This invention relates to a hand tool and relates particularly to a multi-size wrench and a shifting device applied thereto.
An improvement of a conventional socket wrench 1 published by Taiwanese Utility Model no. M576520 is disclose and includes a wrench head 11, an outer sleeve body 12 extending in a lengthwise direction and detachably connected to the wrench head 11, and an inner sleeve 13 movably disposed through the outer sleeve body 12. The outer sleeve body 12 includes a first working hole 121 formed at one end, a second working hole 121 formed at the other end, and an accommodation space 123 which communicates the first working hole 121 with the second working hole 122 and has a smaller width. The inner sleeve 13 includes a third working hole 131 formed at one end and a fourth working hole 132 formed at the other end. Referring to
However, because the third working hole 131 and the fourth working hole 132 cannot enter the accommodation space 123 while switching the working positions, the first working hole 121, the second working hole 122, and the accommodation space 123 which extend in the lengthwise direction may become too long and may have many variations in their inner diameters. These conditions make the manufacture of the outer sleeve body 12 more complicated, cause the low product yield, and render the product unable to work in a small working space.
A first object of this invention is to provide a shifting device applied to a multi-size wrench and capable of being conveniently manufactured and being used in a small space.
A shifting device of this invention is applied to a multi-size wrench. The multi-size wrench is adapted to turn a fastening member and includes a mounting hole penetrating therethrough along an axis and a mounting flange formed around the mounting hole. The shifting device includes a sleeve module and a shifting member.
The sleeve module is inserted into the mounting hole and abuts against the mounting flange. The sleeve module defines a through hole extending along the axis, a first side surface formed at one end, and a second side surface formed at another end. The through hole extends from the first side surface to the second side surface along the axis and is divided into a first hole region, a buffering region, and a second hole region in sequence.
The shifting member is movably disposed in the through hole along the axis and includes a third operating section and a fourth operating section extending along the axis. The third operating section has a third working hole extending along the axis, and the fourth operating section has a fourth working hole extending along the axis. By comparison with the location of the fourth working hole, the location of the third working hole is closer to the first side surface. The shifting member is movable along the axis and movable between a first position and a second position. When the shifting member assumes the first position, the shifting member is close to the first side surface, the fourth operating section of the shifting member is situated in the buffering region of the through hole, and the third operating section is situated in the first hole region of the through hole. Accordingly, the second hole region and the third working hole are adapted to turn the fastening member. When the shifting member assumes the second position, the shifting member is far from the first side surface, the third operating section of the shifting member is situated in the buffering region, and the fourth operating section of the shifting member enters the second hole region of the through hole. Accordingly, the first hole region and the fourth working hole are adapted to turn the fastening member.
A second object of this invention is to provide a multi-size wrench capable of being conveniently manufactured and being used in a small space.
The multi-size wrench of this invention is adapted to turn a fastening member and includes a wrench body and the aforementioned shifting device.
The wrench body includes a mounting hole penetrating therethrough along an axis and a mounting flange formed around the mounting hole.
The shifting device is inserted in the mounting hole and abuts against the mounting flange.
A significant effect of this invention is that the spatial cooperation between the through hole and shifting member allows the fourth operating section of the shifting member to be situated in the buffering region of the through hole when the shifting member is in the first position and also allows the third operating section of the shifting member to be situated in the buffering region when the shifting member is in the second position. Accordingly, the length of the through hole extending along the axis can be reduced to decrease the length of the sleeve module, which facilitates the manufacture and is adapted to a smaller working space.
Other features and effects of this invention will become better understood by reference to the preferred embodiments when considered in connection with the accompanying drawings and wherein:
Referring to
The wrench body 200 includes a mounting hole 201 penetrating therethrough along an axis X, a mounting flange 202 formed around the mounting hole 201, and a recess 203 formed on an inner surface.
The shifting device 300 includes a sleeve module 3, a shifting member 4, a C-type ring 5, and an engagement member 6.
