1. Field of the Invention
The invention relates to a connection device and, in particular, to a multi-serial connection device and a connection card thereof.
2. Description of Related Art
A serial connector refers to a serial communication port. The prefix ‘multi’ here refers to the Component Object Model (COM) interface, which is the specification for currently existing multiple serial signaling interfaces, such as RS232, RS422 and RS485. The serial connectors are roughly classified according to the number of contacts into the D-type 9-pin serial port (DB9) and D-type 25-pin serial port (DB25). However, with the trend of computer miniaturization, as shown in
The DB9 standard has been popular for many years, and is commonly seen in industrial automation and business automation electronic devices. Such electronic devices are usually controlled or managed by computers and communicate with each other through the DB9 standard. Therefore, if computers no longer support DB9 connectors, great inconvenience will inevitably be resulted for the control or management of these electronic devices in the future. It is thus imperative to improve the multi-serial port connectors.
In view of the foregoing, the invention provides a multi-serial port connection device and a connection card thereof.
To achieve the above-mentioned objective, the connection device includes a connection card and a cable.
The connection card has a serial signal transceiving control module and at least one Mini DisplayPort connector. The serial signal transceiving control module has at least two sets of DB9 serial signal I/O pins. The Mini DisplayPort connector contains twenty contacts. The serial signal I/O pins of the two DB9 connectors electrically connect to the contacts of the Mini DisplayPort connector.
The cable has a plug, a least two DB9 sockets, and at least one wire set. The plug has at least one Mini DisplayPort plug for plugging into the Mini DisplayPort connector of the connection card. The contacts of the Mini DisplayPort plug are in contact with the contacts of the Mini DisplayPort connector. The wire set electrically connects contacts of the Mini DisplayPort plug corresponding to the serial signal I/O pins to the two DB9 connectors.
Since the Mini DisplayPort connector has twenty contacts, they are sufficient for the two DB9 connectors for transmitting serial signals to the two sets of serial signal I/O pins.
The size of the Mini DisplayPort connector is about half that of the DB9 connector. Therefore, the invention can install a Mini DisplayPort connector that is far smaller than a DB9 connector on the connection card. The Mini DisplayPort connector is capable of connecting to two DB9 ports of external electronic devices via the cable. This greatly reduces the space occupied by the connectors on a computer. It is therefore ideal for compact computers or laptop computers.
With reference to
The connection card 10 has a serial signal transceiving control module 11 and at least one Mini DisplayPort connector 12. The serial signal transceiving control module 11 has at least two sets of serial signal I/O pins 13 of the DB9 connector standard as shown in
In this embodiment, the serial signal transceiving control module 11 has four sets of serial signal I/O pins 13. The connection card 10 is further provided with another Mini DisplayPort connector 12′. The four sets of serial signal I/O pins 13 are connected to the two Mini DisplayPort connectors 12, 12′. The connection card 10 has four signal transceiving modules 15, which electrically connect between the four sets of serial signal I/O pins 13 and the corresponding Mini DisplayPort connectors 12, 12′. Moreover, a fixing board 16 formed with an opening 17 that matches with the DB9 connector is mounted at one side of the connection card 10. Two nuts 18 are provided beside the opening 17. The two Mini DisplayPort connectors 12, 12′ are exposed from the opening 17.
The serial signal transceiving control module 11 can be a universal asynchronous receiver transmitter (UART) chip, with the model number of SUN2410, SUN2212, or SUN1999. The serial signal transceiving control module 11 can convert serial signals received by the serial signal I/O pins 13 into parallel signals. The serial signal transceiving control module 11 also can convert parallel signals into serial signals to be output from the serial signal I/O pins 13. The serial signal transceiving control module 11 can also be some other serial signal transmission chip that converts the serial signals received by the serial signal I/O pins 13 into serial signals of different standards. The serial signal I/O pins 13 comprise contacts for RxD, TxD, CTS, DSR, DCD, RI, DTR and RTS signals. These contacts are for serial signal I/O.
