Multi-site body fluid sampling and analysis cartridge

Information

  • Patent Grant
  • 10441205
  • Patent Number
    10,441,205
  • Date Filed
    Thursday, June 23, 2016
    8 years ago
  • Date Issued
    Tuesday, October 15, 2019
    5 years ago
Abstract
An arrangement includes a housing, a plurality of sampling and analysis sites contained within the housing, each of the sampling and analysis sites having a skin-penetration member having a first end configured to pierce the skin, and an inner lumen in communication with the first end, an actuator operatively associated with the skin-penetration member, and an analyte quantification member in fluid communication with the inner lumen of the skin-penetration member. Integrated devices including such arrangements are also described.
Description

The present application is a continuation of U.S. patent application Ser. No. 11/529,614, filed Sep. 29, 2006, which issued as a U.S. Pat. No. 9,380,974 on Jul. 5, 2016, which claims priority pursuant to 35 U.S.C. § 119(e) to U.S. Patent Application Ser. No. 60/721,966, filed Sep. 30, 2005, the entire content of each of which is incorporated herein by reference.


FIELD

The present invention relates to devices, arrangements and methods for facilitating the sampling, collection and analysis of body fluids. In certain embodiments, the present invention can be directed to a cartridge that can be utilized in conjunction with an integrated body fluid sampling and monitoring devices.


BACKGROUND

In the discussion that follows, reference is made to certain structures and/or methods. However, the following references should not be construed as an admission that these structures and/or methods constitute prior art. Applicants expressly reserve the right to demonstrate that such structures and/or methods do not qualify as prior art.


According to the American Diabetes Association, diabetes is the fifth-deadliest disease in the United States and kills more than 213,000 people a year, the total economic cost of diabetes in 2002 was estimated at over $132 billion dollars. One out of every 10 health care dollars is spent on diabetes and its complications. The risk of developing type 1 juvenile diabetes is higher than virtually all other chronic childhood diseases. Since 1987 the death rate due to diabetes has increased by 45 percent, while the death rates due to heart disease, stroke, and cancer have declined.


A critical component in managing diabetes is frequent blood glucose monitoring. Currently, a number of systems exist for self-monitoring by the patient. Most fluid analysis systems, such as systems for analyzing a sample of blood for glucose content, comprise multiple separate components such as separate lancing, transport, and quantification portions. These systems are bulky, complicated and confusing for the user. The systems require significant user intervention to perform repeated testing.


Some attempts have been made to integrate some or all of these functions. For instance, a device has been developed that contains a disposable array of test strips. This device integrates the functions of transport and quantification only. Another device attempts to integrate all three of the above-mentioned functions. However this device is single use, and the user must reload a test strip and lancet for each test. The device is also very large and requires significant user intervention. For instance, this device has separate members to create and to transport a sample. The wound is created with a lancet and a test strip collects a sample. This system uses several complicated mechanisms to bring the test strip to a position where it can collect the sample. Finally, the device is not configured for fingertip testing.


Another device contains an array of quantification strips and dispenses one strip at a time, without the function of automated lancing or sample transport.


Yet another device includes a disposable insert that may contain an array of lancets and possibly test strips. Yet the device is large, cumbersome, and non-wearable. The device may be expensive.


In addition, in those devices where such integration has been attempted, the mechanism(s) for actuating the skin-piercing members are provided in the reusable portion of the device and not in the cartridge. These actuation mechanisms are overly complex and bulky so that their inclusion into a disposable cartridge has been impractical.


In summary, most current systems that are not integrated involve many pieces that are not convenient and make the test difficult to perform discreetly. Other current devices may be somewhat integrated but still require significant user intervention, are not discreet, are overly complex and bulky and require more than one device to complete the test.


SUMMARY OF THE INVENTION

According to the present invention, there are provided body fluid sampling and monitoring devices and methods that may address one or more of the shortcomings noted above associated with conventional arrangements and devices.


Although not required, the present invention can provide devices, arrangements and techniques which possess one or more of the following advantages:


Convenience and Simplicity—according to the principles of the present invention the user can carry a single disposable cartridge which is capable of completing multiple tests.


Reduced Risk of Infection and Cross-Contamination—a cartridge formed according to the present invention ensures that the user can access a fresh lancet and test strip for every testing event, and that contaminated articles are contained and stored within the cartridge which acts like a self-contained receptacle.


Reduced Environmental Contamination of the Reagent—conventional systems protect test strips from environmental contamination by storing them in a plastic vial or other container. As soon as this container is opened, all the strips are exposed to the environment. This exposure can result in deterioration of the reagent contained in the test strips. According to the present invention, each reagent-containing test strip can be shielded from the environment in a chambers formed within the cartridge.


Improved Reliability—rather than relying on intervention by the user to deliver a sample to an analysis site (e.g., test strip), the present invention can automatically transfer a sample body fluid to an analysis site.


Automatic Calibration and Accuracy Verification—conventional systems typically require the user to input a calibration code for each new series of test strips. This procedure can be confusing and is often performed incorrectly, or ignored by the user. According to the present invention, calibration information will be provided on each cartridge and automatically read by an integrated meter or device upon insertion of the cartridge therein. Similarly, each cartridge can comprise one or more analysis sites which act as a control. For example, upon reading and analyzing the control representing a known concentration of analyte, the results obtained by the integrated meter are then compared to this known concentration. Any deviation therefrom can be accounted for and corrected by, for example, updating or modifying the algorithm utilized to calculate the concentration of analyte contained in the sample body fluid.


Automatic Algorithm and Software Update Capabilities—the cartridge of the present invention may include the readable information (e.g., in the form of a chip) which can be utilized to automatically update the software, firmware, algorithm and/or analysis method of the integrated meter or device upon insertion of the cartridge therein.


As used herein “digital” or “digit” means fingers or toes. “Digital body fluid” means expression of body fluid from a wound created on the fingers or toes, and encompasses lancing sites on the dorsal or palm side of the distal finger tips.


As used herein “alternate-site” means a location on the body other than the digits, for example, the palm, forearm or thigh. “Alternate-site body fluid sampling” means expression of body fluid from the lancing site on a surface of the body other than the fingers or toes, and encompasses lancing sites on the palm, forearm, and thigh.


As used herein, “body fluid” encompasses whole blood, intestinal fluid, and mixtures thereof.


As used herein “integrated device” or “integrated meter” means a device or meter that includes all components necessary to perform sampling of body fluid, transport of body fluid, quantification of an analyte, and display of the amount of analyte contained in the sample of body fluid.


According to one aspect, the present invention is directed to an arrangement comprising: a housing; a plurality of sampling and analysis sites contained within the housing, each of the sampling and analysis sites comprising: a skin-penetration member having a first end configured to pierce the skin, and a inner lumen in communication with the first end; an actuator operatively associated with the skin-penetration member; and an analyte quantification member in fluid communication with the inner lumen of the skin-penetration member.


According to another aspect, the present invention is directed to an integrated meter or device comprising the above-identifed arrangement.





BRIEF DESCRIPTION OF THE DRAWING FIGURES

The following description of preferred embodiments can be read in connection with the accompanying drawings in which like numerals designate like elements and in which:



FIG. 1 is a perspective view of an arrangement constructed according to the present invention.



FIG. 2 is perspective view of a portion of the arrangement of FIG. 1.



FIG. 3 is an exploded view of the arrangement of FIG. 1.



FIGS. 4A-4B are schematic illustrations of a control/calibration mechanism which may be utilized in conjunction with the arrangement of FIG. 1.



FIG. 5 is a side view of a skin-piercing member, hub and actuator of the arrangement of FIG. 1.



FIG. 6 is a top view of the skin-piercing member, hub and actuator of the arrangement of FIG. 4.



FIG. 7 is a side view of a triggering mechanism for an actuator according to one embodiment of the present invention.



FIG. 8 is a side view of a triggering mechanism for an actuator according to an alternative embodiment of the present invention.



FIG. 9 is a side view of a triggering mechanism for an actuator according to a further embodiment of the present invention.



FIGS. 10 is a top view of an optional sealing member for the triggering mechanism of FIG. 9 of the present invention.



FIG. 11 is a top view of a triggering mechanism according to an optional embodiment of the present invention.



FIG. 12 is a top view of a triggering mechanism according to another embodiment of the present invention.



FIG. 13 is a top view of a triggering mechanism according to yet another embodiment of the present invention.



FIG. 14 is a top view of a triggering mechanism according to still another embodiment of the present invention.



FIGS. 15A and 15B are side and detailed perspective views, respectively, of a further embodiment of a triggering mechanism.



FIG. 16 is a perspective view of a triggering mechanism formed according to a further embodiment of the present invention.



FIG. 17 is a magnified perspective view of a portion of FIG. 16.



FIG. 18 is a magnified perspective view of a portion of FIG. 16.



FIG. 19 is a magnified perspective view of a portion of FIG. 16.



FIG. 20 is a side view of a triggering mechanism for an actuator according to a further alternative embodiment of the present invention.



FIG. 21 is a perspective view of an integrated meter or device which can incorporate arrangements formed according to the present invention.



FIG. 22 is a perspective view of certain details of the integrated meter or device of FIG. 21.



FIG. 23 is a perspective view with parts of the integrated meter or device shown in transparency to reveal certain details contained therein.



FIG. 24 is a perspective view of an alternative embodiment of an integrated device which may include arrangements formed according to the present invention.



FIG. 25 is a schematic illustration of an optical detection arrangement formed according to one embodiment of the present invention.



FIG. 26 is a schematic illustration of an optical detection arrangement formed according to an alternative embodiment of the present invention.



FIG. 27 is a schematic illustration of an optical detection arrangement formed according to a further alternative embodiment of the present invention.



FIG. 28 is a schematic illustration of an optical detection arrangement formed according to another embodiment of the present invention.



FIG. 29 is a schematic illustration of an optical detection arrangement formed according to still another embodiment of the present invention.





DETAILED DESCRIPTION

According to a first aspect of the present invention, there are provided arrangements and techniques for sampling and analyzing body fluid to determine a concentration of a target analyte contained therein. Target analytes include, but are not limited to, glucose, bilirubin, alcohol, controlled substances, toxins, hormones, proteins, etc. The arrangements and techniques are suitable for use in sampling body fluid from a digit or from an alternate site.


Generally, the arrangement of the present invention may comprise a disposable arrangement. The disposable arrangement may be in the form of a cartridge. The present invention may also comprise an integrated meter comprising a disposable arrangement (e.g., cartridge) as well as a reusable portion. The cartridge may include an array of skin piercing elements attached to guides, triggers and/or actuation mechanisms. The cartridge may also include mechanisms for transporting a sample of body fluid from the skin surface into other areas of the device. According to certain embodiments, at least a portion of the transport operation is integrated into the skin-piercing elements. The cartridge may also include analyte quantification members that may be separate from or integrated with the transport member. The analyte quantification members may be designed to optically or electrochemically indicate detectable changes when exposed to the analyte of interest. The cartridge may also include one or more skin-interfacing members, possibly a soft silicone footprint. The skin interfacing member(s) or footprint(s) can optionally be constructed of any material that facilitates sample acquisition via conditioning the skin prior to, during and/or after piercing. Alternatively, the skin interface member(s) may be included in the reusable portion of the device. The disposable portion may include an energy source. The disposable portion may also include a housing designed to enclose, and/or seal the analyte medium. The disposable portion may also include mechanisms, or be designed to allow for user-adjustable skin piercing depth. The disposable portion may also include vacuum chambers as well as a means to provide an airtight seal against the skin. Finally, the disposable portion may contain readable information usable for calibration, control or software updating purposes.


An arrangement formed according to one exemplary embodiment of the present invention is illustrated in FIGS. 1-6. As illustrated therein, the arrangement can be provided generally in the form of a replaceable cartridge 10. The cartridge 10 comprises a housing 12. The housing 12 can be constructed of any suitable material. For example, a housing 12 can be constructed of a molded polymeric material.


The housing 12 can be provided in any suitable form. One optional configuration is illustrated in FIGS. 1-3. As illustrated, the housing 12 can comprise a footprint ring 14. The footprint ring 14 comprises a plurality of apertures 16 disposed about its circumference. The footprint ring 14 may optionally comprise a plurality of footprints 17 which surround respective apertures 16 and are attached to the footprint ring 14. Each footprint 17 is configured to be placed on the surface of the skin of a user at a sampling site. The footprints 17 can be annular in shape according to the illustrated embodiment. However, the footprints are not limited to this shape or configuration. Numerous shapes or configurations may satisfy the function of providing a footprint around the site on the surface of the skin from which body fluid is to be expressed, i.e., the sampling site. According to certain embodiments, the footprints 17 are constructed from a material which facilitates the formation of a seal between the skin and the footprints 17. For example, suitable materials for this purpose include a relatively soft elastomeric material, such as a silicone rubber. The footprints 17 can be formed having any appropriate size. For example, the footprints 17 can have a diameter, or opening having a major dimension, of about 3-8 mm. As an alternative to the above described arrangement, a footprint can be provided for the same purpose as part of an integrated meter or device in which the arrangement or cartridge 10 can be placed, as will be described in more detail herein.


According to the illustrated embodiment, the housing 12 further comprises a transparent optical window 18. The transparent optical window 18 can be provided, for example, in order to permit optical communication between a detection device and one or more components located within the arrangement or cartridge 10.


The housing 12 can further include a top cover 20. An inner frame 22 can also be provided. The inner frame 22 may help define a plurality of analysis sites 24 within the cartridge 10.


