Certain embodiments of the present invention generally relate to improvements in electrical connectors and more particularly relate to multi-sequenced electrical connectors that include lead frames.
Various electronic systems, such as computers, comprise a wide array of components mounted on printed circuit boards, such as daughtercards and motherboards, which are interconnected to transfer signals and power throughout the systems. The circuit boards are joined through electrical connectors. Typical connector assemblies include a plug connector and a receptacle connector, each of which may house a plurality of electrical contacts or wafers. An electrical wafer may be a thin printed circuit board or a series of laminated contacts within a plastic carrier. The electrical wafers within one connector may allow a daughter card to communicate with another daughter card through a backplane. Alternatively, the wafers may be mated in an orthogonal orientation obviating the need for a backplane.
Typically, electrical traces are etched onto the electrical wafers. The electrical traces permit high-speed transmission of data signals. However, when it comes to carrying power, distinct power blade contacts are utilized within a connector. Power blade contacts are often configured as lead frames. The lead frames typically include a plurality of contact points. For various reasons, the contact points of the lead frames may be sequenced such that one or more contact points in one assembly of the connector, such as a plug assembly, interface with corresponding contact points in the other assembly of the connector, such as a receptacle assembly, before other points of contact. For example, typically it is desirable to have ground contacts contact each other before signal contacts.
Electrical connectors have been proposed with sequenced lead frames, that is, lead frames with different mating levels of contacts. For example, one contact point may be at a first mating level or depth within the connector, while other contact points may be at different mating levels. Typically, each different lead frame sequence is manufactured separately. Therefore, if a lead frame having three mating levels of contacts is used within a connector, a total of twenty-seven different lead frame sequences are possible. Consequently, twenty-seven different lead frames typically must be stamped, blanked or otherwise formed and inventoried to accommodate the total number of lead frame possibilities. Additionally, twenty-seven lead frames require additional stamping, die tooling and set-ups, resulting in a higher cost of production.
Thus, a need exists for a more efficient system and method of manufacturing lead frames of varying contact sequences. Additionally, a need exists for an efficient, interchangeable lead frame configured for use within an electrical connector. Further, a need exists for a flexible lead frame design configured to create multiple mating levels for an electrical connector from a single or reduced number of lead frames.
Certain embodiments of the present invention provide an electrical connector system comprising a plug assembly and a receptacle assembly. At least one of the plug and receptacle assemblies comprises an interior cavity defining a lead frame plane; and first and second lead frame elements located in the lead frame plane. At least one of the first and second lead frame elements are positioned at one of a plurality of mating levels along a mating direction of the at least one assembly.
The plurality of mating levels define different distances between a contact portion of the lead frame elements and a reference point of said plug or receptacle assembly. The lead frame elements are adjustable between shallow, intermediate and deep mating levels with respect to a mating face of either the plug or receptacle assembly. Overall, if there are N lead frame elements, each of which is adjustable between M levels to form X lead frame element configurations, the equation X=MN defines the number of lead frame configurations, combination, sequences, etc., that are possible.
The foregoing summary, as well as the following detailed description of certain embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings, certain embodiments. It should be understood, however, that the present invention is not limited to the arrangements and instrumentalities shown in the attached drawings.