Referring to
The through hole 30 extends from the first side surface 31 to the second side surface 32 along the axis X and is divided into a first hole region 301, a buffering region 302, and a second hole region 303 in sequence.
The first hole region 301 and the second hole region 303 are adapted to turn the fastening member (not shown in figures). The fastening member can be a nut or a sleeve.
A first imaginary line L1 is defined on the first sleeve 33 and serves to differentiate the first hole region 301 from the buffering region 302, and a second imaginary line L2 is defined on the second sleeve 34 and serves to differentiate the second hole region 303 from the buffering region 302. The buffering region 302 is located between the first imaginary line L1 and the second imaginary line L2. The buffering region 302 extends from the first imaginary line L1 to the second imaginary line L2 along the axis X and is sequentially divided into a first area 304, a second area 305, and a third area 306.
In this preferred embodiment, a minimum extending length of the first area 304 perpendicular to the axis X and a minimum extending length of the third area 306 perpendicular to the axis X can be smaller than a minimum extending length of the second area 305 perpendicular to the axis X. The minimum extending length of the first area 304 perpendicular to the axis X is substantially equal to a minimum hole diameter of the first hole region 301, and the minimum extending length of the second area 305 perpendicular to the axis X is substantially equal to a minimum hole diameter of the third working hole 411. In a variation of this preferred embodiment, the buffering region 302 can have a change in the hole diameter. For example, the minimum extending lengths of the first area 304 and the third area 306 perpendicular to the axis X can be larger than the minimum extending length of the second area 305 perpendicular to the axis X.
The first sleeve 33 includes a perforated section 331 which defines the first hole region 301, a support section 332 extending from the perforated section 331 in a direction far from the first side surface 31, a mounting slot 333 formed on an outer surface, a ratchet teeth portion 334 formed on an outer surface of the support section 332, and a first inner annular groove 335 and a second inner annular groove 336 respectively formed on an inner surface and spaced from each other along the axis X.
In this preferred embodiment, the ratchet teeth portion 334 is formed on the outer surface of the support section 332. In one variation of this preferred embodiment, the ratchet teeth portion 334 can be formed on both outer surfaces of the support section 332 and the perforated section 331 to thereby increase the torque of turning the fastening member (not shown in figures). In another variation of this preferred embodiment, the ratchet teeth portion 334 can be formed on both outer surfaces of the support section 332 and the second sleeve 34, and two sets of triangular teeth (not shown in figures) can be used to work with the ratchet teeth portion 334 respectively formed on the outer surfaces of the support section 332 and the second sleeve 34 to thereby increase the torque of turning the fastening member.
It is noted that in this preferred embodiment, the first inner annular groove 335 and the second inner annular groove 336 are formed on an inner surface of the first sleeve 33. In a variation of this preferred embodiment, at least one of the two inner annular grooves, namely the first inner annular groove 335 and the second inner annular groove 336, can be formed on the inner surface of the second sleeve 34.
The second sleeve 34 forms a mounting collar section 341 around an outer surface thereof for abutting against the mounting flange 202 and defines the second hole portion 303. The second sleeve 34 cooperates with the support section 332 so that the buffering region 302 is defined. The mounting collar section 341 is in contact with the support section 332 of the first sleeve 33.
In this preferred embodiment, the block portions 35 are respectively formed on the inner surfaces of the first sleeve 33 and the second sleeve 34 and are respectively located adjacent to the first inner annular groove 335 and the second inner annular groove 336, thereby serving to differentiate the first area 304 from the second area 305 and differentiate the second area 305 from the third area 306, respectively.
It is noted that in a variation of this preferred embodiment, the block portions 35 can also be used to differentiate the first hole portion 301 from the buffering region 302 and to differentiate the buffering region 302 from the second hole portion 303, and concurrently the first area 304, the second area 305, and the third area 306 can have the same hole diameter. Accordingly, the aforementioned arrangement also attains the effect of limiting the position of the shifting member 4 by using the block portions 35.