One beneficial aspect of the arrangement or cartridge 10 of the present invention is that it may be used to carry information which is readable by the device into which it is inserted. Such information can be used to update data and/or code utilized by the device, and can also be used for purposes of accuracy verification and calibration. Various mechanisms can be associated with the cartridge tend to accomplish this purpose, as will be evident to those of ordinary skill in the art. Two exemplary mechanisms are illustrated in FIG. 3. Namely, the cartridge 10 can comprise a mechanism such as a readable memory chip 21 which carries information and/or code which can be read by the device into which the cartridge 10 is inserted. The manner in which the data and/or code is read from the chip 21 can comprise any conventional arrangement for reading the information contained on a memory chip, such as electrical contacts and radio frequency identification/transmission or direct optical communication such as a system of infrared emitters and detector. Another mechanism by which data and/or other information can be provided to the device into which the cartridge 10 is inserted is illustrated in FIG. 3 as comprising a barcode 23, or similar optically-readable mechanism. The barcode 23 is positioned on the exterior of the cartridge such that an optical sensor positioned within the integrated meter can read the information contained in the bars. The optical sensor and a processor within the integrated device can convert the pattern of bars into data as is commonly known in other areas such as point-of-sale scanners. The data read off of the barcode is used to access specific algorithms or lookup tables stored within memory in the integrated meter. This data allows the integrated device to adjust for any variances in the manufacture of the disposable cartridges. A suitable sensor/detector for reading the chip 21 and/or barcode 23 is schematically illustrated as element SID in FIG. 22.


Another beneficial aspect of the arrangement described above is the ability to utilize one or more of the analysis sites 24 for calibration and control purposes. Generally, one or more of the analysis sites 24 can be used to verify the accuracy of test readings and automatically calibrate the system to compensate for any variations which may occur with operation of the device. One such technique and arrangement is illustrated in FIGS. 4A-4B. As illustrated therein, one and possibly more, of the analysis sites 24 are provided with a hub 32 containing a control assay pad 30′. The control assay pad 30′ is provided with three distinct regions, each producing known reflectance values. Namely, the first region X having a first darker color, a second uncolored region Y, and a third lightly colored region. As the control assay pad 30′ is read by the detector D′ through the transparent window 18, the pixels of the detector D′ that correspond to each of the regions X, Y and Z produce reflectance readings. This detection is depicted in FIG. 4B. As illustrated therein, the reflectance values actually measured by the detector D′ may differ from the known reflectance values of the control assay pad 30′. This difference can be analyzed and compensated for by any suitable technique. For instance, the algorithm utilized to calculate analyte concentration levels can be adjusted to compensate for the difference, thereby leading to more accurate results. Such control and calibration operations can be carried out after each test, or after a number of tests.


As an alternative to the above control assay pad 30′, a control fluid can be released into an assay pad and allowed to react with a chemical reagent contained therein. Since the control fluid contains a known concentration of analyte, the measured concentration of analyte can then be compared to the known concentration, and any differences analyzed and compensated for in the manner described above.


Each sampling and analysis site 24 of the illustrated embodiment comprises a skin penetration member 26. Each skin penetration member 26 can take any suitable form. According to the illustrated embodiment, each skin penetration member 26 is in the form of a hollow needle and has a first in the portion 26e configured to pierce the skin, as well as an inner lumen 26l (FIG. 5). It should be understood that alternative skin penetration members may also be utilized consistent with the principles of the present invention (e.g., solid lancets, etc.). The at least one skin penetration member 26 can take any suitable form. For example, the at least one skin penetration member can comprise a solid lancet or a hollow needle. According to one embodiment, the skin-penetration member 26 is in the form of a so-called “microneedle.” As the name implies, microneedles are characterizable by their relatively small outer diameters. For example, a microneedle, as the term is utilized herein, may encompass a skin-penetration member having an outside diameter which is on the order of 40-200 μm. The inside diameter can vary, for example, having an inside diameter on the order of 25-160 μm. Needles are also characterizable in the art by reference to the “gage,” By way of illustration, and consistent with the above description, microneedles having a gage ranging from 26-36 are clearly comprehended by the present invention. Certain advantages may be gleaned from the use of such microneedles as the skin-penetration member. In particular, due to their small size, the size of the wound left upon entry into the skin is relatively small, thereby minimizing the pain associated with such needle insertions and allowing for a quicker healing process. However, the present invention is certainly not limited to the use of such microneedles. Thus, for example, according to one possible alternative embodiment, the skin penetration member(s) comprise hollow needles having a gage of about 20-25, or comprising hollow needles having an inner diameter of about 0.007 inches and an outer diameter of about 0.020 inches.


The least one skin-penetration member can be formed of any suitable material, such as metal, plastic, glass, etc.


Each skin-penetration member can be attached to a hub 32. Each hub 32 is, in turn, attached to an actuator 28. It should be understood that a number of different actuators may be utilized according to the principles of the present invention. The actuators can be mechanical, electrical, pneumatic, etc. According to the illustrated embodiment, the actuator 28 is in the form of a torsional spring. Upon activation, the torsional spring drives the hub 32 and the attached skin penetration member 26 through a respective aperture 16 and into the skin of the user. According to certain embodiments, each sampling and analysis site 24 further comprises and analyte quantification member which produces a detectable signal when contacted with a target analyte contained in a sample of body fluid. A number of suitable members are envisioned. The members may be based on conventional technologies such as photometric or electrochemical analysis. According to the illustrated embodiment, an assay pad 30 is provided on each hub 32 which can generally comprises an absorbent material containing a chemical reagent which, upon reaction with a target analyte, produces a chemical reaction that results in a detectable signal. The assay pad 30 is in fluid communication with the inner lumen 22e of the skin piercing element 22. As noted above, the signal can be detected optically, electrochemically, or by other suitable means. According to one embodiment, the assay pad 30, upon reaction with the target analyte, produces a spot which is optically detected by any suitable arrangement or technique. As schematically illustrated, for example, in FIG. 5, the assay pad 30 can be located on an exterior surface of the hub 32 and retained in position by a retaining element or cover 34. The retaining element or cover 34 can take any suitable form, such as a cap that snap fits onto the hub 23, or a strip of adhesive, The retaining element or cover 34 is preferable transparent. Thus, the spot produced on the assay pad 30 by the above-mentioned reaction can be observed optically through the transparent optical window 18 formed along the interior region of the illustrated cartridge housing 12.


Various mechanisms for triggering actuation of a hub 32 and attached skin penetration member 26 will now be described.


In the exemplary, nonlimiting arrangement illustrated in FIGS. 5-6, the actuator 28 is in the form of the torsional spring having a rear leg 36 and a forward leg 38. The forward leg 38 is fixedly attached to the hub 32 by any suitable means, such as the illustrated bore in the hub 32. The hub 32 is further provided with a mechanism for releasably capturing the rear leg 36 of the torsional spring. According to the illustrated embodiment, the releasably capturing mechanism comprises an open locking groove 40 which is configured to receive the rear leg 36. When the rear leg 36 is disposed within the releasably capturing mechanism, or groove 40, the rear leg 36 and the forward leg 38 are urged toward one another. In this state, the torsional spring has a bias which tends to urge the rear leg 36 and the forward leg 38 apart. Thus, in order to actuate the skin penetration member 26 and the attached hub 32, the rear leg 38 is released from the open locking groove 40 by any suitable mechanism or technique. As illustrated in FIG. 6, the rear leg 36 is urged out of communication with the groove 40 by moving it in the direction indicated by arrow A. The rear leg 36 is prevented from significant movement by virtue of the fact that it is trapped within a wall W of the inner frame, while the forward leg 38 is relatively unrestrained. As a result of the natural bias of the torsion spring urging the rear and forward legs 36, 38 apart, the hub 32 and the attached skin penetration member 26 is urged in an arcing, downward movement such that the skin penetration member 26 passes through a respective aperture 16, and into the surface of the skin of the user. The hub 32 can rotate about the pivot or pin 42 upon actuation.



FIGS. 7-10 illustrate further optional aspects of the triggering mechanism constructed according to the principles of the present invention. As illustrated in FIG. 7, the triggering mechanism 50 is provided for the purpose of urging the rear leg 36 of the actuator 28 out of registry with the locking groove 40. According to the illustrative, nonlimiting embodiment, the triggering mechanism 50 comprises a driving portion 52, such as a motor, solenoid, or servo device, and a driven linear actuator arm 54. In order to protect the components contained within the cartridge from environmental contamination, and in order to facilitate the creation of a vacuum pressure at the analysis sites 24, it may be preferable according to certain optional aspects of the present invention to seal each analysis site. While it is noted at the arrangement illustrated in FIG. 7 has an opening 16 corresponding to the aperture contained in the footprint ring 14, this opening will be sealed when the cartridge 10 is applied to the surface of the skin in the manner described above. As illustrated, for example, in FIG. 7, and opening 55 is provided in the frame 22 in order to permit introduction of the linear actuator arm 54. This opening 55 can be sealed by means of a flexible solid membrane 56. The membrane 56 is flexible enough to permit the necessary degree of movement of a linear actuator arm 54 in order to disengage the rear leg 36 of the actuator 28 from the locking groove 40, without being penetrated or broken by this movement.


A similar configuration is illustrated in FIG. 8. However, in the embodiment illustrated in FIG. 8, the opening 55 is sealed by the combination of and apertured membrane 58 which has an opening to permit passage of the linear actuator arm 54 therethrough, in combination with a secondary seal 60 which is disposed about the linear actuator arm 54. As illustrated, the secondary sealed 60 is designed to come into firm contact with the apertured membrane 58 upon insertion of the driven linear actuator arm 54 therethrough. Thus, a seal is maintained through this opening 55 in the frame 22 for the purposes described the above. As further illustrated in FIG. 8, the opening(s) 16 in the cartridge may optionally be sealed by any suitable mechanism or member, such as a thin sealing film 17s. This seal 17s will allow each chamber to remain completely sealed until it is punctured. The seal can either be removed by the user when loading a new disposable or actually punctured by the skin penetration member 26 as it penetrates the users skin. It should be understood that this aspect of the embodiment illustrated in FIG. 8 can be applied to any of the various embodiments described in this application.


A further variation of the above arrangements is depicted in FIGS. 9-10. As illustrated therein, the opening 55 in the frame 22 is sealed by means of a piercable membrane seal 62. The piercable membrane seal 62 is normally of a solid construction. However, the piercable membrane seal 62 can be provided with weakened portions or perforations 64 (FIG. 10) which facilitates the creation of an opening therein upon contact with the driven linear actuator arm 54. Upon insertion of the linear actuator arm 54 at the location of the weakened portion or perforations 64, a passageway is formed within the piercable membrane seal 62. However, a relatively tight contact is maintained between the newly formed aperture in the piercable membrane seal 62 and the linear actuator arm 54. This contact serves to maintain at least a significant sealing effect.


Further alternative embodiments of a triggering mechanism formed according to the principles of present invention are illustrated in FIGS. 11-20. As illustrated in FIG. 11, the linear actuator arm 54 travels through the opening 55 in the direction of arrow B. The opening 55 can be sealed by any suitable mechanism or construction, such as any of the previously described ceiling mechanisms. The arm 54 is provided within angular ramp surface 66 which is designed to interact with the rear leg 36 of the actuator in a manner that pushes it out of engagement with the locking groove 40, as indicated by the relative positions of the linear actuator arm 54 and rear leg 36 shown in broken lines in FIG. 11.


A further modification of the arrangement of FIG. 10 is illustrated in FIG. 12. According to this modification, the linear actuator arm 54 is provided with a curved or arcuate ramp surface 68 which is also designed to interact with the rear leg 36 of the actuator in a manner which pushes it out of engagement with the locking groove upon traveling a predetermined distance in the direction of arrow C, as indicated by the relative positions of the linear actuator arm 54 and the rear leg 36 shown in broken lines in FIG. 12. Again, the opening 55 can be sealed by any suitable means, such as any of the previously-described sealing constructions.


A further embodiment of the triggering mechanism formed according to the present invention is illustrated in FIG. 13. According to this embodiment, a pivotable actuator arm 70 is provided for movement within the opening 55. The opening 55 can be sealed by any suitable mechanism, such as any of the previously described sealing constructions. The pivotable arm 70 is constructed and arranged so as to translate or pivot in the direction indicated by arrow D, thereby forcing the rear leg 36 of the actuator out of communication with the locking groove 40, as indicated in the broken line portion of FIG. 12. The pivotable arm 70 can be driven by any suitable conventional mechanism, such as a motor, solenoid or servo device.


A triggering mechanism constructed to still another embodiment of the present invention is illustrated in FIG. 14. According to this embodiment, a linear actuator arm 72 is provided having a construction similar to that of the linear actuator arm 54 described in the previous embodiments. However, the linear actuator arm 72 is oriented at a location which is offset 90° relative to the location of the previously described linear actuator arm 54. As illustrated in FIG. 14, the linear actuator arm 72 is positioned to travel in the direction of arrow E, thereby directly engaging the second end 36 of the actuator at a position adjacent to the bottom of the locking groove 40 and pushing it out of engagement with the locking groove 40, as illustrated by the broken lines in FIG. 14. As with the previously described embodiments, the opening 55 can be sealed by any suitable mechanism, such as any of the previously described sealing arrangements.


As illustrated in FIGS. 15A-15B, a suitable alternative triggering mechanism can be constructed by providing a pivotable actually arm 74 which travels within the opening 55 in the direction indicated by arrow F. The pivotable actuating arm 74 is provided within angular ramp surface 76 which is configured to interact with the rear leg 36 of the actuator upon traveling in the direction indicated by arrow F in a manner which forces the second leg 36 out of communication with locking groove 40 in the direction indicated by arrows G. The opening 55 can be sealed by any suitable mechanism, such as any of the previously described sealing mechanisms.