The plug lead frame element 14 includes an extension portion 28 formed integrally with, and connecting at a right angle to, a board transition portion 34. The plug lead frame element 16 includes an extension portion 30 formed integrally with, and connecting at a right angle to, a board transition portion 36. The lead frame element 18 includes an extension portion 32 formed integrally with, and connecting at a right angle to, a board transition portion 38. Alternatively, the extension portions 28, 30 and 32 may connect to the board transition portions 34, 36 and 38, respectively, at angles other than right angles. As shown in
Each of the plug lead frame elements 14, 16 and 18 include a contact portion 20 extending outwardly from each respective extension portion 28, 30 and 32. Additionally, each of the plug lead frame elements 14, 16 and 18 may include flex slots 22, which may provide added flexibility for the lead frame elements 14, 16 and 18. Pins 26, which may be received by receptacles, such as through-holes, in a printed circuit board (not shown), extend downwardly from the board transition portions 34, 36 and 38. Also, each plug lead frame element 14, 16 and 18 may include positioning tabs 24, which may be used to position the plug lead frame elements 14, 16 and 18 within a plug housing (as discussed below). The positioning tabs 24 may be removed depending on the desired level (discussed below) of the plug lead frame elements 14, 16 and 18 within a plug connector. Alternatively, the plug lead frame elements 14, 16 and 18 may include more or less than two positioning tabs 24. Also, alternatively, the plug lead frame elements 14, 16 and 18 may not include positioning tabs 24. Additionally, the plug lead frame elements 14, 16 and 18 may not include flex slots 22.
Before the plug lead frame elements 14, 16 and 18 are inserted, or positioned, within a plug housing, the plug lead frame elements 14, 16 and 18 are removed from the supporting body 12 of the carrier strip 10.
The spacer 49 may be formed integrally with the organizer 48, lateral walls of the plug assembly 40, or the interface housing 50. The spacer 49 extends across the plug assembly 40 perpendicular to the orientation of the plug lead frame element 14. The spacer 49 may extend from one lateral wall of the plug assembly 40 to the other lateral wall of the plug assembly 40. Alternatively, the spacer 49 may extend from one lateral wall of the plug assembly 40 to a dividing wall within the plug assembly 40. Also, alternatively, the spacer 49 may extend from one dividing wall within the plug assembly 40 to another dividing wall. Also, the spacers 49, 51 and 53 may be included within a separate plug lead frame housing (as discussed below).
The spacer 51 may be formed integrally with the interface housing 50 or lateral walls of the plug assembly 40. The spacer 51 extends across the plug assembly 40 perpendicular to the orientation of the lead frame element 16. The spacer 51 may extend from one lateral wall of the plug assembly 40 to the other lateral wall of the plug assembly 40. Alternatively, the spacer 51 may extend from one lateral wall of the plug assembly 40 to a dividing wall within the plug assembly 40. Also, alternatively, the spacer 51 may extend from one dividing wall within the plug assembly 40 to another dividing wall.
The spacer 53 may be formed integrally with the interface housing 50 or lateral walls of the plug assembly 40. The spacer 53 extends across the plug assembly 40 perpendicular to the orientation of the lead frame element 18. The spacer 53 may extend from one lateral wall of the plug assembly 40 to the other lateral wall of the plug assembly 40. Alternatively, the spacer 53 may extend from one lateral wall of the plug assembly 40 to a dividing wall within the housing. Also, alternatively, the spacer 53 may extend from one dividing wall within the plug assembly 40 to another dividing wall.
As shown in
Each plug lead frame element 14, 16 and 18 is positioned within the plug assembly 40 such that the pins 26 extend downwardly from the plug assembly 40. Bach pin 26 is received and retained by a pin receptacle (not shown) located on a printed circuit 4 board. Each printed circuit board includes a plurality of pin rectacles aligned in rows. One row of pin receptacles is aligned to receive a row of pins 26 of a longitudinally aligned set of plus lead frame elements 14, 16 and 18. Each row of pin receptacles may include more receptacles than the number of pins 26 of the longitudinally aligned set of plug lead frame elements 14, 16 and 18. For example, a printed circuit board may include rows of 15-20 pin receptacles (if for example, each plug lead frame 14, 16 and 18 includes four pins 26, respectively). Thus, the plug lead frame elements 14, 16 and 18 may be installed at different depths, or mating levels, along a mating direction of the assembly. That is, a set of three non-identical plug lead frame elements 14, 16 and 18 may be sequenced to accommodate different contact mating level configurations.