The shifting member 4 can be movably disposed in the through hole 30 along the axis X and includes a third operating section 41 and a fourth operating section 42 each extending in the direction of the axis X and a flange portion 43 formed on an outer surface and movably situated in the second area 305 of the through hole 30.
In this preferred embodiment, the flange portion 43 and each of the block portions 35 can be a collar formed in a closed circular shape so that the flange portion 43 are allowed to be braced against the block portions 35 for positioning. In a variation of this preferred embodiment, it is possible that either the flange portion 45 or each block portion 35 can be a collar formed in a closed circular shape, and the rest can be formed in a positioning structure capable of abutting against the collar, such as a protrusion. This arrangement also attains the same effect as previously described.
The third operating section 41 and the fourth operating section 42 have a third working hole 411 and a fourth working hole 421 extending respectively along the axis X for being adapted to turn the fastening member. By comparison with the location of the fourth working hole 421, the location of the third working hole 411 is closer to the first side surface 31.
The flange portion 43 has a locking slot 431 recessedly formed on the outer surface thereof.
In this preferred embodiment, the first hole region 301, the second hole region 303, the third working hole 411, and the fourth working hole 421 differ in having different minimum hole diameters, and the minimum hole diameters are put in descending order, i.e. from greatest to least: the minimum hole diameter of the first hole region 301, the minimum hole diameter of the second hole region 303, the minimum hole diameter of the third working hole 411, and the minimum hole diameter of the fourth working hole 421. Accordingly, it can be applied to four different sizes of fastening members (not shown in figures).
Referring to
The C-type ring 5 is disposed between the mounting slot 333 and the recess 203 to fix the first sleeve 33 to the mounting hole 201. Thus, the sleeve module 3 does not escape from the wrench body 200 easily. Preferably, the C-type ring 5 can be a flexible material.
The engagement member 6 is disposed in the locking slot 431. When the shifting member 4 is situated in the first position shown in
An installation of this invention is executed by following steps. Firstly, put the second sleeve 34 into the mounting hole 201 and brace the mounting collar section 341 of the second sleeve 34 against the mounting flange 202. Secondly, after the shifting member 4 and engagement member 6 are assembled together as an assemblage, put the assemblage into the first sleeve 33 and then into the mounting hole 201. Then, push the sleeve module 3 by using a jig (not shown in figures) to allow the C-type ring 5 to be sleevedly disposed on the mounting slot 333 of the first sleeve 33. Finally, put the sleeve module 3 in which the shifting member 4 is installed, the C-type ring 5, and the engagement member 6 into the mounting hole 201 to thereby complete the installation.
An operation of this invention is executed by pushing and moving the shifting member 4 between the first position shown in
It is noted that the shifting device 300 of this preferred embodiment can be individually manufactured, sold, and used, and its dimension can be adjusted according to different hole diameters of the mounting holes 201 as for example shown in
Referring to
1. Because the spatial cooperation between the through hole 30 and the shifting member 4 is made, the fourth operating section 42 of the shifting member 4 is situated in the buffering region 302 of the through hole 30 when the shifting member 4 assumes the first position, and the third operating section 41 of the shifting member 4 is situated in the buffering region 302 when the shifting member 4 assumes the second position. In this case, the lengths of the shifting member 4 and the sleeve module 3 can be reduced to shorten the length of the through hole 30 extending along the axis X. Therefore, the above configuration is easy to manufacture and is capable of being used in a small space.
2. Furthermore, the concatenation of correlated elements, namely the first sleeve 33, the second sleeve 34, and the shifting member 4, can reduce respective extending lengths of elements and decrease variations in their hole diameters, so the above configuration facilitates the manufacture.
While the embodiments are shown and described above, it is understood that the embodiments related to this invention should not limit the scope of this invention and that further variations and modifications may be made without departing from the scope of this invention.
Number | Date | Country | Kind |
---|---|---|---|
108132065 | Sep 2019 | TW | national |