A further alternative triggering or release mechanism and arrangement formed according to the present invention is illustrated in FIGS. 16-19. According to this embodiment, the rear leg 36 of the actuator 28 is fixedly retained in a locking feature 80 (e.g., FIG. 18) in the pin or pivot 42. The forward leg 38 of the actuator 28 is fixedly retained by the hub 32. The hub 32, actuator 28 and pin or pivot 42 is mounted within a chamber 81 defined by cell walls 82, 84. According to the illustrated embodiment, the pivot or pin 42, and the attached hub 32, actuator 28 is retained between the cell walls 82, 84 via retaining grooves 90 disposed therein. The hub 32 is positioned within the chamber 81 such that the hub is initially locked in a cocked position (e.g., FIGS. 16-17) by interaction between a locking feature associated with the hub 32 and a locking feature associated with the chamber 81. According to the illustrative embodiment, the locking feature associated with the chamber 81 comprises a pair of projections 86, each extending from a respective cell wall 82, 84, and the locking feature associated with the hub 32 comprises a pair of laterally spaced grooves or recesses 88 configured to releasably mate with the projections 86. Numerous modifications to the illustrated locking features are contemplated. For instance, the location of the projections 86 and the grooves 88 can be switched. Additionally, the cooperating projections and grooves can have a multitude of different geometrical configurations.


When the hub 32 is positioned in the chamber 81 in a locked position, the rear leg 36 and the forward leg 38 are biased away from one another, such that upon disengagement of the locking features 86, 88, (FIG. 19) the hub 32 and the attached skin penetration member 26 is urged and an arcing, downward movement such that the skin penetration member 26 passes into the surface of the skin of the user. The locking features 86, 88 are disengaged by application of a force to the hub 32, as indicated for example by the arrow F (FIG. 19). Any suitable mechanism may be utilized to apply the force necessary to disengage the hub, such as those mechanisms previously described herein.


A further optional triggering mechanism constructed according to the principles of the present invention is illustrated in FIG. 20, the triggering mechanism 50 is provided for the purpose of severing a wire or fuse 92, having one end attached to the hub 32 and the other end attached to a relatively stationary surrounding member. According to the illustrative, nonlimiting embodiment, the triggering mechanism 50 comprises a portion 94 which can comprise at least one of a cutting member or heating element, both capable of severing the restraining wire or fuse 93. The opening 55 can optionally be sealed by means of any of the previously described sealing arrangements.


The arrangement 10 can form at least part of a device which functions only to sample body fluid. For example, the arrangement 10 can be used to express body fluid in the form of a drop of blood which pools on the surface of the skin of the user. This drop of blood can then be transferred to another separate device which then transports and/or analyzes the sample for a target analyte. Alternatively, the arrangement 10 may express a sample of body fluid from the digit D, and then transport the sample to a location which can then be accessed for further analysis by a separate device. For instance, the sample body fluid can be transported to a reagent-containing pad, also contained within the arrangement 10. The sample then reacts with the reagent to produce a detectable spot or signal. The reagent pad can then be analyzed by a separate meter using photochemical, electrochemical, or other suitable techniques known per se to those skilled in the art. The reagent pad can remain within the arrangement 10 during the aforementioned analysis. Alternatively, the reagent pad can be removed from the arrangement 10 and inserted into a separate device, such as an electrochemical or photometric meter.


According to a further aspect of the present invention, the above-described arrangements and techniques as previously described herein, can form at least part of an integrated device. As previously noted, as used herein, the term “integrated device” or “integrated meter” means a device or meter that includes all components necessary to perform sampling of the body fluid, transport of the body fluid, quantification of an analyte, and display of the amount of analyte contained in the sample body fluid. Thus, according to the principles of the present invention, an integrated device or meter can comprise one or more, or any combination, of the features previously described herein. According to further aspects of the present invention, and integrated meter or device can comprise additional components and/or features, which are described as follows.


It should be understood that while not required, any of the above-described triggering mechanisms can form part of a separate sampling only device or part of an integrated device into which the cartridge 10 is placed.


One such integrated meter is illustrated FIGS. 21-23. As illustrated therein, the integrated meter 100 generally comprises a housing 112. The integrated meter 100 may further comprise a footprint 114 of the type previously described. A door 116 can be provided on the housing 112. The door 116 is connected via a hinge 118 to the housing 112. As illustrated in FIGS. 22-23, the door 116 can be opened to reveal a cartridge 10 containing a plurality of skin-piercing elements and analysis sites, as previously described herein. In the illustrated embodiment, the integrated meter 100 further includes a display 120 for communicating the results of the analysis on the sample body fluid for the presence and/or concentration of an analyte contained therein. The integrated meter 100 may further include one or more buttons 122 which can be pressed by the user to engage various functions and interfaces of the integrated meter 100.



FIG. 22 is an illustration of the integrated meter 100 with the door 116 opened to reveal further details of the interior components of the integrated meter 100. As illustrated therein, the housing 112 contains a cartridge 10 therein. In the illustrated embodiment, the cartridge 10 is circular and contains a plurality of skin-piercing elements and analysis sites. The cartridge 10 is mounted about a central hub 122 and is rotatable thereon. Thus, upon sampling a skin-piercing element is driven through an opening in the housing in registry with the footprint 114 and pierces the skin of the user. Once the test has been completed, the cartridge 10 can be rotated such that an unused skin-piercing element now comes into registry with the opening in the housing and the corresponding opening in the footprint 114 in preparation for the next sampling event. It should be understood that the present invention is not limited to the illustrated circular cartridge having the particular configuration depicted in the drawing figures. To the contrary, a number of alternative cartridge configurations are possible, such as a slidable linear or polygonal configuration (not shown). Also illustrated in FIG. 22 is the presence of a light source 124 disposed on the back of the door 116. The light source 124 can take any suitable form, such as a light emitting diode. It should be understood that alternative light sources may also be utilized. The function of the light source 124 will be described in further detail below.


In this regard, light emitted from the light source 124 is incident upon an assay pad (e.g., 30), and reflects off the surface thereof. Upon formation of a reaction spot on the surface of the assay pad, the amount of light reflected off the reaction spot differs from the light reflected off of other portions of the reagent pad containing no such reaction spot. This reflected light is picked up by the detector 126. The detector 126 may comprise a lens 128 and optical detector element 130.


The optical detector element 130 generally comprises one or more detector elements. According to one alternative construction, the detector element 130 comprises a plurality of detector elements formed in an array. The array can take any suitable configuration, and can be a linear array according to one nonlimiting example. The detector elements can comprise any suitable construction. For example, the detector elements 130 can comprise a photo diode, CCD, or CMOS based detector element. The signals transmitted to the detector element 130 are passed on to suitable electronics contained within the housing 112 via suitable electrical connectors, such as flexible ribbons 131 (FIG. 23). The specifics of the electronics and signal interpretation being familiar to those of ordinary skill in the art. While not necessary to enable practice of the presently claimed invention, further details concerning the construction, function and arrangement of the analysis sites, and components contained therein, can be gleaned from the disclosure contained in U.S. patent application Ser. No. 60/721,966, entitled DEVICE FOR FLUID ANALYSIS WITH SAMPLE EXTRACTION AND TRANSPORT, the entire content of which is incorporated herein by reference. Similarly, while not necessary to enable practice of the presently claimed invention, further details concerning the structure, function, and arrangement of the detector 126, and the components contained therein, can be gleaned from the disclosure contained in U.S. patent application Ser. No. 11/239,122, entitled ANALYTE DETECTION DEVICES AND METHODS WITH HEMATOCRIT/VOLUME CORRECTION AND FEEDBACK CONTROL, the entire content of which is incorporated herein by reference.


An integrated meter incorporating an arrangement formed according to the present invention can be configured for digital body fluid sampling and analysis as well as alternate-site body fluid sampling and analysis, which may be performed at either location at the election of the user.


As evident from FIGS. 21-23, the integrated meter 100 is configured for handheld use. However, the invention is not limited to handheld devices. For example, the present invention is also directed to integrated meters that are wearable. An example of such a wearable device is illustrated in FIG. 24. The wearable integrated device 200 illustrated therein can be generally composed of a functional portion 202 and a body-attachment portion 204. The functional portion can comprise an arrangement 10 of the type described herein. The functional portion can also have one or more of the features and elements of the handheld integrated meter described above.


As previously noted, according to certain embodiments of the present invention, the concentration of an analyte contained in a sample of body fluid can be measured using a photometric technique wherein the assay pad is interrogated with a light source and a detector thereby producing a signal indicative of a color change caused by reaction between an analyte and reagent contained in the assay pad, which is then correlated to the concentration of analyte contained in the sample.


The present invention provides photometric analysis devices, arrangements and techniques that facilitate their incorporation into devices and arrangements of the type described above that are compact, discrete, wearable or handheld, and capable of performing multiple tests without reloading testing components.


According to a first embodiment, a photometric analysis arrangement constructed to satisfy at least the above-noted objectives is illustrated in FIG. 25. As illustrated therein, the arrangement 300 generally comprises a platform or stage 302, a plurality of assay pads 304 containing chemical reagents, a single light source 306, and a single detector 308. The light source 306 may be provided by any suitable device, such as a light emitting diode (LED), similarly, the detector may comprise any suitable device, such as one or more CMOS, CCD, photodiode or infrared detector elements. According to one embodiment, the detector 308 comprises an array of CMOS detector elements.


According to the arrangement 300, the plurality of assay pads 304 are provided at fixed locations relative to the platform or stage 302. Thus, no relative movement between the assay pads 304 and the platform 302 is possible. The light source 306 and the detector 308 are also provided at fixed locations independent of the platform or stage 302. The light source 306 is arranged to direct light toward a specific assay pad 304 when brought into registry therewith. Similarly, the detector 308 is arranged to receive light reflected off the assay pad that is positioned at a predetermined location. The platform 302 is rotatable, as indicated by the arrow contained in FIG. 25, such that each of the plurality of assay pads 304 may be indexed and brought into registry with light source 306 and the detector 308 for analysis.


A variation of the arrangement 300 is depicted in FIG. 26. The arrangement 400 is constructed in a manner that shares many of the same features previously described in connection with the arrangement 300. According to the arrangement 400, platform 302 is fixed and is not rotatable. Both the light source 306 and the detector 308 are mounted on a second platform or stage 402. Both the light source 306 and the detector 308 are provided at fixed locations relative to the platform 402, such that relative movement therewith is not permitted. According to the arrangement 400, each of the individual assay pads 304 are indexed, or brought into registry the light source 306 and the detector 308 by rotating the second platform 402 in the manner indicated by the arrow appearing in FIG. 26.


A further optional modification of the arrangements 300,400 is depicted in FIG. 27. According to the arrangement 500, the platform 302 is fixed, and is not movable. Both the light source 306 and the detector 308 are mounted on an indexing arm 502 in a fixed manner. According the arrangement 500, the light source 306 and the detector 308 are indexed, or brought into registry with each of the assay pads 304 by rotating the movable indexing arm 502 in the manner indicated by the arrow appearing in FIG. 27. Thus, the light source 306 and the detector 308 are brought to a position which is located above a selected assay pad 304. According to this arrangement 500, light is emitted downwardly from the light source 306 toward the assay pad 308. At least a portion of this light is then reflected off the assay pad 304 in a generally upward direction such that it is then received by the detector 308.


In certain instances, it may be advantageous to eliminate the need to move the assay pads 304 relative to the light source 306 and the detector 308 in order to selectively index or bring the components into registry therewith for analysis. Once such arrangement which accomplishes this objective is illustrated in FIG. 28. According to the arrangement 600, each of a plurality of assay pads 304 may be individually interrogated without the necessity of providing relatively movable components within the system. According to illustrated arrangement 600, a plurality of light pipes or similar light transmitting elements 602 are provided which communicate between a single stationary light source 306 and each of a plurality of assay pads 304. The detector 604 is positioned such that it may receive light reflected light off of each individual assay pads 304. In order to accomplish this objective, the detector 604 may be partitioned, or formed as an array of discrete detector elements, as illustrated in FIG. 28. Thus, the detector 604 comprises a plurality of sections, each of which is committed to receive light reflected off of a selected assay pad 304. The light emitted from the light source 306 may be multiplexed or selectively transmitted to a particular assay pad 304. This multiplexing can be accomplished by any suitable technique familiar to those in the art.


One possible variation of the arrangement 110 is depicted in FIG. 29. According the arrangement 700, like the arrangement 600, a plurality of analysis sites may be interrogated without the use of relatively movable components. According to the arrangement 700, a single light source 306 is provided which transmits light to all of the assay pads 304 simultaneously. A plurality of detector elements 702, 704, 706 are provided, each of which is positioned in registry with light reflected off of a respective assay pad 304. Each of the individual detector elements 702, 704, 706 may be multiplexed, or selectively activated in order to read only the desired assay pad 304. This multiplexing may be accomplished by any suitable means, as familiar to those in the art.


An exemplary body fluid sampling and analysis methodology or technique, which may be utilized in conjunction with any of the above-mentioned arrangements, devices or integrated meters, but is not necessarily limited thereto, is described as follows.