As mentioned above, the plug lead frame elements 14, 16 and 18 may include positioning tabs 24, which may assist in proper positioning of the plug lead frame elements 14, 16 and 18. The plug lead frame elements 14, 16 and 18 are retained within the plug assembly 40 by retaining features, channels, and the like. The positioning tabs 24 of the plug lead frame elements 14, 16 and 18 (or the plug lead frame elements 14, 16 or 18 themselves) abut against the spacers 49, 51 and 53, respectively. If, for example, a plug lead frame element 14, 16 or 18 is to be positioned such that it extends at the furthest possible length (“first mating level”) from a reference point within the plug assembly 40 (such as the back wall of the plug assembly 40), all of the positioning tabs 24 may be removed. If however, the plug lead frame element 14, 16 or 18 is to be positioned such that it extends at an intermediate length (“second mating level”), a portion of the positioning tabs 24 (such as one positioning tab 24) may be removed. On the other hand, if the plug lead frame element 14, 16 or 18 is to be positioned such that it extends at a shortest length (“third mating level”), none of the positioning tabs 24 may be removed. Thus, varying the mating levels of the plug lead frame elements 14, 16 and 18 allows for a plurality of different lead frame sequences from one lead frame. Thus, various lead frame sequences may be achieved through the use of lead frame elements, such as plug lead frame elements 14, 16 and 18. As shown in
Lead frame sequence 62 includes the first and second plug lead frame elements 14 and 16 at the third mating level (L3) and the lead frame element 18 at the first mating level (L1). Each mating level is measured from a reference point within the plug assembly 40, such as the back wall of the plug assembly, or from a terminal end of a positioning channel of a lead frame element organizer. Lead frame sequence 64 includes the plug lead frame element 14 at the third mating level (L3), the lead frame element 16 at the second mating level (L2), and the lead frame element 18 at the first mating level (L1). Lead frame sequence 66 includes the plug lead frame elements 14, 16 and 18 at the second mating level (L2). Lead frame sequence 68 includes the plug lead frame element 14 at the first mating level (L1), while the plug lead frame elements 16 and 18 are at the third mating level (L3).
As shown in
The receptacle lead frame elements 92 and 94 are configured similar to the receptacle lead frame element 90. Further, the mating between the receptacle lead frame elements 92 and 94 and the plug lead frame elements 16 and 18 occurs in a similar fashion to that described above with respect to the receptacle lead frame element 90 and the plug lead frame element 14.
Referring again to
Alternatively, the receptacle lead frame elements 90, 92 and 94 may be positioned at varying mating levels while the plug lead frame elements 14, 16 and 18 may all be positioned at the same mating level. Also, alternatively, the receptacle lead frame elements 90, 92 and 94 may be positioned at different mating levels, while the plug lead frame elements 14, 16 and 18 are also positioned at different mating levels.
For example, a plug lead frame element 14 may be positioned at a first mating level (while a lead frame element 16 may be positioned at a different mating level than that of the plug lead frame element 14), while a corresponding receptacle lead frame element 90 may be positioned at a first mating level, second mating level or third mating level (while the second receptacle lead frame element 92 is positioned at a different mating level than that of the receptacle lead frame element 90). Overall, certain plug lead frame elements 14, 16 or 18 may contact certain receptacle lead frame elements 90, 92 and 94 at different times during mating. For example, it may be desired to have a ground lead frame 14, 16 or 18 contact a corresponding ground receptacle lead frame 90, 92 or 94 before signal lead frames contact each other. Because of the multi-sequence nature of the plug lead frame elements 14, 16 and 18 and the receptacle lead frame elements 90, 92 and 94, a variety of different mating sequences may be used such that certain plug lead frame elements 14, 16 or 18 contact certain receptacle lead frame elements 90, 92 or 94, respectively, before others.
