect of the disclosure described herein, a multi-sensory module array system is provided having a first zone comprised of a first, second, third, and fourth multi-sensory entertainment modules spaced apart from each other and defining a first configuration, wherein the first, second, third, and fourth modules are configured to emit a sensory output within the first zone. The second zone can further include the third, the fourth, a fifth, and a sixth multi-sensory entertainment modules spaced apart from each other and defining a second configuration of the third, fourth, fifth, and modules, wherein the third, fourth, fifth, and sixth modules are configured to emit the sensory output within the second zone. In addition, the third and fourth modules are shared between the first and second perimeter configuration, the first zone and second zone spatial area dimensions are substantially the same with respect to each other. Further, the first and second configurations of the first, second, third, fourth, fifth, and sixth modules are configured above or around one or more attendees in a horizontal plane, and wherein the amplitude of the sensory output within the first zone is substantially the same or deviating at most 10% with respect to the second zone.
In another aspect of the disclosure described herein, the experience of an audience member in an entertainment venue who is near or closer to a performance stage is substantially the same experience of an audience member who may sit farther away from the stage. For example when fragrance and smell is intended to be incorporated into a performance, the audience members situated, standing, or sitting far away from the performance stage will experience the same or substantially the same fragrances and smell as the audience members situated close to the stage. Similarly, when pyrotechnics are incorporated as part of a performance, those seated far away (or at a remote location) will experience substantially the same pyrotechnics as those seated near the stage. Additionally, when taste stimulation is emitted from the stage, those seated away or at a substantial distance from the stage will experience the same taste stimulation as those seated near or very close to the stage. Also, when touch via foam or bubble emission, members positioned in an area or zone far away from the stage will experience the near identical experience as those close or on the performance stage. In addition, attendees or audience members may also experience the same five senses or one or more the five senses as experienced by the performers who are performing live on the stage, such as DJs, musicians, bands, orchestras, comedians, plays, actors, and the like.
The above summary is not intended to describe each and every disclosed embodiment or every implementation of the disclosure. The Description that follows more particularly exemplifies the various illustrative embodiments.
The following description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the disclosure. The disclosure may be more completely understood in consideration of the following detailed description of various embodiments in connection with the accompanying drawings, in which:
In the Brief Summary of the present disclosure above and in the Detailed Description of the Disclosure described herein, and the claims below, and in the accompanying drawings, reference is made to particular features (including method steps) of the disclosure described herein. It is to be understood that the disclosure of the disclosure described herein in this specification includes all possible combinations of such particular features. For example, where a particular feature is disclosed in the context of a particular aspect or embodiment of the disclosure described herein, or a particular claim, that feature can also be used, to the extent possible, in combination with and/or in the context of other particular aspects and embodiments of the disclosure described herein, and in the disclosure described herein generally.
The embodiments set forth below represent the necessary information to enable those skilled in the art to practice the disclosure described herein and illustrate the best mode of practicing the disclosure described herein. In addition, the disclosure described herein does not require that all the advantageous features and all the advantages need to be incorporated into every embodiment of the disclosure described herein.
Phrases and terms similar to “software”, “application”, and “firmware” may include any non-transitory computer readable medium storing thereon a program or algorithm, which when executed by a computer, causes the computer to perform a method, process, or function.
Phrases and terms similar “network” may include one or more data links that enable the transport of electronic data between computer systems and/or modules. When information is transferred or provided over a network or another communications connection (either hardwired, wireless, or a combination of hardwired or wireless) to a computer, the computer uses that connection as a computer-readable medium. Thus, by way of example, and not limitation, computer-readable media can also comprise a network or data links which can be used to carry or store desired program code means in the form of computer-executable instructions or data structures and which can be accessed by a general purpose or special purpose computer.
Referring to
Still referring to
In another embodiment of the disclosure described herein, a multi-sensory module structure is disclosed wherein the structure can extend throughout an entertainment venue, which may or may not originate from ground level and extend above the audience. The structure may form a lattice around the audience or be arranged in a diamond shape configuration. Furthermore, the lattice grid includes a plurality of multisensory entertainment modules suspended to, attached to, configured to, or represented by it, wherein the modules provide a plurality of senses to the audience. Here, each multisensory entertainment module may include one or more speakers, lights, lasers, fog generators, foam generators, fragrance diffusers, taste diffusers, pyrotechnic devices or fireworks. The multisensory entertainment module may also include other sensory stimulating devices, such as tactile, mental, psychological, and emotion altering, modifying, improving, reducing, and generating devices, systems, and methods. The various sensory stimulating devices incorporated in each multisensory entertainment module are housed such that they may be attached and detached from the module so that a plurality of sensory stimulating devices may be included in the module in any combination. Accordingly, a speaker may be combined with any or all of a light source, fog generator, foam generator, fragrance diffuser, taste diffuser, pyrotechnic device, heater or air conditioner.