A user loads a fresh disposable cartridge containing a plurality of skin penetration members and analysis sites into an integrated meter. The integrated meter then reads calibration data contained in or on the cartridge. This data can be read in any suitable manner. For example, a bar code may be placed on the cartridge which can be optically read by the optical assembly contained within the meter. Alternatively, the data is contained on a chip carried by the cartridge that is read upon insertion into the integrated meter. The integrated meter then selects the proper lookup table or algorithm to calculate an aggregate glucose measurement taking into consideration the calibration data. The meter may then place itself in a ready mode waiting for a trigger to initiate sampling and testing. The user then either manually presses a button or trigger to initiate sampling and analysis, or the device verifies that it is properly positioned on the skin of the user and ready to begin the sampling and analysis procedure. Suitable sensors to accomplish this include optical, capacitive or pressure sensors. The device may then initiate a catalyst which acts to facilitate the expression of body fluid. According to one alternative embodiment, the catalyst is an inflatable member that exerts pressure on a digit. Alternatively, the catalyst is vacuum pressure which generates suction at the sampling site. Sensors present in the meter may be used to monitor and control the positive or negative pressure of the catalyst. After achieving a target pressure for a desired period of time, the skin penetration member (e.g., a hollow needle) is actuated and driven into the skin of the user to create a wound site. The skin penetration member comes to rest in or directly on the wound created at the sampling site where it is in the desired position for collecting a sample of body fluid expressed from the wound. The integrated meter may further include a mechanism for detecting a whether a sufficient amount of sample has been expressed. Details of such suitable detection techniques are described in detail in U.S. Pat. No. 7,052,652, entitled ANALYTE CONCENTRATION DETECTION DEVICES AND METHODS, the entire content of which is incorporated herein by reference. Once the desired amount of body fluid has been obtained, the catalyst is deactivated. A sample of body fluid is in fluid communication with a device or mechanism which creates a detectable signal upon reaction within analyte present in the sample body fluid. For example, one such suitable mechanism is an absorbent pad containing a chemical reagent which, upon reaction with the analyte produces a reaction spot which can be optically detected. An optical assembly which is an optical communication with the above described signal generating mechanism is utilized to detect the signal created via reaction with the analyte and communicate the signals to supporting electronics contained within the meter. The concentration of a target analyte (e.g., glucose) can then be calculated using these signals as a basis. Additional factors may be considered during these calculations, such as the sample size, levels of other substances contained in the sample (e.g. hematocrit), etc. Such optional calculation techniques are described in further detail in U.S. patent application Ser. No. 11/239,122, entitled ANALYTE DETECTION DEVICES AND METHODS WITH HEMATOCRIT/VOLUME CORRECTION AND FEEDBACK CONTROL, the entire content of which is incorporated herein by reference. These calculations quantify the amount of analyte contained in the sample body fluid. This quantity is displayed on a suitable display contained within the meter which can be easily read by the user. The integrated meter then automatically indexes the disposable cartridge to present a fresh unused skin penetration member which will be utilized to perform the next sampling and analysis event.


Numbers expressing quantities of ingredients, constituents, reaction conditions, and so forth used in this specification are to be understood as being modified in all instances by the term “about”. Notwithstanding that the numerical ranges and parameters setting forth, the broad scope of the subject matter presented herein are approximations, the numerical values set forth are indicated as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective measurement techniques. None of the elements recited in the appended claims should be interpreted as invoking 35 U.S.C. § 112, ¶6, unless the term “means” is explicitly used.


Although the present invention has been described in connection with preferred embodiments thereof, it will be appreciated by those skilled in the art that additions, deletions, modifications, and substitutions not specifically described may be made without department from the spirit and scope of the invention as defined in the appended claims.