The Mini DisplayPort is originally used for audio/video (AV) signal transmissions. The invention uses the twenty pins of the Mini DisplayPort connectors 12, 12′ for the transmissions of two serial signals. Therefore the twenty pins of the Mini DisplayPort connectors 12, 12′ have to be connected according to the definitions of the serial signal I/O pins 13. The following describes one connection embodiment, with reference to
In the above table, the signal standard of P1 through P9 satisfies one set of serial signal I/O pins 13 of the DB9 standard. Therefore, one Mini DisplayPort connector 12 can be used to provide the contacts required by two DB9 connectors. The connection card 10 thus has two Mini DisplayPort connectors 12, 12′ to provide four sets of DB9 serial signal I/O pins 13. Since the size of the Mini DisplayPort connectors 12, 12′ is only about half that of a DB9 connector, this embodiment only occupies the space required by one DB9 connector, greatly reducing the space required by the connector on the connection card 10.
The connection card 10 can be further provided with a pin header connector 19 for the connection with the motherboard of a computer or some other extension card. The pin header connector 19 may receive parallel signals. Or, as shown in
Since the size and the amount of the pins of the Mini DisplayPort connectors 12, 12′ is different from that of DB9 connector, the connection card 10 should be used with the cable 20. The cable 20 has a plug 21, at least two DB9 sockets 22 and at least one wire set 23. The ping 21 has at least one Mini DisplayPort plug 24 to be inserted into the Mini DisplayPort connector 12 of the connection card 10. The contacts of the Mini DisplayPort plug 24 are in contact with the contacts of the Mini DisplayPort connector 12, resulting in an electrical connection to the two sets of serial signal I/O pins 13 of the serial signal transceiving control module 11.
The wire set 23 electrically connects the contacts of the Mini DisplayPort plug 24 corresponding to the two sets of serial signal I/O pins 13 of the serial signal transceiving control module 11 to the two DB9 sockets 22. In this embodiment, the cable 20 further includes two DB9 sockets 22′ and another wire set 23′. The plug 21 is provided with another Mini DisplayPort plug 24′, thereby plugging the two Mini DisplayPort plugs 24, 24′ into the two Mini DisplayPort connectors 12, 12′. The two wire sets 23, 23′ coupled to the contacts of the two Mini DisplayPort plugs 24, 24′ corresponding to the four serial signal I/O pins 13 to the four DB9 sockets 22, 22′.
Moreover, the plug 21 is provided with two bolts 25 corresponding to the two fixing nuts 18 on the fixing board 16 of the connection card 10 for the connection with the two fixing nuts 18.
In practice, the two Mini DisplayPort plugs 24, 24′ of the plug 21 are plugged into the two Mini DisplayPort connectors 12, 12′. The four DB9 sockets 22, 22′ then electrically connect to the four sets of serial signal I/O pins 13. This enables four external electronic devices with the DB9 plugs to connect to the DB9 sockets 22, 22′. The two Mini DisplayPort connectors 12, 12′ on the connection card 10 only occupy the space of one DB9 connector. It can greatly reduce the required space on the computer, which is ideal for compact computers or laptop computers.
While the invention has been described by way of example and in terms of the preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Number | Date | Country | Kind |
---|---|---|---|
101108439 A | Mar 2012 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5162675 | Olsen et al. | Nov 1992 | A |
5572400 | Roesner et al. | Nov 1996 | A |
5576935 | Freer et al. | Nov 1996 | A |
5659800 | Zhang et al. | Aug 1997 | A |
D422968 | Tsai et al. | Apr 2000 | S |
D438512 | Nishio et al. | Mar 2001 | S |
D438842 | Nishio et al. | Mar 2001 | S |
6505095 | Kolls | Jan 2003 | B1 |
6853551 | Baar et al. | Feb 2005 | B2 |
7813113 | Chuang | Oct 2010 | B2 |
7839628 | Sivertsen | Nov 2010 | B1 |
8014544 | Freels et al. | Sep 2011 | B2 |
8145831 | Oshima et al. | Mar 2012 | B2 |
8284552 | Sivertsen | Oct 2012 | B2 |
D679656 | Richards et al. | Apr 2013 | S |
D686161 | Richards et al. | Jul 2013 | S |
8570760 | Chen | Oct 2013 | B2 |
20130242497 | Lin et al. | Sep 2013 | A1 |
Number | Date | Country | |
---|---|---|---|
20130242497 A1 | Sep 2013 | US |