The receptacle assembly 136 includes terminals 138, a terminal interface housing 140, an intermediate member 144 mounted over a lead frame housing 142, a cover 154 and an organizer 148 for receiving and retaining electrical wafers 146 and receptacle lead frame elements 150 and 152. The receptacle lead frame elements 150 and 152 are positioned in two rows. That is, a receptacle lead frame element 150 is positioned below a receptacle lead frame element 152. A planar row of lead frame elements 150 is formed and a planar row of lead frame elements 152 is formed upon assembly of the receptacle assembly 136. The receptacle assembly 136 may mate in an orthogonal fashion with the plug assembly 40. That is, a sequence of plug lead frame elements 14, 16 and 18 mate with a sequence of three receptacle lead frame elements 150 or 152.
For example, a plug lead frame element 14 may mate with a receptacle lead frame element 150, a lead frame element 16 may mate with another receptacle lead frame element 150, while a lead frame element 18 may mate with another lead frame element 150. The receptacle lead frame elements 150 and 152 may be positioned at the same mating level such that, during mating, certain plug lead frame elements 14, 16 or 18, which may be at varying mating levels, may contact the receptacle lead frame elements 150 and 152 before other plug lead frame elements 14, 16 or 18 contact the receptacle lead frame elements 150 and 152. Alternatively, the receptacle lead frame elements 150 and 152 may be positioned at varying mating levels while the plug lead frame elements 14, 16 and 18 may all be positioned at the same mating level. Overall, certain plug lead frame elements 14, 16 or 18 may contact certain receptacle lead frame elements 150 or 152 at different times during mating. For example, it may be desired to have a ground lead frame 14, 16 or 18 contact a corresponding ground receptacle lead frame 150 or 152 before signal lead frames contact each other.
The receptacle lead frame element 152 is configured similar to the receptacle lead frame element 150. Further, the mating between the receptacle lead frame elements 152 and the plug lead frame elements 14, 16 or 18 occurs in a similar fashion to that described above with respect to the receptacle lead frame element 150.
One sequence of plug lead frame elements 300 and 302 mate with a sequence of two receptacle lead frame elements 304. A second sequence of plug lead frame elements 300 and 302 mate with two receptacle lead frame elements 306. Similarly, a third sequence of plug lead frame elements 300 and 302 mate with two receptacle lead frame elements 306. Also, a fourth sequence of plug lead frame elements 300 and 302 mate with two receptacle lead frame elements 308.
Thus, embodiments of the present invention provide an efficient, interchangeable and adaptable lead frame through the use of a plurality of lead frame elements. That is, a small number of lead frame elements may be used to form a wide variety of lead frames through various combinations of the lead frame elements. Additionally, embodiments of the present invention provide a more efficient method of manufacturing various lead frame sequences. Embodiments of the present invention also provide a more efficient method of manufacturing connectors with various lead frame element sequences where a single lead frame may be used to form a plurality of mating levels. The mating levels are created by varying the depth of insertion of the lead frame elements. Any lead frame element may form any mating level and unique lead frame elements are not required for each mating level. It is to be understood that the lead frame elements may be used with electrical connectors that utilize lead frames. That is, the lead frame elements may be used with orthogonal or in-line connectors.
While the invention has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3766513 | Carre | Oct 1973 | A |
4405189 | Douty et al. | Sep 1983 | A |
4867690 | Thumma | Sep 1989 | A |
5582519 | Buchter | Dec 1996 | A |
5586915 | Baker et al. | Dec 1996 | A |
5591035 | Burkholder et al. | Jan 1997 | A |
5667392 | Kocher et al. | Sep 1997 | A |
5733148 | Kaplan et al. | Mar 1998 | A |
6089877 | Seidel | Jul 2000 | A |
6123555 | Chiu | Sep 2000 | A |
6371773 | Crofoot et al. | Apr 2002 | B1 |
6517386 | Sakakura et al. | Feb 2003 | B2 |
Number | Date | Country |
---|---|---|
0 521 648 | Jan 1993 | EP |
0 717 468 | Jun 1996 | EP |
Number | Date | Country | |
---|---|---|---|
20040043660 A1 | Mar 2004 | US |