Claims
  • 1. An arrangement comprising: a housing comprising a plurality of chambers;a plurality of sampling and analysis sites, each of the plurality of sampling and analysis sites contained within a respective chamber of the housing and comprising: a skin-penetration member having a first end configured to pierce skin, wherein the skin-penetration member comprises an inner lumen in communication with the first end;an actuator configured to drive the skin penetration member; andan analyte quantification member in fluid communication with the inner lumen of the skin-penetration member; andat least one seal configured to protect the skin-penetration member, actuator, and analyte quantification member from contamination, wherein each chamber is enclosed and completely sealed.
  • 2. The arrangement of claim 1, wherein the housing comprises an inner frame.
  • 3. The arrangement of claim 2, wherein the inner frame partially encloses each of the plurality of chambers.
  • 4. The arrangement of claim 1, wherein the housing comprises an opening for passage of one of the plurality of skin-penetration members and the at least one seal covers the opening.
  • 5. The arrangement of claim 4, wherein the at least one seal is puncturable.
  • 6. The arrangement of claim 5, wherein one of the skin-penetration members punctures the at least one seal.
  • 7. The arrangement of claim 4, wherein the at least one seal is removeable.
  • 8. The arrangement of claim 1, wherein the housing comprises an opening for passage of a triggering mechanism configured to trigger at least one of the sampling and analysis sites, and wherein the at least one seal covers the opening.
  • 9. The arrangement of claim 8, wherein the at least seal comprises: a solid flexible membrane;an aperture membrane in combination with a secondary seal; ora pierceable membrane.
  • 10. The arrangement of claim 8, wherein the at least one seal is configured to maintain sealing after passage of the triggering mechanism therethrough.
  • 11. The arrangement of claim 1, wherein the housing comprises a first opening for passage of one of the plurality of skin-penetration members and a second opening for passage of a triggering mechanism.
  • 12. The arrangement of claim 11, wherein the at least one seal comprises a first seal covering the first opening and a second seal covering the second opening.
  • 13. The arrangement of claim 1, wherein the housing comprises a plurality of openings positioned to correspond with the location of the plurality of skin penetration members, and wherein the at least one seal covers the openings.
  • 14. The arrangement of claim 13, wherein the at least one seal comprises a sealing film.
  • 15. The arrangement of claim 1, wherein at least one of the plurality of skin-penetration members comprises a needle.
  • 16. The arrangement of claim 1, wherein at least one of the plurality of actuators comprises a spring.
  • 17. The arrangement of claim 16, wherein the spring comprises a torsional spring configured to urge at least one of the skin-penetration members along an arcuate path.
  • 18. The arrangement of claim 17, wherein the at least one skin-penetration member of the at least one sampling and analysis site that comprises the torsional spring is configured to obstruct a wound opening in skin of a user after the torsional spring moves to a neutral position.
  • 19. The arrangement of claim 1, wherein each analysis site further comprises a hub and each skin-penetration member is attached to a respective hub.
  • 20. The arrangement of claim 19, wherein at least one of the hubs is configured to be released by a triggering mechanism, and wherein the respective actuator is configured to move the hub when the hub is released.
  • 21. An integrated body fluid sampling and analysis device comprising the arrangement of claim 1.
  • 22. The integrated device of claim 21 further comprising a detector in optical communication with at least one analyte quantification member through a transparent portion of the housing.
  • 23. The integrated device of claim 22, wherein the detector comprises at least one complementary metal oxide semiconductor (CMOS)-based detector element.
  • 24. The integrated device of claim 22, wherein the detector comprises at least one of a linear or area array of CMOS-based detector elements.
  • 25. The integrated device of claim 21, wherein the arrangement is provided as a disposable cartridge.
  • 26. The integrated device of claim 21, wherein the integrated device moves the housing in order to present a new sampling and analysis site for use after the performance of a preceding sampling and analysis event.
  • 27. The integrated device of claim 21 further comprising at least one light source and detector, wherein the at least one light source and detector are configured to interrogate each analyte quantification member.
  • 28. The integrated device of claim 27, wherein the analyte quantification members are moveable to index and come into registry with the at least one light source and detector for analysis.
  • 29. The integrated device of claim 27, wherein the at least one light source and detector are configured to move to facilitate the creation of a list of unused analyte quantification members or to align an analyte quantification member with the at least one light source and detector for analysis.
  • 30. The integrated device of claim 21, wherein the integrated device is configured for one or more of hand-held operation and operation while being worn.
  • 31. The arrangement of claim 1, wherein the arrangement is provided as a disposable cartridge.
  • 32. The arrangement of claim 1, wherein at least a portion of the housing is transparent.
  • 33. The arrangement of claim 1, wherein the at least one seal is further configured to facilitate the creation of vacuum pressure at one of the plurality of the sampling and analysis sites.
  • 34. The arrangement of claim 33, wherein the at least one seal is configured to maintain vacuum pressure after passage of a triggering mechanism therethrough.
  • 35. The arrangement of claim 1 further comprising a barcode or a chip contained on or within the housing, wherein the barcode or chip comprises readable information.
  • 36. The arrangement of claim 35, where in the readable information comprises at least one of: calibration information, algorithm information, software code, and accuracy verification information.
US Referenced Citations (599)
Number Name Date Kind
842690 Oswalt Jan 1907 A
D137874 Partridge May 1944 S
2749797 Harks Mar 1950 A
3092465 Adams, Jr. Jun 1963 A
3310002 Wilburn Mar 1967 A
3620209 Kravitz Nov 1971 A
3623475 Sanz et al. Nov 1971 A
3626929 Sanz et al. Dec 1971 A
3630957 Rey Dec 1971 A
D223165 Komendat Mar 1972 S
3723064 Liotta Mar 1973 A
3741197 Sanz et al. Jun 1973 A
3961898 Neeley et al. Jun 1976 A
3992158 Przybylowicz et al. Nov 1976 A
4014328 Cluff et al. Mar 1977 A
4042335 Clement Aug 1977 A
4057394 Genshaw Nov 1977 A
4109655 Chacornac Aug 1978 A
4253083 Imamura Feb 1981 A
4254083 Columbus Mar 1981 A
4258001 Pierce et al. Mar 1981 A
4260257 Neeley et al. Apr 1981 A
4289459 Neeley et al. Sep 1981 A
4321397 Nix et al. Mar 1982 A
4350762 DeLuca et al. Sep 1982 A
4394512 Batz Jul 1983 A
4414975 Ryder et al. Nov 1983 A
4416279 Lindner et al. Nov 1983 A
4418037 Katsuyama et al. Nov 1983 A
4422941 Vaughan, Jr. et al. Dec 1983 A
4429700 Thees et al. Feb 1984 A
4627445 Garcia et al. Dec 1986 A
4637403 Garcia et al. Jan 1987 A
4637406 Guinn et al. Jan 1987 A
4653513 Dombrowski Mar 1987 A
4661319 Lape Apr 1987 A
4702261 Cornell et al. Oct 1987 A
4711250 Gilbaugh, Jr. et al. Dec 1987 A
4737458 Batz et al. Apr 1988 A
4767415 Duffy Aug 1988 A
4774192 Terminiello et al. Sep 1988 A
4787398 Garcia et al. Nov 1988 A
4790979 Terminiello et al. Dec 1988 A
4794926 Munsch et al. Jan 1989 A
4815843 Tiefenthaler et al. Mar 1989 A
4829470 Wang May 1989 A
4844095 Chiodo et al. Jul 1989 A
4846785 Cassou et al. Jul 1989 A
4887306 Hwang et al. Dec 1989 A
4920977 Haynes May 1990 A
4929426 Bodai et al. May 1990 A
4930525 Palestrant Jun 1990 A
4935346 Phillips Jun 1990 A
4953552 De Marzo Sep 1990 A
4966646 Zdeblick Oct 1990 A
4983178 Schnell Jan 1991 A
4995402 Smith Feb 1991 A
5029583 Meserol Jul 1991 A
5035704 Lambert et al. Jul 1991 A
5049487 Phillips et al. Sep 1991 A
5050617 Columbus et al. Sep 1991 A
5059394 Phillips et al. Oct 1991 A
5077199 Basagni et al. Dec 1991 A
5094943 Siedel et al. Mar 1992 A
5110724 Hewett May 1992 A
5114350 Hewett May 1992 A
5116759 Klainer et al. May 1992 A
5131404 Neeley et al. Jul 1992 A
5141868 Shanks et al. Aug 1992 A
5145565 Kater et al. Sep 1992 A
5146437 Boucheron Sep 1992 A
5153416 Neeley Oct 1992 A
5164575 Neeley et al. Nov 1992 A
5166498 Neeley Nov 1992 A
5174291 Schoonen et al. Dec 1992 A
5176632 Bernardi Jan 1993 A
5179005 Phillips et al. Jan 1993 A
5183741 Arai et al. Feb 1993 A
5196302 Kidwell Mar 1993 A
5208163 Charlton et al. May 1993 A
5213966 Vuorinen et al. May 1993 A
5217480 Habar et al. Jun 1993 A
5218966 Yamasawa Jun 1993 A
5223219 Subramanian et al. Jun 1993 A
5228972 Osaka et al. Jul 1993 A
5234818 Zimmermann et al. Aug 1993 A
5241969 Carson et al. Sep 1993 A
5251126 Kahn et al. Oct 1993 A
D341848 Bigelow et al. Nov 1993 S
5269800 Davis, Jr. Dec 1993 A
5275159 Griebel Jan 1994 A
5278079 Gubinski et al. Jan 1994 A
5288646 Lundsgaard et al. Feb 1994 A
5299571 Mastrototaro Apr 1994 A
5301686 Newman Apr 1994 A
5302513 Mike et al. Apr 1994 A
5304468 Phillips et al. Apr 1994 A
5306623 Kiser et al. Apr 1994 A
5308767 Terashima May 1994 A
5314441 Cusack et al. May 1994 A
5320607 Ishibashi Jun 1994 A
5354537 Moreno Oct 1994 A
5360595 Bell et al. Nov 1994 A
5368047 Suzuki et al. Nov 1994 A
5383512 Jarvis Jan 1995 A
5390671 Lord et al. Feb 1995 A
5395388 Schraga Mar 1995 A
5399316 Yamada Mar 1995 A
5401110 Neeley Mar 1995 A
5402798 Swierczek et al. Apr 1995 A
5426032 Phillips et al. Jun 1995 A
5441513 Roth Aug 1995 A
5451350 Macho et al. Sep 1995 A
5458140 Eppstein et al. Oct 1995 A
5460777 Kitajima et al. Oct 1995 A
5460968 Yoshida et al. Oct 1995 A
5482473 Lord et al. Jan 1996 A
5506200 Hirschkoff et al. Apr 1996 A
5507288 Böcker et al. Apr 1996 A
5508200 Tiffany et al. Apr 1996 A
5510266 Bonner et al. Apr 1996 A
5514152 Smith May 1996 A
5525518 Lundsgaard et al. Jun 1996 A
5527892 Borsotti et al. Jun 1996 A
5563042 Phillips et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569287 Tezuka et al. Oct 1996 A
5575403 Charlton et al. Nov 1996 A
5577499 Teves Nov 1996 A
5582184 Erickson et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5591139 Lin et al. Jan 1997 A
5593838 Zanzucchi et al. Jan 1997 A
5611809 Marshall et al. Mar 1997 A
5624458 Lipscher Apr 1997 A
5630986 Charlton et al. May 1997 A
5632410 Moulton et al. May 1997 A
5636632 Bommannan et al. Jun 1997 A
5647851 Pokras Jul 1997 A
5658515 Lee et al. Aug 1997 A
5660791 Brenneman et al. Aug 1997 A
5670031 Hintsche et al. Sep 1997 A
5676850 Reed et al. Oct 1997 A
5680858 Hansen et al. Oct 1997 A
5681484 Zanzucchi et al. Oct 1997 A
5682233 Brinda Oct 1997 A
5697901 Eriksson Dec 1997 A
5700695 Yassinzadeh et al. Dec 1997 A
5701181 Boiarski et al. Dec 1997 A
5701910 Powles et al. Dec 1997 A
D389761 Thomas Jan 1998 S
5705018 Hartley Jan 1998 A
5708247 McAleer Jan 1998 A
5708787 Nakano et al. Jan 1998 A
5715417 Gardien et al. Feb 1998 A
5730753 Morita Mar 1998 A
5735273 Kurnik et al. Apr 1998 A
5736103 Pugh Apr 1998 A
5741211 Renirie et al. Apr 1998 A
5746217 Erickson et al. May 1998 A
5746720 Stouder, Jr. May 1998 A
5757666 Schreiber et al. May 1998 A
5759364 Charlton et al. Jun 1998 A
5766066 Ranniger Jun 1998 A
5771890 Tamada Jun 1998 A
5797693 Jaeger Aug 1998 A
5800420 Gross et al. Sep 1998 A
5801057 Smart et al. Sep 1998 A
5807375 Gross et al. Sep 1998 A
5820570 Erickson et al. Oct 1998 A
5827183 Kurnik et al. Oct 1998 A
5840020 Heinonen et al. Nov 1998 A
5841126 Fossum et al. Nov 1998 A
5843692 Phillips et al. Dec 1998 A
5846837 Thym et al. Dec 1998 A
5851215 Mawhirt et al. Dec 1998 A
5854074 Charlton et al. Dec 1998 A
D403975 Douglas et al. Jan 1999 S
5855801 Lin et al. Jan 1999 A
5856195 Charlton et al. Jan 1999 A
5858194 Bell Jan 1999 A
5866281 Guckel et al. Feb 1999 A
5871494 Simons et al. Feb 1999 A
5879310 Sopp et al. Mar 1999 A
5879326 Godshall et al. Mar 1999 A
5879367 Latterell et al. Mar 1999 A
5891053 Sesekura Apr 1999 A
5893870 Talen et al. Apr 1999 A
5885839 Lingane et al. May 1999 A
D411621 Eisenbarth et al. Jun 1999 S
5911711 Pelkey Jun 1999 A
5911737 Lee et al. Jun 1999 A
5912139 Iwata et al. Jun 1999 A
5925021 Castellano et al. Jul 1999 A
5928207 Pisano et al. Jul 1999 A
5930873 Wyser Aug 1999 A
5938679 Freeman et al. Aug 1999 A
5945678 Yanagisawa Aug 1999 A
5951492 Douglas et al. Sep 1999 A
5951493 Douglas et al. Sep 1999 A
5951521 Mastrototaro et al. Sep 1999 A
5954685 Tierney Sep 1999 A