The speaker incorporated in the multisensory entertainment module may be any wired or wireless electroacoustic transducer that produces sound in response to an electrical audio signal input. The light source incorporated in the multisensory entertainment module may be a stroboscopic lamp, an LED lamp, floodlight, laser light source or any other source of high intensity artificial light. The laser light source incorporated in the multisensory entertainment module may be any light source capable of projecting a laser beam or a holographic laser display. The taste diffuser incorporated into the multisensory entertainment module may be any device capable of emanating an aerosol spray, smoke, or vapor for stimulating the sense of taste. The fragrance diffuser incorporated into the multisensory entertainment module may be any device capable of emanating in aerosol spray capable of stimulating the sense of smell.
The pyrotechnic device incorporate it in the multisensory entertainment module may be any device capable of producing self-contained and self-sustained exothermic reactions, including fireworks. The HVAC heating device incorporated in the multisensory entertainment module may include a gas powered heater, an electric powered heater, a solar powered heater, or any other device capable of producing the sensation of heat the members of the audience. The HVAC cooling or air-conditioning device incorporated in the multisensory entertainment module may include a gas powered air conditioner, and electric air conditioner, a solar powered air conditioner or any device capable of creating the sensation of cooling in the members of the audience.
In one embodiment, the muitisensory entertainment modules are attached to the lattice grid structure or supported via stand-alone supports not connected to other supports, so that each member of the audience is located within a maximum optimal distance from a multisensory entertainment module (Γ). In this embodiment, each member of the audience in the entertainment venue receives sensory stimulation of similar quality to every other member of the audience. The maximum optimal distance from a multisensory entertainment module (Γ) permitted in this embodiment of the disclosure described herein can be calculated with the following equation: Γ=√¼(b2+a2) wherein “a” is the distance between consecutive multisensory entertainment modules along the y-axis and “b” is the distance between consecutive multisensory entertainment modules along the x-axis. In this embodiment of the disclosure described herein, no member of the audience will experience the performance from a distance greater than the maximum optimal distance from a multisensory entertainment module (Γ). This permits each member of the audience to receive stimulation from the speakers, light sources, fog generators, foam generators, fragrance diffusers, taste diffusers, pyrotechnic devices, and heaters or air conditioners incorporated in one or more of the multisensory entertainment modules. This enhances the sensory experience of each member of the audience so that the audience members seated farther away from the stage experience sensory stimulation of similar quality to the audience members seated closer to the stage.
In another embodiment of the disclosure described herein, the multisensory entertainment modules are configured as a lattice grid or diamond shaped array so as to evenly distribute sound pressure to the members of the audience. In this embodiment, each member of the audience experiences similar stimulation of his/her sense of sound. In this embodiment, the multisensory entertainment modules are distributed along the structure so that each member of the audience is exposed to sound pressure within 5 dB or up to 10 dB of the average sound pressure emitted by the multisensory entertainment modules. For example, if the average sound pressure emitted by the multisensory entertainment modules is 85 dB, the individual members of the audience are exposed to sound pressure in an amount at least equal to 80 dB and at most 90 dB. In addition, it is contemplated within the scope of the disclosure described herein that the magnitude or amplitude of modules or set of modules between one or more zones, sub-zones, areas, and locations may be the same, nearly identical, substantially the same, or at most having a magnitude or amplitude drop deviation of at most 25%, such as a 5% output magnitude tolerance or deviation from a first zone with respect to a second zone.
The foregoing descriptions of specific embodiments of the disclosure described herein have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the disclosure described herein to the precise forms disclosed, and various modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to explain the principles of the disclosure described herein and its practical application, to thereby enable others skilled in the art to utilize the disclosure described herein and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the disclosure described herein be defined by the claims appended hereto and their equivalents.
This application is a continuation of U.S. non-provisional application Ser. No. 14/819,416 filed on Aug. 5, 2015, which is a Continuation-in-part of U.S. application Ser. No. 13/839,009, filed on Mar. 15, 2013, now U.S. Pat. No. 9,126,124, the contents of all of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14819416 | Aug 2015 | US |
Child | 15202188 | US | |
Parent | 13839009 | Mar 2013 | US |
Child | 14819416 | US |