5962215 Douglas et al. Oct 1999 A
5968760 Phillips et al. Oct 1999 A
5968765 Grage et al. Oct 1999 A
5968836 Matzinger et al. Oct 1999 A
5971941 Simons et al. Oct 1999 A
5972294 Smith et al. Oct 1999 A
5986754 Harding Nov 1999 A
5989409 Kurnik et al. Nov 1999 A
5993189 Mueller et al. Nov 1999 A
D417504 Love et al. Dec 1999 S
6001067 Shults et al. Dec 1999 A
6005545 Nishida et al. Dec 1999 A
6010463 Lauks et al. Jan 2000 A
6010519 Mawhirt et al. Jan 2000 A
6014135 Fernandes Jan 2000 A
6014577 Henning et al. Jan 2000 A
6023629 Tamada Feb 2000 A
6027459 Shain et al. Feb 2000 A
6030827 Davis et al. Feb 2000 A
6032059 Henning et al. Feb 2000 A
6036924 Simons et al. Mar 2000 A
6037141 Banes Mar 2000 A
6041253 Kost et al. Mar 2000 A
6045753 Loewy et al. Apr 2000 A
6048352 Douglas et al. Apr 2000 A
6050988 Zuck Apr 2000 A
6056701 Duchon et al. May 2000 A
6056734 Jacobsen et al. May 2000 A
6058321 Swayze et al. May 2000 A
6059815 Lee et al. May 2000 A
6061128 Zweig et al. May 2000 A
6063039 Cunningham et al. May 2000 A
6071251 Cunningham et al. Jun 2000 A
6071294 Simons et al. Jun 2000 A
6077660 Wong et al. Jun 2000 A
6080116 Erickson et al. Jun 2000 A
6083196 Trautman et al. Jul 2000 A
6086544 Hibner et al. Jul 2000 A
6090790 Eriksson Jul 2000 A
6091975 Daddona et al. Jul 2000 A
6093156 Cunningham et al. Jul 2000 A
6097831 Wieck et al. Aug 2000 A
6099484 Douglas et al. Aug 2000 A
6100107 Lei et al. Aug 2000 A
6102933 Lee et al. Aug 2000 A
6103033 Say et al. Aug 2000 A
6103197 Werner Aug 2000 A
6106751 Talbot et al. Aug 2000 A
6118126 Zanzucchi Sep 2000 A
6120676 Heller et al. Sep 2000 A
6123861 Santini, Jr. et al. Sep 2000 A
6126899 Woudenberg et al. Oct 2000 A
6132449 Lum et al. Oct 2000 A
6139562 Mauze et al. Oct 2000 A
6142939 Eppstein et al. Nov 2000 A
6152942 Brenneman et al. Nov 2000 A
6162639 Douglas Dec 2000 A
6172743 Kley et al. Jan 2001 B1
6175752 Say et al. Jan 2001 B1
6176865 Mauze et al. Jan 2001 B1
6183434 Eppstein et al. Feb 2001 B1
6183489 Douglas et al. Feb 2001 B1
6187210 Lebouiz et al. Feb 2001 B1
6192891 Gravel et al. Feb 2001 B1
6193873 Ohara et al. Feb 2001 B1
6200296 Dibiasi et al. Mar 2001 B1
6206841 Cunningham et al. Mar 2001 B1
6214626 Meller et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6228100 Schraga May 2001 B1
6230051 Cormier et al. May 2001 B1
6231531 Lum et al. May 2001 B1
6241862 McAleer et al. Jun 2001 B1
6242207 Douglas et al. Jun 2001 B1
6245215 Douglas et al. Jun 2001 B1
6251083 Yum et al. Jun 2001 B1
6251260 Heller et al. Jun 2001 B1
6254586 Mann et al. Jul 2001 B1
6255061 Mori et al. Jul 2001 B1
6256533 Yuzhakov et al. Jul 2001 B1
6268162 Phillips et al. Jul 2001 B1
6271045 Douglas et al. Aug 2001 B1
6272364 Kurnik Aug 2001 B1
6283926 Cunningham et al. Sep 2001 B1
6289230 Chaiken et al. Sep 2001 B1
6298254 Tamada Oct 2001 B2
6299578 Kurnik et al. Oct 2001 B1
6299757 Feldman et al. Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309351 Kurnik et al. Oct 2001 B1
D450711 Istvan et al. Nov 2001 S
6312612 Sherman et al. Nov 2001 B1
6312812 Sherman et al. Nov 2001 B1
6312888 Wong et al. Nov 2001 B1
6315738 Nishikawa et al. Nov 2001 B1
6322808 Trautman et al. Nov 2001 B1
6329161 Heller et al. Dec 2001 B1
6331266 Powell et al. Dec 2001 B1
6332871 Douglas et al. Dec 2001 B1
6334856 Allen et al. Jan 2002 B1
6350273 Minagawa et al. Feb 2002 B1
6352514 Douglas et al. Mar 2002 B1
6356776 Berner et al. Mar 2002 B1
6358265 Thorne, Jr. et al. Mar 2002 B1
6364890 Lum et al. Apr 2002 B1
6375626 Allen et al. Apr 2002 B1
6375627 Mauze et al. Apr 2002 B1
6379969 Mauze et al. Apr 2002 B1
6391005 Lum et al. May 2002 B1
6391645 Huang et al. May 2002 B1
6402704 McMorrow Jun 2002 B1
6409679 Pyo Jun 2002 B2
6428664 BhulLar et al. Aug 2002 B1
6449608 Morita et al. Sep 2002 B1
6455324 Douglas Sep 2002 B1
6493069 Nagashimada et al. Dec 2002 B1
6500134 Cassone Dec 2002 B1
6520973 McGarry Feb 2003 B1
6530892 Kelly Mar 2003 B1
6537243 Henning et al. Mar 2003 B1
6540675 Aceti et al. Apr 2003 B2
6544475 Douglas et al. Apr 2003 B1
6549796 Sohrab Apr 2003 B2
6555061 Leong et al. Apr 2003 B1
6558624 Lemmon et al. May 2003 B1
6579690 Bonnecaze et al. Jun 2003 B1
6589260 Schmelzeisen-Redeker et al. Jul 2003 B1
6591125 Buse et al. Jul 2003 B1
6602205 Erickson et al. Aug 2003 B1
6612111 Hodges et al. Sep 2003 B1
6616616 Fritz et al. Sep 2003 B2
6626874 Duchamp Sep 2003 B1
6656167 Numao et al. Dec 2003 B2
6679852 Schmelzeisen-Redeker et al. Jan 2004 B1
6706000 Perez et al. Mar 2004 B2
6706049 Moerman Mar 2004 B2
6706159 Moerman et al. Mar 2004 B2
6707554 Miltner et al. Mar 2004 B1
6740800 Cunningham May 2004 B1
6748275 Lattner et al. Jun 2004 B2
6753187 Cizdziel et al. Jun 2004 B2
6766817 da Silva Jul 2004 B2
6793633 Douglas et al. Sep 2004 B2
6830669 Miyazaki et al. Dec 2004 B2
6836678 Tu Dec 2004 B2
6837858 Cunningham et al. Jan 2005 B2
6847451 Pugh Jan 2005 B2
6849052 Uchigaki et al. Feb 2005 B2
6896850 Subramanian et al. May 2005 B2
6918404 Da Silva Jul 2005 B2
6919960 Hansen et al. Jul 2005 B2
6923764 Aceti et al. Aug 2005 B2
6936476 Anderson et al. Aug 2005 B1
D511214 Sasano et al. Nov 2005 S
6988996 Roe et al. Jan 2006 B2
7004928 Aceti et al. Feb 2006 B2
7011630 Desai et al. Mar 2006 B2
7025774 Freeman et al. Apr 2006 B2
D519868 Sasano et al. May 2006 S
7052652 Zanzucchi et al. May 2006 B2
7066586 Da Silva Jun 2006 B2
7066890 Lam et al. Jun 2006 B1
7141058 Briggs et al. Nov 2006 B2
7156809 Quy Jan 2007 B2
7163616 Vreeke et al. Jan 2007 B2
7192061 Martin Mar 2007 B2
D540343 Cummins Apr 2007 S
7223365 Von Der Goltz May 2007 B2
7225008 Ward et al. May 2007 B1
7226461 Boecker et al. Jun 2007 B2
7258673 Racchini et al. Aug 2007 B2
D551243 Young Sep 2007 S
7270970 Anderson et al. Sep 2007 B2
7297151 Boecker et al. Nov 2007 B2
7299081 Mace et al. Nov 2007 B2
7343188 Sohrab Mar 2008 B2
7344507 Briggs et al. Mar 2008 B2
7379167 Mawhirt et al. May 2008 B2
7427377 Zanzucchi et al. Sep 2008 B2
D580068 Shigesada et al. Nov 2008 S
D580558 Shigesada et al. Nov 2008 S
D599373 Kobayashi et al. Sep 2009 S
D601257 Berlinger et al. Sep 2009 S
7585278 Aceti et al. Sep 2009 B2
D601444 Jones et al. Oct 2009 S
D601578 Poulet et al. Oct 2009 S
7682318 Alden et al. Mar 2010 B2
D622393 Gatrall et al. Aug 2010 S
7780631 Lum et al. Aug 2010 B2
7803123 Perez et al. Sep 2010 B2
7850621 Briggs Dec 2010 B2
7879058 Ikeda Feb 2011 B2
7887494 Emery et al. Feb 2011 B2
D642191 Barnett et al. Jul 2011 S
7988644 Freeman et al. Aug 2011 B2
8012103 Escutia et al. Sep 2011 B2
8012104 Escutia et al. Sep 2011 B2
8105849 McDevitt et al. Jan 2012 B2
D654926 Lipman et al. Feb 2012 S
8173439 Petrich et al. May 2012 B2
8184273 Dosmann et al. May 2012 B2
8231832 Zanzucchi et al. Jul 2012 B2
8251920 Vreeke et al. Aug 2012 B2
8298255 Conway et al. Oct 2012 B2
8303518 Aceti et al. Nov 2012 B2
8360993 Escutia et al. Jan 2013 B2
8360994 Escutia et al. Jan 2013 B2
8372015 Escutia et al. Feb 2013 B2
8376959 Deck Feb 2013 B2
8382681 Escutia et al. Feb 2013 B2
8391940 Matzinger et al. Mar 2013 B2
D691174 Lipman et al. Oct 2013 S
8574168 Freeman et al. Nov 2013 B2
8702624 Alden Apr 2014 B2
8795201 Escutia et al. Aug 2014 B2
8801631 Escutia et al. Aug 2014 B2
8919605 Lipman et al. Dec 2014 B2
8969097 Emery et al. Mar 2015 B2
9060723 Escutia et al. Jun 2015 B2
9060727 Saikley et al. Jun 2015 B2
9095292 Zanzucchi et al. Aug 2015 B2
9149215 Werner et al. Oct 2015 B2
9366636 Emery et al. Jun 2016 B2
9380974 Litherland Jul 2016 B2
9603562 Aceti et al. Mar 2017 B2
9636051 Emery et al. May 2017 B2
9782114 Reynolds et al. Oct 2017 B2
9833183 Escutia et al. Dec 2017 B2
9839384 Escutia et al. Dec 2017 B2
9897610 Lipman et al. Feb 2018 B2
20010001034 Douglas May 2001 A1
20010027277 Klitmose Oct 2001 A1
20010027328 Lum et al. Oct 2001 A1
20010053891 Ackley Dec 2001 A1
20020002326 Causey, III et al. Jan 2002 A1
20020002344 Douglas et al. Jan 2002 A1
20020004640 Conn et al. Jan 2002 A1
20020006355 Whitson Jan 2002 A1
20020016568 Lebel et al. Feb 2002 A1
20020020688 Sherman et al. Feb 2002 A1
20020022934 Vogel et al. Feb 2002 A1
20020023852 Mcivor et al. Feb 2002 A1
20020042594 Lum et al. Apr 2002 A1
20020045243 Laska Apr 2002 A1
20020052618 Haar et al. May 2002 A1
20020087056 Aceti et al. Jul 2002 A1
20020136667 Subramanian et al. Sep 2002 A1
20020137998 Smart et al. Sep 2002 A1
20020160520 Orloff et al. Oct 2002 A1
20020168290 Yuzhakov et al. Nov 2002 A1
20020169394 Eppstein et al. Nov 2002 A1
20020169411 Sherman et al. Nov 2002 A1
20020177761 Orloff et al. Nov 2002 A1
20020177764 Sohrab Nov 2002 A1
20020183102 Withers et al. Dec 2002 A1
20020188223 Perez et al. Dec 2002 A1
20020198444 Uchigaki et al. Dec 2002 A1
20030012693 Otillar et al. Jan 2003 A1
20030028087 Yuzhakov et al. Feb 2003 A1
20030028125 Yuzhakov et al. Feb 2003 A1
20030039587 Niermann Feb 2003 A1
20030060730 Perez Mar 2003 A1
20030083685 Freeman et al. May 2003 A1
20030083686 Freeman et al. May 2003 A1
20030105961 Zatloukal et al. Jun 2003 A1
20030116596 Terasawa Jun 2003 A1
20030135166 Gonnelli Jul 2003 A1
20030135333 Aceti Jul 2003 A1
20030143746 Sage Jul 2003 A1
20030153844 Smith et al. Aug 2003 A1
20030153900 Aceti et al. Aug 2003 A1
20030175987 Verdonk et al. Sep 2003 A1
20030206302 Pugh Nov 2003 A1
20030207441 Eyster et al. Nov 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030211619 Olson et al. Nov 2003 A1
20030212344 Yuzhakov et al. Nov 2003 A1
20030212345 McAllister et al. Nov 2003 A1
20030212347 Sohrab Nov 2003 A1
20030216628 Bortz et al. Nov 2003 A1
20040010207 Flaherty et al. Jan 2004 A1
20040030353 Schmelzeisen-Redeker et al. Feb 2004 A1
20040039303 Wurster et al. Feb 2004 A1
20040049219 Briggs et al. Mar 2004 A1
20040059256 Perez Mar 2004 A1
20040072357 Stiene et al. Apr 2004 A1
20040073140 Douglas Apr 2004 A1
20040092842 Boecker et al. May 2004 A1
20040092995 Boecker et al. May 2004 A1
20040094432 Neel et al. May 2004 A1
20040096959 Stiene et al. May 2004 A1
20040097796 Berman et al. May 2004 A1
20040098009 Boecker et al. May 2004 A1
20040102803 Boecker et al. May 2004 A1
20040122339 Roe et al. Jun 2004 A1
20040132167 Rule et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040155084 Brown Aug 2004 A1
20040178218 Schomakers et al. Sep 2004 A1
20040186394 Roe et al. Sep 2004 A1
20040191119 Zanzucchi et al. Sep 2004 A1
20040202576 Aceti et al. Oct 2004 A1
20040230216 Levaughn et al. Nov 2004 A1
20040236251 Roe et al. Nov 2004 A1
20040238675 Banaszkiewicz et al. Dec 2004 A1
20040242982 Sakata et al. Dec 2004 A1
20040249253 Racchini et al. Dec 2004 A1
20040259180 Burke et al. Dec 2004 A1
20050004494 Perez et al. Jan 2005 A1
20050010134 Douglas et al. Jan 2005 A1
20050015020 LeVaughn et al. Jan 2005 A1
20050027182 Siddiqui et al. Feb 2005 A1
20050038680 McMahon Feb 2005 A1
20050070819 Poux et al. Mar 2005 A1
20050096686 Allen May 2005 A1
20050106713 Phan et al. May 2005 A1
20050109386 Marshall May 2005 A1
20050159678 Taniike et al. Jul 2005 A1
20050187532 Thurau et al. Aug 2005 A1
20050192492 Cho et al. Sep 2005 A1
20050202567 Zanzucchi et al. Sep 2005 A1
20050202733 Yoshimura et al. Sep 2005 A1
20050209518 Sage, Jr. et al. Sep 2005 A1
20050215872 Berner et al. Sep 2005 A1
20050215923 Wiegel Sep 2005 A1
20050234494 Conway Oct 2005 A1
20050245844 Mace et al. Nov 2005 A1
20050255001 Padmaabhan et al. Nov 2005 A1
20050277972 Wong et al. Dec 2005 A1
20060008389 Sacherer et al. Jan 2006 A1
20060036134 Tarassenko et al. Feb 2006 A1
20060052724 Roe Mar 2006 A1
20060064035 Wang et al. Mar 2006 A1
20060094985 Aceti et al. May 2006 A1
20060117616 Jones et al. Jun 2006 A1
20060135873 Karo et al. Jun 2006 A1
20060155317 List Jul 2006 A1
20060178600 Kennedy et al. Aug 2006 A1
20060189908 Kennedy Aug 2006 A1
20060204399 Freeman et al. Sep 2006 A1
20060229533 Hoenes et al. Oct 2006 A1
20060241517 Fowler et al. Oct 2006 A1
20060257993 Mcdevitt et al. Nov 2006 A1
20060259102 Slatkine Nov 2006 A1
20060281187 Emery et al. Dec 2006 A1
20070016104 Jansen et al. Jan 2007 A1
20070017824 Rippeth et al. Jan 2007 A1
20070078313 Emery et al. Apr 2007 A1
20070078358 Escutia et al. Apr 2007 A1
20070083131 Escutia et al. Apr 2007 A1
20070112281 Olson May 2007 A1
20070179404 Escutia et al. Aug 2007 A1
20070179405 Litherland et al. Aug 2007 A1
20070253531 Okuzawa et al. Nov 2007 A1
20070255181 Alvarez-icaza et al. Nov 2007 A1
20070255302 Koeppel et al. Nov 2007 A1
20080046831 Imai et al. Feb 2008 A1
20080077048 Escutia et al. Mar 2008 A1
20080139910 Mastrototaro Jun 2008 A1
20080194934 Ray et al. Aug 2008 A1
20080269625 Halperin et al. Oct 2008 A1
20090054810 Zanzucchi et al. Feb 2009 A1
20090156923 Power et al. Jun 2009 A1
20090292489 Burke et al. Nov 2009 A1
20090301899 Hodges et al. Dec 2009 A1
20100010374 Escutia et al. Jan 2010 A1
20100021947 Emery et al. Jan 2010 A1
20100021948 Lipman et al. Jan 2010 A1
20100095229 Dixon et al. Apr 2010 A1
20100174211 Frey et al. Jul 2010 A1
20100185120 Sacherer et al. Jul 2010 A1
20100217155 Poux et al. Aug 2010 A1
20100331650 Batman et al. Dec 2010 A1
20110098599 Emery et al. Apr 2011 A1
20110105872 Chickering, III et al. May 2011 A1
20110201909 Emery et al. Aug 2011 A1
20110294152 Lipman et al. Dec 2011 A1
20120166090 Lipman et al. Jun 2012 A1
20130110516 Abulhaj et al. May 2013 A1
20130158430 Aceti et al. Jun 2013 A1
20130158432 Escutia et al. Jun 2013 A1
20130172698 Reynolds et al. Jul 2013 A1
20130274568 Escutia et al. Oct 2013 A1
20130274579 Richter et al. Oct 2013 A1
20140316301 Escutia et al. Oct 2014 A1
20140376762 Lipman et al. Dec 2014 A1
20150037898 Baldus et al. Feb 2015 A1
20150153351 Lipman et al. Jun 2015 A1
20150212006 Emery et al. Jul 2015 A1
20160038066 Escutia et al. Feb 2016 A1
20170095188 Emery et al. Apr 2017 A1
20170319121 Aceti et al. Nov 2017 A1
20170354355 Emery et al. Dec 2017 A1
20180008178 Escutia et al. Jan 2018 A1
20180214059 Escutia et al. Aug 2018 A1
20180296143 Anderson et al. Oct 2018 A1
20180310865 Escutia et al. Nov 2018 A1
Foreign Referenced Citations (204)
Number Date Country
2 201 530 Sep 1997 CA
2 513 465 Aug 2004 CA
197 05 091 Feb 1999 DE
199 22 413 Nov 2000 DE
103 02-501 Aug 2004 DE
0 103 426 Mar 1984 EP
0 256 806 Feb 1988 EP
0 396-016 Nov 1990 EP
0 397 424 Nov 1990 EP
0 255-338 Feb 1998 EP
0 849 584 Jun 1998 EP
1 266-607 Dec 2002 EP
1 369 688 Oct 2003 EP
1 360-934 Nov 2003 EP
1 486-766 Dec 2004 EP
1 529-489 May 2005 EP
1 769-735 Apr 2007 EP
63-305841 Dec 1988 JP
3-63570 Mar 1991 JP
03093189 Apr 1991 JP
7-67861 Mar 1995 JP
7-213925 Aug 1995 JP
9-168530 Jun 1997 JP
9-266889 Oct 1997 JP
9-294737 Nov 1997 JP
9-313465 Dec 1997 JP
10-024028 Jan 1998 JP
10-505258 May 1998 JP
10-508518 Aug 1998 JP
10-318970 Dec 1998 JP
11-056822 Mar 1999 JP
11-281779 Oct 1999 JP
2000-116629 Apr 2000 JP
2000-126161 May 2000 JP
2000-168754 Jun 2000 JP
2000-254111 Sep 2000 JP
2001-159618 Jun 2001 JP
2001-515203 Sep 2001 JP
2001-305096 Oct 2001 JP
2001-330581 Nov 2001 JP
2002-502045 Jan 2002 JP
2002-085384 Mar 2002 JP
2002-514453 May 2002 JP
2002-168862 Jun 2002 JP
2003-507719 Feb 2003 JP
2003-108679 Apr 2003 JP
2003-180417 Jul 2003 JP
2004-000598 Jan 2004 JP
2004-500948 Jan 2004 JP
2004-117339 Apr 2004 JP
2004-202256 Jul 2004 JP
2004-209266 Jul 2004 JP
2004-519302 Jul 2004 JP
2004-522500 Jul 2004 JP
2004-528936 Sep 2004 JP
2005-009238 Feb 2005 JP
2005-503538 Feb 2005 JP
2005-087613 Apr 2005 JP
3638958 Apr 2005 JP
2005-525149 Aug 2005 JP
2005-237938 Sep 2005 JP
2005-525846 Sep 2005 JP
2005-527254 Sep 2005 JP
2006-506185 Feb 2006 JP
2006-512969 Apr 2006 JP
2006-512974 Apr 2006 JP
2006-516723 Jul 2006 JP
2006-521555 Sep 2006 JP
2006-527013 Nov 2006 JP
2007-014381 Jan 2007 JP
2007-054407 Mar 2007 JP
2007-067698 Mar 2007 JP
2007-136198 Jun 2007 JP
2007-521031 Aug 2007 JP
2007-527287 Sep 2007 JP
2007-311196 Nov 2007 JP
2007-537804 Dec 2007 JP
2008-125813 Jun 2008 JP
2008-212324 Sep 2008 JP
2009-509645 Mar 2009 JP
2009-509667 Mar 2009 JP
WO-8605966 Oct 1986 WO
WO-8800812 Feb 1988 WO
WO-8807666 Oct 1988 WO
WO-9114212 Sep 1991 WO
WO-9413203 Jun 1994 WO
WO-9510223 Apr 1995 WO
WO-9510223 Apr 1995 WO
WO-9604857 Feb 1996 WO
WO-9607907 Mar 1996 WO
WO-9614026 May 1996 WO
WO-9625088 Aug 1996 WO
WO-9704707 Feb 1997 WO
WO-9715227 May 1997 WO
WO-9729847 Aug 1997 WO
WO-9730344 Aug 1997 WO
WO-9741421 Nov 1997 WO
WO-9742885 Nov 1997 WO
WO-9742888 Nov 1997 WO
WO-9743962 Nov 1997 WO
WO-9800193 Jan 1998 WO
WO-9831275 Jul 1998 WO
WO-9835225 Aug 1998 WO
WO-9912008 Mar 1999 WO
WO-9923492 May 1999 WO
WO-9944508 Sep 1999 WO
WO-9956954 Nov 1999 WO
WO-9958051 Nov 1999 WO
WO-0009184 Feb 2000 WO
WO-0013573 Mar 2000 WO
WO-0014269 Mar 2000 WO
WO-0014535 Mar 2000 WO
WO-0018449 Apr 2000 WO
WO-0018449 Apr 2000 WO
WO-0019185 Apr 2000 WO
WO-0036400 Jun 2000 WO
WO-0042422 Jul 2000 WO
WO-0074763 Dec 2000 WO
WO-0074763 Dec 2000 WO
WO-0078208 Dec 2000 WO
WO-0113795 Mar 2001 WO
WO-0116575 Mar 2001 WO
WO-0152727 Jul 2001 WO
WO-0164105 Sep 2001 WO
WO-0164105 Sep 2001 WO
WO-0172220 Oct 2001 WO
WO-0180728 Nov 2001 WO
WO-0185233 Nov 2001 WO
WO-0185233 Nov 2001 WO
WO-0191634 Dec 2001 WO
WO-0191634 Dec 2001 WO
WO-0200101 Jan 2002 WO
WO-0200101 Jan 2002 WO
WO-0249507 Jun 2002 WO
WO-0249509 Jun 2002 WO
WO-0249509 Jun 2002 WO
WO-02078533 Oct 2002 WO
WO-02078533 Oct 2002 WO
WO-02082052 Oct 2002 WO
WO-02082052 Oct 2002 WO
WO-02093144 Nov 2002 WO
WO-02100251 Dec 2002 WO
WO-02100251 Dec 2002 WO
WO-02101359 Dec 2002 WO
WO-02101359 Dec 2002 WO
WO-2003030984 Apr 2003 WO
WO-2003066128 Aug 2003 WO
WO-2003066128 Aug 2003 WO
WO-2003070099 Aug 2003 WO
WO-2003071940 Sep 2003 WO
WO-2003071940 Sep 2003 WO
WO-2004045375 Jun 2004 WO
WO-2004045375 Jun 2004 WO
WO-2004062499 Jul 2004 WO
WO-2004062500 Jul 2004 WO
WO-2004062500 Jul 2004 WO
WO-2004064636 Aug 2004 WO
WO-2004085995 Oct 2004 WO
WO-2004085995 Oct 2004 WO
WO-2004091693 Oct 2004 WO
WO-2004091693 Oct 2004 WO
WO-2004105827 Dec 2004 WO
WO-2004105827 Dec 2004 WO
WO-2005006939 Jan 2005 WO
WO-2005006939 Jan 2005 WO
WO-2005009238 Feb 2005 WO
WO-2005013824 Feb 2005 WO
WO2005016125 Feb 2005 WO
WO-2005018709 Mar 2005 WO
WO-2005018709 Mar 2005 WO
WO-2005018710 Mar 2005 WO
WO-2005018710 Mar 2005 WO
WO-2005084543 Sep 2005 WO
WO-2005084546 Sep 2005 WO
WO-2005084546 Sep 2005 WO
WO-2005085995 Sep 2005 WO
WO-2005090969 Sep 2005 WO
WO-2005112763 Dec 2005 WO
WO-2006138226 Dec 2006 WO
WO-2006138226 Dec 2006 WO
WO-2007041062 Apr 2007 WO
WO-2007041062 Apr 2007 WO
WO-2007041063 Apr 2007 WO
WO-2007041063 Apr 2007 WO
WO-2007041244 Apr 2007 WO
WO-2007041244 Apr 2007 WO
WO-2007041287 Apr 2007 WO
WO-2007041287 Apr 2007 WO
WO-2007041355 Apr 2007 WO
WO-2007041355 Apr 2007 WO
WO-2007108519 Sep 2007 WO
WO-2007112034 Oct 2007 WO
WO-2007112034 Oct 2007 WO
WO-2008027319 Mar 2008 WO
WO-2008027319 Mar 2008 WO
WO-2008062648 May 2008 WO
WO-2009145920 Dec 2009 WO
WO-2009148624 Dec 2009 WO
WO-2009148626 Dec 2009 WO
WO-2011065981 Jun 2011 WO
WO-2011162823 Dec 2011 WO
WO-2013020103 Feb 2013 WO
WO-2014205412 Dec 2014 WO
WO-2018191700 Oct 2018 WO
Non-Patent Literature Citations (165)
Entry
ADA Consensus Development Panel. (Jan.-Feb. 1987). “Consensus Statement on Self-Monitoring of Blood Glucose,” Diabetes Care 10(1):95-99.
ADA (Jan. 1994). “Self-Monitoring of Blood Glucose,” Consensus Statement Diabetes Care 17(1):81-86.
Anonymous. (Sep. 30, 1993). “The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus.” The New England Journal of Medicine 329(14):977-986.
Anonymous. (Jun. 23, 1998). “Taking the “Ouch” Out of Needles: Arrays of “Microneedles” Offer New Techniques for Drug Delivery,” Science Daily, located at <http:www.sciencedaily.com/releases/1998/06/980623045850.htm>, last visited Jan. 14, 2014, 3 pages.
Beregszászi, M. et al. (Jul. 1997). “Nocturnal Hypoglycemia in Children and Adolescents with Insulin-Dependent Diabetes Mellitus: Prevalence and Risk Factors,” J. Pediatrics 131(1 Pt. 1):27-33.
Brazzle, J. et al. Active Microneedles with Integrated Functionality, Solid-State Sensor and Actuator Workshop, Hilton Head Island, South Carolina, Jun. 4-8, 2000, Technical Digest, 199-202.
Burge, M.R., (Aug. 2001). “Lack of Compliance with Home Blood Glucose Monitoring Predicts Hospitalization in Diabetes”, Diabetes Care 24(8): 1502-1503.
Chase, H.P. et al. (Feb. 2001). “Continuous Subcutaneous Glucose Monitoring in Children with Type 1 Diabetes,” Pediatrics 107(2):222-226.
Clarke, W.L. et al. (Sep.-Oct. 1987). “Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose,” Diabetes Care 10(5):622-628.
Clarke, W.L. et al. (Sep.-Oct. 1981). “Evaluation of a New Reflectance Photometer for Use in Home Blood Glucose Monitoring,” Diabetes Care, 4(5):547-550.
Collison, M.E. et al. (Sep. 1999). “Analytical Characterization of Electrochemical Biosensor Test Strips for Measurement of Glucose in Low-Volume Interstitial Fluid Samples,” Clinical Chemistry 45(9):1665-1673.
Coster, S. et al. (2000). “Monitoring Blood Glucose Control in Diabetes Mellitus: A Systematic Review.” Health Technology Assessment 4(12):1-93.
Cox, D.J. et al. (Jun. 1997). “Understanding Error Grid Analysis,” Diabetes Care 20(6):911-912.
D'Arrigo, T.D. (Mar. 2000). “GlucoWatch Monitor Poised for Approval,” Diabetes Forecast, 53(3):43-44.
Extended European Search Report dated Apr. 29, 2013 for EP Patent Application No. 12192620.8, filed on Nov. 14, 2012, 8 pages.
Extended European Search Report dated Feb. 2, 2016 for European Patent Application No. 15187274.4, filed on Sep. 29, 2015, 5 pages.
Extended European Search Report dated Jan. 22, 2013, for EP Application No. 12182900.6, filed on Sep. 29, 2006, 6 pages.
Extended European Search Report dated Feb. 22, 2012, for EP Application No. EP 10 18 1155, filed Sep. 28, 2010, six pages.
Extended European Search Report dated Jul. 18, 2013, for EP Application No. 06 772 943.4, filed on Jun. 13, 2006, 7 pages.
Extended European Search Report dated Nov. 8, 2016, for EP Application No. 16 167 087.2, filed on Aug. 3, 2012, 6 pages.
Extended European Search Report dated Apr. 19, 2011, for EP Application No. 10 18 0848.3 filed Sep. 28, 2010, 5 pages.
Feldman, B. et al. (2000). “FreeStyle™: A Small-Volume Electrochemical Glucose Sensor for Home Blood Glucose Testing,” Diabetes Technology and Therapeutics, 2(2):221-229.
Final Office Action dated Jul. 9, 2008, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 19 pages.
Final Office Action dated Nov. 23, 2009, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 20 pages.
Final Office Action dated Jan. 21, 2011, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 7 pages.
Final Office Action dated Aug. 15, 2013 for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 12 pages.
Final Office Action dated Apr. 13, 2016, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 31 pages.
Final Office Action dated Aug. 28, 2014, for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 11 pages.
Final Office Action dated Dec. 26, 2014, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 9 pages.
Final Office Action dated Jan. 22, 2014, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 8 pages.
Final Office Action dated Jun. 30, 2010, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 11 pages.
Final Office Action dated May 30, 2007, for U.S. Appl. No. 11/125,107, filed May 10, 2005, 11 pages.
Final Office Action dated Nov. 1, 2010, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 9 pages.
Final Office Action dated Nov. 21, 2011, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 8 pages.
Final Office Action dated Jun. 11, 2010, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 16 pages.
Final Office Action dated Mar. 10, 2015, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 24 pages.
Final Office Action dated Oct. 15, 2009, for U.S. Appl. No. 11/239,122, filed Sep. 30, 2005, 13 pages.
Final Office Action dated Aug. 14, 2012, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages.
Final Office Action dated Sep. 23, 2013, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages.
Final Office Action dated Mar. 5, 2009, for U.S. Appl. No. 11/239,123, filed Sep. 30, 2005, 17 pages.
Final Office Action dated Mar. 3, 2011, for U.S. Appl. No. 11/239,123, filed Sep. 30, 2005, 25 pages.
Final Office Action dated Jan. 6, 2016, for U.S. Appl. No. 14/321,631, filed Jul. 1, 2014, 9 pages.
Hemmerich, K.J. et al. (Apr. 1995).“Guide to Engineering Thermoplastics,” Medical Devices and Diagnostic Industry pp. 39-59.
International Search Report dated Aug. 16, 2007 for PCT Application No. PCT/US2006/038163, filed on Sep. 29, 2006, 1 page.
International Search Report dated Dec. 3, 2004, for PCT Application No. PCT/US2004/08798, filed on Mar. 24, 2004, 3 pages.
International Search Report dated Aug. 17, 2007 for PCT/US2006/38049, filed on Sep. 29, 2006, 1 page.
International Search Report dated Oct. 19, 2012 for PCT Application No. PCT/US2012/049629, filed on Aug. 3, 2012, 4 pages.
International Search Report dated Jan. 16, 2008, for PCT Application No. PCT/US2006/022840, filed on Jun. 13, 2006, 1 page.
International Search Report dated Aug. 20, 2007 for PCT Application No. PCT/US2006/37245, filed on Sep. 26, 2006, 1 page.
International Search Report dated May 2, 2007, for PCT Application No. PCT/US2006/37923, filed on Sep. 9, 2006, 1 page.
INTEG. (2000). “LifeGuide™ Glucose Meter. No Lancets. No Blood,” located at <http://www.integonline.com>, last visited May 1, 2000, 10 pages.
Ishii H. et al., (Aug. 2001). “Seasonal Variation of Glycemic Control in Type 2 Diabetic Patients”, Diabetes Care 24(8):1503.
Johnson, R.N. et al. (Jan. 1998). “Accuracy of Devices Used for Self-Monitoring of Blood Glucose,” Annals of Clinical Biochemistry 35(1):68-74.
Johnson, R.N. et al. (Jan. 1999). “Analytical Error of Home Glucose Monitors: A Comparison of 18 Systems,” Annals of Clinical Biochemistry 36(1):72-79.
Johnson, R.N. et al. (2001). “Error Detection and Measurement in Glucose Monitors,” Clinica Chimica Acta 307:61-67.
KUMETRIX, Inc. (Dec. 1999). “Painless Blood Glucose Monitoring, Courtesy of the Mosquito,” Start-Up pp. 27-28.
Lee, S-C. (Jun. 1999). “Light Scattering by Closely Spaced Parallel Cylinders Embedded in a Finite Dielectric Slab,” Journal of the Optical Society of America A 16(6):1350-1361.
McGarraugh, G. et al. (2001). “Physiological Influences on Off-Finger Glucose Testing,” Diabetes Technology & Therapeutics 3(3):367-376.
McNichols, R.J. et al. (Jan. 2000). “Optical Glucose Sensing in Biological Fluids: An Overview,” Journal of Biomedical Optics, 5(1):5-16.
Mahler, R.J. et al. (1999). “Clinical Review 102, Type 2 Diabetes Mellitus: Update on Diagnosis Pathophysiology, and Treatment,” The Journal of Clinical Endocrinology and Metabolism 84(4):1165-1171.
Massey V. et al. (Aug. 1960). “Studies on the Reaction Mechanism of Lipoyl Dehydrogenase” Biochim. Biophys. Acta 48: 33-47.
Medline Plus. (Jun. 17, 2008). , Medical Encyclopedia, Monitor Blood Glucose-Series: Part 1-4, 6 pages.
Neeley, W.E. et al. (1981). “An Instrument for Digital Matrix Photometry,” Clinical Chemistry 27(10):1665-1668.
Neeley, W.E. (1983). “Reflectance Digital Matrix Photometry,” Clinical Chemistry 29(6):1038-1041.
Neeley, W.E. (1983). “Multilayer Film Analysis for Glucose in 1-μL Samples of Plasma,” Clinical Chemistry 29(12):2103-2105.
Neeley, W.E. (1988). “A Reflectance Photometer with a Square Photodiode Array Detector for Use on Multilayer Dry-Film Slides,” Clinical Chemistry 34(11):2367-2370.
Non-Final Office Action dated Apr. 10, 2014, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages.
Non-Final Office Action dated May 29, 2015, for U.S. Appl. No. 14/614,177, filed Feb. 4, 2015, 13 pages.
Non Final Office Action dated Aug. 5, 2014, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 8 pages.
Non-Final Office Action dated Dec. 12, 2007, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 13 pages.
Non-Final Office Action dated Apr. 28, 2009, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 21 pages.
Non-Final Office Action dated Jun. 4, 2010, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 23 pages.
Non-Final Office Action dated Mar. 23, 2012, for U.S. Appl. No. 13/197,592, filed Aug. 3, 2011, 7 pages.
Non-Final Office Action dated Mar. 23, 2012, for U.S. Appl. No. 13/197,603, filed Aug. 3, 2011, 6 pages.
Non-Final Office Action dated Nov. 26, 2012 for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 9 pages.
Non Final Office Action dated Apr. 8, 2015, for U.S. Appl. No. 13/566,886, filed Aug. 3, 2012, 11 pages.
Non-Final Office Action dated Mar. 19, 2009, for U.S. Appl. No. 11/239,122, filed Sep. 30, 2005, 15 pages.
Non-Final Office Action dated Sep. 1, 2010, for U.S. Appl. No. 11/239,122, filed Sep. 30, 2005, 15 pages.
Non Final Office Action dated Apr. 12, 2011, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 7 pages.
Non-Final Office Action dated Sep. 13, 2011, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 14 pages.
Non-Final Office Action dated Feb. 28, 2013, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 12 pages.
Non Final Office Action dated Dec. 5, 2014, for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 7 pages.
Non Final Office Action dated Jan. 12, 2009, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 9 pages.
Non Final Office Action dated Jan. 21, 2011, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 9 pages.
Non Final Office Action dated Jul. 13, 2010, for U.S. Appl. No. 12/222,724, filed Aug. 14, 2008, 11 pages.
Non Final Office Action dated Jul. 31, 2015, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 16 pages.
Non Final Office Action dated Mar. 21, 2014, for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 12 pages.
Non Final Office Action dated Mar. 25, 2011, for U.S. Appl. No. 12/222,724, filed Aug. 14, 2008, 13 pages.
Non Final Office Action dated Mar. 5, 2010, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 8 pages.
Non Final Office Action dated May 14, 2008, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 9 pages.
Non Final Office Action dated May 16, 2013, for U.S. Appl. No. 13/669,366, filed Nov. 5, 2012, 8 pages.
Non Final Office Action dated May 5, 2005, for U.S. Appl. No. 10/131,268, filed Apr. 23, 2002, 8 pages.
Non Final Office Action dated Nov. 2, 2006, for U.S. Appl. No. 11/125,107, filed May 10, 2005, 10 pages.
Non Final Office Action dated Oct. 14, 2009, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 10 pages.
Non Final Office Action dated Oct. 3, 2008, for U.S. Appl. No. 10/722,074, filed Nov. 24, 2003, 10 pages.
Non-Final Office Action dated Dec. 17, 2015, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 6 pages.
Non Final Office Action dated Dec. 2, 2004, for U.S. Appl. No. 10/347,620, filed Jan. 22, 2003, 8 pages.
Non-Final Office Action dated Jan. 27, 2009, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 17 pages.
Non-Final Office Action dated Jan. 6, 2014, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 12 pages.
Non-Final Office Action dated Jun. 21, 2013, for U.S. Appl. No. 13/752,261, filed Jan. 28, 2013, 12 pages.
Non-Final Office Action dated Jun. 6, 2008, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 17 pages.
Non-Final Office Action dated Oct. 9, 2014, for U.S. Appl. No. 14/446,262, filed Jul. 29, 2014, 15 pages.
Non Final Office Action dated Sep. 29, 2004, for U.S. Appl. No. 10/394,230, filed Mar. 24, 2003, 10 pages.
Non-Final Office Action dated Nov. 1, 2007, for U.S. Appl. No. 11/239,123, filed Sep. 30, 2005, 15 pages.
Non-Final Office Action dated Apr. 15, 2010, for U.S. Appl. No. 11/239,123, filed Sep. 30, 2005, 19 pages.
Non-Final Office Action dated Sep. 19, 2013, for U.S. Appl. No. 11/239,123, filed Sep. 30, 2005, 24 pages.
Non-Final Office Action dated Aug. 8, 2014, for U.S. Appl. No. 14/321,631, filed Jul. 1, 2014, 11 pages.
Notice of Allowance dated Apr. 3, 2014, for U.S. Appl. No. 11/239,123, filed Sep. 30, 2005, 6 pages.
Notice of Allowance dated Apr. 18, 2012, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 8 pages.
Notice of Allowance dated Apr. 19, 2010, for U.S. Appl. No. 29/338,117, filed Jun. 4, 2009, 4 pages.
Notice of Allowance dated Aug. 3, 2012, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 5 pages.
Notice of Allowance dated Jan. 14, 2010, for U.S. Appl. No. 29/338,117, filed Jun. 4, 2009, 4 pages.
Notice of Allowance dated Jun. 29, 2012, for U.S. Appl. No. 11/311,667, filed Dec. 20, 2005, 5 pages.
Notice of Allowance dated Mar. 14, 2012, for U.S. Appl. No. 12/222,724, filed Aug. 14, 2008, 7 pages.
Notice of Allowance dated Mar. 31, 2005, for U.S. Appl. No. 10/394,230, filed Mar. 24, 2003, 10 pages.
Notice of Allowance dated May 15, 2008, for U.S. Appl. No. 11/125,107, filed May 10, 2005, 7 pages.
Notice of Allowance dated May 18, 2009, for U.S. Appl. No. 29/300,934, filed May 30, 2008, 4 pages.
Notice of Allowance dated Nov. 23, 2011, for U.S. Appl. No. 12/222,724, filed Aug. 14, 2008, 7 pages.
Notice of Allowance dated Nov. 27, 2012, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 5 pages.
Notice of Allowance dated Nov. 29, 2005, for U.S. Appl. No. 10/131,268, filed Apr. 23, 2002, 6 pages.
Notice of Allowance dated Oct. 12, 2011, for U.S. Appl. No. 11/529,612, filed Sep. 29, 2006, 8 pages.
Notice of Allowance dated Feb. 23, 2015, for U.S. Appl. No. 14/446,262, filed Jul. 29, 2014, 8 pages.
Notice of Allowance dated Feb. 5, 2014, for U.S. Appl. No. 13/752,261, filed Jan. 28, 2013, 9 pages.
Notice of Allowance dated Jun. 15, 2009, for U.S. Appl. No. 10/722,074, filed Nov. 24, 2003, 6 pages.
Notice of Allowance dated Mar. 2, 2016, for U.S. Appl. No. 11/529,614, filed Sep. 29, 2006, 12 pages.
Notice of Allowance dated Mar. 28, 2005, for U.S. Appl. No. 10/347,620, filed Jan. 22, 2003, 6 pages.
Notice of Allowance dated Sep. 18, 2014, for U.S. Appl. No. 13/037,089, filed Feb. 28, 2011, 9 pages.
Notice of Allowance dated Feb. 16, 2016, for U.S. Appl. No. 14/614,177, filed Feb. 4, 2015, 7 pages.
Notice of Allowance dated May 3, 2011, for U.S. Appl. No. 11/529,613, filed Sep. 29, 2006, 12 pages.
Notice of Allowance dated Mar. 27, 2015, for U.S. Appl. No. 13/562,129, filed Jul. 30, 2012, 7 pages.
Notice of Allowance dated May 28, 2009, for U.S. Appl. No. 29/300,933, filed May 30, 2008, 7 pages.
Otto, E. et al. (2000). “An Intelligent Diabetes Software Prototype: Predicting Blood Glucose Levels and Recommending Regimen Changes,” Diabetes Technology and Therapeutics 2(4):569-576.
Pfohl, M. et al. (2000). “Spot Glucose Measurement in Epidermal Interstitial Fluid—An Alternative to Capillary Blood Glucose Estimation,” Experimental and Clinical Endocrinology & Diabetes 108(1):1-4.
Princen, H.M. (May 1969). “Capillary Phenomena in Assemblies of Parallel Cylinders, I. Capillary Rise Between Two Cylinders,” Journal of Colloid and Interface Science 30(1):69-75.
Princen, H.M. (Jul. 1969). “Capillary Phenomena in Assemblies of Parallel Cylinders, II. Capillary Rise in Systems with More Than Two Cylinders,” Journal of Colloid and Interface Science 30(3):359-371.
Rebrin, K. et al. (Sep. 1999). “Subcutaneous Glucose Predicts Plasma Glucose Independent of Insulin: Implications for Continuous Monitoring,” American Journal of Physiology 277(3):E561-E571.
Rosen, S. (1999). “Road to New-Age Glucose Monitoring Still Rocky,” Diagnostic Insight, pp. 4-5, 12-13, 16.
Smart, W.H. et al. (2000). “The Use of Silicon Microfabrication Technology in Painless Glucose Monitoring, ”Diabetes Technology & Therapeutics 2(4):549-559.
Spielman, A. et al. (2001). Mosquito: A Natural History of Our Most Persistent and Deadly Foe, First Edition, Hyperion, New York, NY, 3 pages. (Table of Contents Only).
Sonntag, O. (1993). Ektachem. Dry Chemistry, Analysis With Carrier-Bound Reagents, Elsevier Science Publishers, 57 pages.
Straub F.B. (Mar. 1939). “Isolation and Properties of a flavoprotien from Heart Muscle Tissue”, Biochemical Journal 33: 787-792.
Svedman, C. et al. (Apr. 1999). “Skin Mini-Erosion Technique for Monitoring Metabolites in Interstitial Fluid: Its Feasibility Demonstrated by OGTT Results in Diabetic and Non-Diabetic Subjects,” Scand. J. Clin. Lab. Invest. 59(2):115-123.
Tietz, N. W. (1986). Textbook of Clinical Chemistry, W.B. Saunders Company, pp. 1533 and 1556.
Trinder, P. (1969). “Determination of Glucose in Blood Using Glucose Oxidase with an Alternate Oxygen Acceptor,” Annals of Clinical Biochemistry 6:24-28.
U.S. Precision Lens, Inc. (1983).The Handbook of Plastic Optics.
Wikipedia (2016). “Capillary action,” 7 pages.
Written Opinion dated May 2, 2007, for PCT Application No. PCT/US2006/37923, filed on Sep. 9, 2006, 5 pages.
Written Opinion dated Aug. 16, 2007 for PCT Application No. PCT/US2006/038163, filed on Sep. 29, 2006, 4 pages.
Written Opinion dated Dec. 3, 2004, for PCT Application No. PCT/US2004/08798, filed on Mar. 24, 2004, 4 pages.
Written Opinion dated Aug. 17, 2007 for PCT/US2006/38049, filed on Sep. 29, 2006, 6 pages.
Written Opinion dated Oct. 19, 2012 for PCT Application No. PCT/US2012/049629, filed on Aug. 3, 2012, 7 pages.
Written Opinion of the International Searching Authority dated Jan. 16, 2008, for PCT Application No. PCT/US2006/022840, filed on Jun. 13, 2006, 3 pages.
Written Opinion dated Aug. 20, 2007 for PCT Application No. PCT/US2006/37245, filed on Sep. 26, 2006, 7 pages.
Yum, S. I. et al. (Nov. 1, 1999). “Capillary Blood Sampling for Self-Monitoring of Blood Glucose,” Diabetes Technology & Therapeutics, 1(1):29-37.
Non-Final Office Action dated Mar. 21, 2017, for U.S. Appl. No. 15/177,041, filed Jun. 8, 2016, 11 pages.
Extended European search report dated Apr. 12, 2017, from the European Patent Office for Application No. 16200931.0, filed Sep. 26, 2006, 9 pages.
Office Action dated May 15, 2017, for U.S. Appl. No. 14/743,867, filed Jun. 18, 2015, 7 pages.
Extended European Search Report dated Nov. 8, 2016 from the European Patent Office for Application No. 16167087.2, filed Aug. 3, 2012, 6 pages.
Non-Final Office Action dated Dec. 16, 2016, for U.S. Appl. No. 13/566,886, filed Aug. 3, 2012, 11 pages.
Non-Final Office Action dated May 15, 2017, by the United States Patent and Trademark Office for U.S. Appl. No. 14/743,867, filed Jun. 18, 2015.
Notice of Allowance dated Aug. 18, 2017, for U.S. Appl. No. 13/566,886, filed Aug. 3, 2012, 10 pages.
Notice of Allowance dated Aug. 4, 2017, by the United States Patent and Trademark Office for U.S. Appl. No. 14/743,867, filed Jun. 18, 2015, 7 pages.
Final Office Action dated Nov. 29, 2017, for U.S. Appl. No. 15/177,041, filed Jun. 8, 2016, 13 pages.
Final Office Action dated Mar. 21, 2018, for U.S. Appl. No. 14/321,631, filed Jul. 1, 2014, 18 pages.
Non-Final Office Action dated Nov. 6, 2018, for U.S. Appl. No. 14/321,631, filed Jul. 1, 2014, 18 pages.
Related Publications (1)
Number Date Country
20160367178 A1 Dec 2016 US
Provisional Applications (1)
Number Date Country
60721966 Sep 2005 US
Continuations (1)
Number Date Country
Parent 11529614 Sep 2006 US
Child 15191434 US